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Abstract: Heavy rainfall is a major factor for landslide triggering. Here, we present an inventory of
47,523 landslides triggered by two precipitation episodes that occurred in May 2023 in the Emilia-
Romagna and conterminous regions (Italy). The landslides are manually mapped from a visual
interpretation of satellite images and are mainly triggered by the second rainfall episode (16–17 May
2023); the inventory is entirely original, and the mapping is supplemented with field surveys at a few
selected locations. The main goal of this paper is to present the dataset and to investigate the landslide
distribution with respect to triggering (precipitation) and predisposing (land use, lithology, slope and
distance from roads) factors using a statistical approach. The landslides occurred more frequently on
steeper slopes and for the land use categories of “bare rocks and badlands” and woodlands. A weaker
positive correlation is found for the lithological classes: silty and flysch-like units are more prone to
host slope movements. The inventory presented here provides a comprehensive picture of the slope
movements triggered in the study area and represents one of the most numerous rainfall-induced
landslide inventories on a global scale. We claim that the inventory can support the validation
of automatic products and that our results on triggering and predisposing factors can be used for
modeling landslide susceptibility and more broadly for hazard purposes.

Keywords: landslide inventory; heavy rainfall; spatial distribution; Emilia-Romagna region

1. Introduction

Landslides are a movement of rock, earth or debris down a slope [1]. They can be
triggered by several processes, including rainfall, earthquakes and human activities [2].
Heavy rainfall is among the most common triggering mechanisms and may result in
thousands of landslides across a wide region. Landslides represent a major hazard source
and have a relevant societal impact, because they cause heavy direct and indirect costs
(e.g., [3]) on people, buildings, infrastructures and human activities. In Europe, the average
economic loss during 1995–2014 is estimated to be 4.7 billion EUR per year [4]. Landslides
are highly impacting in Italy: [5] describes a dataset covering the period 843-2008, reporting
1562 landslide events that have caused at least 7477 deaths. The human and economic costs
of landslides are expected to increase in the future [6].

In order to assess landslide susceptibility and risk, it is essential to obtain information
on landslide location. In this sense, landslide inventories represent the location either as a
point or polygon and, if known, the date of occurrence and type of slope movement [7];
thus, landslide inventories are a basic prerequisite for hazard assessment [8,9]. Landslide
inventories can be obtained using a variety of methods, including field reconnaissance and
the interpretation of optical or Synthetic Aperture Radar (SAR) images (e.g., [7]); landslides
can be drawn either manually or by semi-automatic and automatic methods [10–13]. The
key goal of the current study is to realize a comprehensive landslide inventory, following a
period of heavy precipitation that hit N Italy in May 2023.

Rainfall-triggered landslides have been a focus of scientific inquiry for decades, for
instance, [14] compiled a list of more than 450 references dealing with this topic. The
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availability of landslide inventories following heavy rainfall and storms is rapidly increas-
ing, covering different geographic and climatic settings (e.g., [15–24]). A relatively high
number of inventories are available for Italy, such as the seminal works by [25] on the
Friuli seismic sequence and [26] on rapid snowmelt in Umbria. More recent efforts include
the mapping of landslides triggered by heavy rainfall in the Liguria [15], Umbria [27] and
Marche regions [28,29].

Contrarily to earthquake-induced landslides [30], a unified repository does not exist for
rainfall-triggered landslides; moreover, some scholars claim that the number of inventories
available in digital format is still limited [7,20,23]. One critical limitation in the quick
identification of landslides triggered by precipitation is cloud coverage, which may persist
for a long time in the area affected by storms.

Here, we present an inventory of landslides triggered by heavy rainfall that occurred in
May 2023 in Northern Italy. The area was hit by prolonged rainfall, which caused extensive
flooding and landslides, resulting in 17 deaths, tens of thousands displaced and at least
8.8 billion EUR in losses [31]. The inventory is entirely original and was produced by
manual mapping, interpreting a set of pre- and post-event satellite images, and supple-
mented with a limited field survey. The purpose of our study is to (i) present the dataset of
47,523 mapped landslides, (ii) describe the amount and spatial pattern of precipitation and
(iii) investigate the distribution of landslides with respect to predisposing and triggering
factors. Our results may be compared to other mapping methods (e.g., automatic mapping);
we envisage that our results can be used for hazard purposes, susceptibility modeling or
the characterization of rainfall thresholds. Additionally, we stress that the availability of
sound input data will result in more robust outcomes and provides the grounds for better
informed decisions. In this sense, our dataset provides an additional case history that can
be compared with extant knowledge and contributes to filling eventual data gaps.

This paper is organized as follows: in Section 2, we provide a description of the study
area and of the May 2023 precipitation events; in Section 3, we introduce the materials and
methods used to compile the inventory and investigate the predisposing and triggering
factors; in Section 4, we present the obtained inventory and we analyze the spatial distribu-
tion of landslides with respect to conditioning factors; in Section 5, we compare this case
study with other available data and we discuss the limitations of our approach; and finally,
in Section 6, we draw some conclusions.

2. Regional Setting and the May 2023 Precipitation Events
2.1. The Study Area

Figure 1 shows the Digital Elevation Model (DEM) of the study area, in Northern
Italy, mainly located in the Emilia-Romagna (ER) region. The area of interest (AOI), where
we mapped the rainfall-triggered landslides, covers 5764 km2, with elevations ranging
between 10 and 1400 m asl. The DEM clearly shows a geomorphological boundary between
the plain sector to the NE and the hilly sector of the Northern Apennines to the SW. The
main rivers flow from the SW to the NE and reach either the Po River or the Adriatic
Sea; in the plain, the rivers flow at elevations higher than the surrounding plain. Such
a configuration implies that, following heavy rainfalls, the hilly sector is prone to slope
movements, while the plain suffers from flooding.

In the hills, the slopes are generally gentle, with values in the range of 0–70◦, with a
broad modal peak centered at 10–20◦. From the geological point of view, the chain sector
of the AOI is the result of the tectonic superposition of two large sets that are different
in lithology, structure and paleogeographic origin: an External Umbrian–Tuscan Domain,
mainly outcropping to the SE and composed of turbiditic units, well-bedded marls and
sandstones, and an Internal Ligurian–Emilian Domain, outcropping to the NW, composed
of shales, chaotic melange and flysch-like units [32]. From the lithological point of view,
the AOI is characterized by the outcropping of terrigenous formations with a high clay
content, alternating sandstones marls and siltstones and turbiditic successions, resulting in
a typical landscape characterized by badlands and diffuse slope movements. Lithological
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control on erosion results in aligned cuestas and hogbacks. Where the superimposition of
flysch or sandstones occurs, sub-vertical slopes and mesa-like features are displayed (i.e.,
the so-called “Pietra di Bismantova”; [33]). The Italian inventory of slope movements [34]
includes over 40,000 mapped landslides in the AOI (45% rotational/translational slides
and 30% slow earth flows).

Figure 1. (a) Location of the area enlarged in panels b and c; (b) overview of the study area, the area
of interest (AOI) is represented in red; and (c) simplified regional geological map.

The primary land covers, after the Emilia-Romagna region land use database (last
updated in 2020, following the CORINE land cover classification scheme [35]), include agri-
cultural fields and forested areas for the hillside sector of the AOI, followed by urbanized
land use, mainly located at the foothills or in the plain area.

The mean annual rainfall is in the range 700–1400 mm (the climatic atlas of the Emilia-
Romagna region, [36]), with the values increasing from the NE to SW; autumn represents
the wettest season, followed by a secondary peak in precipitation in the spring.
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2.2. The Rainfall Episodes of May 2023

During May 2023, the ER region experienced prolonged and intense rainfall, mainly
distributed in two episodes, i.e., 1–2 May and 16–17 May. The gauge records (Figure 2,
Table 1) show no significant rainfall in the 30 days preceding the first rainfall episode. At
the beginning of May 2023, rainfall hit the entire AOI, with the cumulative values exceeding
200 mm (e.g., 254 mm at Le Taverne and 243 mm at Trebbio). The hourly intensities were
generally lower than 3–5 mm/h, with few peaks exceeding 15–20 mm/h. This event was
the most intense in a 2-day interval since 1997 and the most intense in the spring season
since 1961 [37]. The geographic distribution of the rainfall is shown in Figure 2a. The
highest values were recorded in the Reno, Lamone and Montone drainage basins; the
precipitation generated an increase in river discharge, reaching hydrometric levels close
to, and locally higher than, the levee levels. Sporadic slope movements were triggered as
well [37].

Figure 2. (a) Location of the area enlarged in panels (b,c); (b) rainfall amount during 1–17 May 2023
over the area of interest and location of the rain gauges; in red are labeled the stations depicted in
(d–f); (c) rainfall amount during 16–17 May 2023 and location of the field photographs; (d) plot of
cumulative rainfall for the period April–June 2023; (e) plot of cumulative rainfall for 1–2 May 2023;
and (f) plot of cumulative rainfall for 16–17 May 2023.
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Table 1. Details on the rainfall gauges plotted in Figure 2.

ID Station Municipality Province Elevation
(m asl) Longitude Latitude Hydrographic

Basin

BTO Borgo
Tossignano

Borgo
Tossignano Bologna 98 11.578993 44.27467 Santerno

TAV Le Taverne Fontanelice Bologna 486 11.587499 44.2492 Santerno

ALB Monte
Albano

Casola
Valsenio Ravenna 480 11.6734246 44.22432 Senio

PVE Ponte
Verucchio Verucchio Rimini 116 12.405109 43.9829 Marecchia

TRE Trebbio Modigliana Forlì-Cesena 570 11.8371627 44.13697 Lamone
VER Vergato Vergato Bologna 193 11.113128 44.2878 Reno

An even stronger precipitation event (Minerva storm) occurred on 16–17 May 2023
(Figure 2b); again, the most hit area was the hilly sector of the ER region. The cumulative
values over the 2 days reached 260.8 mm at the Monte Albano gauge and 254.8 at Trebbio.
The cumulative rainfall over the 17-day period (1–17 May 2023) is the highest historical
record for about 65% of the gauge stations in central and eastern ER [38]; the maximum
values reached 609.8 mm at Trebbio and 563.4 mm at Le Taverne (Figure 2c). The high
discharge resulted in extensive floods of the plains and in thousands of landslides in
the hills.

3. Materials and Methods

Figure 3 represents the methodological workflow adopted in this study. The approach
consists of three subsequent phases, namely, (i) building the landslide inventory and
performing the field reconnaissance, (ii) acquiring data on predisposing and triggering
factors and (iii) conducting data analyses. At each step, input data are required, which may
be obtained from external sources (e.g., satellite images and thematic maps) or generated
in the previous steps (e.g., landslide polygons).

Figure 3. Methodological workflow adopted in this study.

3.1. Realization of the Landslide Inventory

The first step of this research is the realization of the landslide inventory, which is based
on a visual inspection of pre- and post-event satellite images in an area of 5764 km2. The
satellite images were acquired by PlanetScope (https://www.planet.com/, last accessed
on 3 November 2023) and were provided under an academic license as ortho-rectified
products; 3 m resolution multiband tiles were used. A screening of the available imagery
was initiated within hours of the 16–17 May precipitation episode, using the Planet website;
for a few days the area was heavily clouded, and the first cloud-free images were available
on 22 May. For the realization of the inventory, the images were accessed through the

https://www.planet.com/
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Planet QGIS Plugin; the pre-event imagery refers to the Monthly Global Basemap products
provided by Planet, and the April 2023 Basemap was used. The post-event images were
acquired between 22 May and mid-June 2023. The cloud-free image closer to the event
was used and multitemporal frames were checked in the selected areas (e.g., due to the
presence of shadows or unclear images).

The landslides were manually mapped at a scale of 1:5000 by a single operator in
a time interval of 5 weeks following the rainfall event; the inventory (version 1.0) was
released online on 28 June 2023. The landslides were mapped as polygons encompassing
both the source and deposit areas, because they are not easily discernible in satellite images;
the landslides were mapped as individual polygons as much as possible, trying to avoid
issues related to amalgamation [39].

We realized the field surveys in a limited subset of the AOI on 30 July–1 August
2023; we drove along the main and secondary roads, and we acquired photographic
documentation of the landslides at selected spots along the roads or at scenery points for a
broader view.

We computed the area–frequency distribution of the event inventory following [40].
The probability density for classes of a width equal in logarithmic coordinates is calcu-
lated as:

p =
1
N

∂NL

∂AL
, (1)

where N is the total number of landslides, and NL is the number of landslides with an area
between AL and AL + δAL.

3.2. Predisposing and Triggering Factors

The second step of the research includes the acquisition and preparation of the thematic
data related to the predisposing and triggering factors. We compared the spatial distribution
of the landslides with some descriptors of the local geological and geomorphological setting
and with the spatial distribution of the precipitations during the May 2023 events. We
selected five influencing factors for further analyses, namely, rainfall, slope, land use,
lithology and distance from roads.

We interpolated the pluviometric data published in the ER report [38]. The cumulative
pluviometric data refer to the period 1–17 May 2023 and for the two-day period of 16 and
17 May 2023. We interpolated the point data with a local polynomial interpolator algorithm
(spline interpolation) to grant the representativeness of the data in terms of local trends
and to avoid possible spikes in the data distribution.

For the topographical analyses, we used the 20 m DTM of Italy, released by ISPRA,
and we derived the slope values (in degrees).

We obtained a lithological map of the area from the ER region WebGIS at a 1:50,000 scale.
The geological map has been directly derived from the Italian national geological cartogra-
phy program (CARG Project) and includes a lithological classification of each geological
unit. For the sake of simplicity, we adopted the classification scheme summarized in Table 2.

Table 2. Lithological classes.

Lithology Class Description

U1 Competent massive or well-bedded rocks (mainly limestones and
dolostones)

U2 Siltstones, marls and limestones interbedded with marls
U3 Sandstones and sandstones interbedded with marls and siltstones
U4 Conglomerates and breccias
U5 Gypsum (massive or breccia facies)

Land use was downloaded from the ER region WebGIS. This database follows the
CORINE land cover hierarchical classification scheme and was updated in 2020. We
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compared the occurrence of landslides with the main categories of land use as summarized
in Table 3.

Table 3. Land use classes.

Land Use Class Description

L1 Urban (residential and industrial)
L2 Arable land
L3 Agricultural (trees and vineyard)
L4 Meadows
L5 Woods (both evergreen and deciduous)
L6 Bare rocks and badlands
L7 Shrubs
L8 Water (lakes, rivers and swamps)

To estimate the possible influence of the vicinity of roads for landslide triggering, we
used the Open Street map database of roads and streets, including all the road types except
for paths in mountain areas.

3.3. Data Analysis

The last part of our work is dedicated to the statistical analysis of the inventory. As a
first step, we carried out a topological check on the landslide inventory using the “check
validity” QGIS tool to correct auto-intersecting polygons; this check resulted in 14 invalid
polygons (0.03% of the mapped landslides), which were manually corrected. To investigate
the spatial distribution of landslides, we computed the landslide number density (LND)
and landslide area percentage (LAP), which later were statistically analyzed with respect to
predisposing and triggering factors.

The landslide density was calculated by means of the kernel density estimation ap-
proach using a kernel density estimator (KDE) in a GIS environment (e.g., [41,42]). The KDE
calculates the density of point features if a probability density function of event occurrence
(i.e., the kernel shape) is centered at the observation point. The probability diminishes with
increasing distance from the point, reaching zero at the search radius distance (h) from the
point. Only a circular neighborhood is possible.

Following [43], we calculated h according to the following formula:

h = 0.9 × min
(

SD,
IQR
1.34

)
× n−0.2, (2)

where IQR and SD are the interquartile range and the standard deviation, respectively, of
the distances between each observation point and the centroid of the point population; n is
the number of points.

The density at each output raster cell is calculated by adding the values of all the
kernel surfaces where they overlay the raster cell center. We adopted an Epanechnikov
kernel shape [44], namely, a kernel function built as the positive part of a parabola that
minimizes the errors associated to the tails of the estimates [43]. We also produced a density
raster of the calculated KDE density with 100 m cell spacing.

LAP represents the percentage of the territory covered by the rainfall-triggered land-
slides; it was computed on a regular grid of cells having an area of 1 km2.

The quantitative relationship between landslides and predisposing factors affecting
landslides are established by the data-driven Information Value (InfoVAL) method [45–47].
The method allows for the quantified prediction of susceptibility by means of a score (Wi),
calculated according to landslide occurrence on each class and weighed according to the
class distribution over the entire study area:

Wi = ln
Densclassi

Densmapi
, (3)
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where Wi is the score for the i-th class, Densclass is the landslide occurrence for the i-th
class and Densmap is the i-th class occurrence on the whole area. This formula normalizes
the event occurrences over the spatial distribution of each considered class. Positive values
indicate a positive statistical correlation and negative values a negative one, while values
close to zero indicate a random distribution of the data. We applied the InfoVAL method to
the territory of the ER region, where consistent and homogenous information is available.
Emilia-Romagna accounts for 97% of the mapped landslides, so we claim that the obtained
results can be considered representative of the entire dataset.

4. Results
4.1. The Inventory

The dataset contains 47,523 landslides in an area of 5764 km2, corresponding to an
average density of about 8 landslides/km2. Figure 4 shows two examples of multitemporal
satellite images at the localities of Fontanelice and Fognano (for the location, see Figure 2c).
The upper panels (Figure 4a) represent the images acquired before the rainfall episodes,
i.e., on 27 April; the mid-panels (Figure 4b) were acquired after the first rain spell, i.e., on
5 May; and the lower panels (Figure 4c) were acquired a few days after the main rainfall
episode, i.e., on 22–23 May. Finally, Figure 4d presents two field photographs of the sites.

The pre-event images provide an overview of the typical local setting, which includes
a variable proportion of urban areas, agricultural fields, woodlands and outcropping rocks.
From the comparison of the multitemporal images, it is evident that most of the landslides
occurred after the 16–17 May rainfall episode; nevertheless, a few landslides are recog-
nizable on the 5 May images as well (see red circles), mostly related to the reactivation of
pre-existing slope movements. The landslides are not homogeneously distributed but tend
to cluster at specific places, such as along the Santerno River (Fontanelice) or in the wood-
land and cultivated fields N of Fognano. The field photos show the occurrence of closely
spaced slope movements with variable runouts, which scraped off the vegetative cover.

Figure 5 presents the selected examples of the landslides observed in the field and
having variable characteristics in terms of the size, shape, geomorphological setting and
involved materials. The location of the sites is presented in Figure 2c. Figure 5a includes two
slides with long runouts coalescing into a single toe; the crown areas are at the top of a small
hill, while the toe intersects an agricultural field. Figure 5b shows a single slope movement
on the lower part of a steep slope in a vegetated region; in this case, the deposit area lies
at the base of the slope. Figure 5c shows a panoramic view of the multiple landslides
that occurred on the slope beneath the Sorrivoli Castle, a fortress built in the XI century.
Figure 5d shows the trunks and sediments transported by a river course and deposited
at the intersection with a road bridge. Figure 5c,d represent typical interactions between
the landslide events or destabilized material and anthropic activities, infrastructures or
cultural heritage.

The dataset is entirely original, and the shapefiles (coordinate system WGS84 UTM
32N) can be publicly accessed at https://zenodo.org/record/8102429 (last accessed 1
October 2023). We computed the LND and LAP values on a regular grid of cells having a
dimension of 1 km2. Figure 6 allows for appreciating the uneven spatial distribution of the
landslides: the highest LND and LAP values are indeed located in a small portion in the
central part of the AOI and decrease moving outwards. The maximum LND values reach
129 landslides/km2, while the maximum LAP values reach around 30%.

The landslide polygons cover an area of 40.9 km2, which represent 0.71% of the AOI;
the largest mapped failure has an area of 98,000 m2, while the average area is 860 m2. The
probability density of the dataset is presented in Figure 6c: the curve is characterized by
the typical pattern of other landslide–area distributions, namely, a negative power law fit
for medium to large landslides and a positive power law fit for small to medium landslides.
The two limbs of the curve are separated by a rollover, which in our case is located at a
size of 120–150 m2. The exponent of the negative power law is −2.22, which is in broad
agreement with other inventories worldwide [18,23,26,48].

https://zenodo.org/record/8102429
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Figure 4. Selected examples of multitemporal Planet images at Fontanelice (left column) and Fognano
(right column): (a) images acquired on 27 April 2023, before the rainfall events; (b) images acquired
on 5 May 2023, after the first spell of heavy rain, red circles show the location of a few landslides
triggered by the first rain episode; (c) images acquired on 22–23 May 2023, after the rainfall episodes,
yellow dots are the location of field pictures; and (d) panoramic photographs of the two regions
(photo shot by M. F. Ferrario on 30 July and 1 August 2023, respectively).
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Figure 5. Field photos documenting some of the slope movements and related effects: (a) coalescing
landslides in agricultural fields; (b) landslide on vegetated steep slopes, the material accumulates at
the base of the slope; (c) interaction between landslides and cultural heritage (Sorrivoli Castle); and
(d) material accumulated beneath a bridge pillar, enhancing the derived damage. All the photographs
were shot by M. F. Ferrario between 30 July and 1 August 2023.

Figure 6. (a) Distribution of landslide number density (LND) values; (b) distribution of landslide
area percentage (LAP) values; and (c) plot of the probability density as a function of landslide area.
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4.2. Predisposing and Triggering Factors

We selected four predisposing factors for the subsequent analysis; one is related to the
topography (i.e., slope) and one to the geologic setting (lithology), while the remaining two
factors are the land use and distance from roads, which account for the anthropic territorial
modifications. Figures 7 and 8 show the maps of the four factors, while the categories used
to classify the lithology and land use are presented in Tables 2 and 3, respectively. The plots
in the upper-right corner of Figures 6 and 7 show the repartition among the different units:
the overall AOI is represented by the blue columns, while the orange dots represent the
proportion of landslide centroids falling within each unit.

Figure 7. Maps of slope values (a) and lithology (b) in the AOI. Graphs in upper-right corner represent
the repartition of the landscape (blue bars) and landslide centroids (dots) in the different classes.
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Figure 8. Maps of land use (a) and distance from roads (b) in the AOI. Graphs in upper-right
corner represent the repartition of the landscape (blue bars) and landslide centroids (dots) in the
different classes.

Figure 7a presents the role of the slope, which has been categorized into units of 10◦

width. Categories 0–10◦ and 10–20◦ share an almost equal amount of the AOI (38% each),
but the landslide centroids peak in the 10–20◦ class, with a value of 37%. The steeper slopes
are less diffuse in the AOI, but the landslide centroids are over-represented, especially in
the 20–30◦ and 30–40◦ classes.
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Figure 7b presents the role of lithology, which has been categorized into five units (see
Table 2). The most represented unit in the AOI comprises “siltstones, marls and limestones
interbedded with marls”; it covers 57% of the AOI, and 67% of the landslide centroids lie
within Unit 2. Overall, the abundance of landslides for each unit follows the lithological
repartition in the AOI.

Figure 8a presents the role of land use, which has been categorized into eight units
(see Table 3). The most represented unit in the AOI is L5 (i.e., woods, 36%), followed by
L2 (arable land, 28%). When considering landslide centroids, more than half (56%) lie in
Unit L5, pointing toward a strong influence of this land use category. Unit L6, bare rocks
and badlands, accounts for only 2.2% of the AOI but includes 9% of the landslides, again
suggesting that it may be a strong predisposing condition. On the contrary, Unit L1 (urban
areas) covers 14% of the AOI, but only 2% of the landslides are located in Unit L1, probably
because urban areas lie on flat regions and/or landslides are more difficult to identify in
satellite imagery.

Figure 8b presents the role of the distance from roads, which has been categorized into
units of 200 m width. The AOI shows an exponential decrease with distance: 86% of the
AOI lies at less than 400 m from a road, testifying to the high density of infrastructures and
thus the exposed assets. The distribution of landslide centroids mimics the AOI repartition,
because the most represented class is within 200 m from a road (51%).

Precipitation is the triggering factor of this large amount of mass movements. A
comparative analysis between the landslide KDE value and the corresponding precipitation,
occurring at the same location, provides some additional insights. We considered both the
distribution of the cumulative precipitations that occurred during the whole rainfall period
(1–17 May 2023; Figure 9a) and the precipitations that occurred during the second rainfall
event alone (16–17 May 2023; Figure 9b). Even considering a quite scattered distribution of
the datapoints, it is apparent that there is a good positive correlation between the amount
of rainfall and the spatial density of landslides. In particular, if we consider the 16–17 May
2023 event alone, the graph points to a threshold value for the inception of landslides of ca.
120 mm over the considered period.

Figure 9. Density of datapoints contoured on a scatterplot showing the KDE value (number of
events/km2) compared with the corresponding value of precipitations recorded during 1–17 May (a)
and during 16–17 May alone (b).

The analysis of the frequency distribution of the landslide KDE value for each land
use and lithology class highlights how the landslides concentrate or not in certain zones
(Figure 10). A lithological control on landslide occurrence is apparent only for conglomerate-
like units (class U4), inhibiting the massive landsliding, and flysch-like units (class U2) that,
on the contrary, look to host a higher landslide density.
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Figure 10. Statistics of the KDE value recorded for each of the classes of lithology (a) and land use (b),
considered as possible predisposing factors (see Tables 2 and 3 for class codes); on the boxplots, the
average (white line), 1 standard deviation (boxes), and 2 standard deviations (whiskers) are reported.

As for the land use, agricultural land (class L3) and woodland (class L5) are correlated
to an average higher KDE value, also considering a quite broad distribution of values.
On the other hand, urban areas (class L1), on average, are the only ones less affected
by landsliding.

Finally, if we check the relative representation of the land use and lithology classes,
and the reciprocal exchange of events among those classes (Figure 11), we can appreciate
that, overall, most landslides belong to woodland (class L5) over flysch-like units (class
U5), with most of the remaining landslides from the woodland distributed between the
sandstones (class U3) and limestone (class U1) units. Flysch-like units are also associated
with a considerable number of events that happened on arable land (class L2) and shrubs
(class L7).

Figure 11. Stream plot summarizing the distribution of the datapoints among all the possible
combinations of land use and lithology classes (see Tables 2 and 3 for class codes).
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Another considerable number of events belong to bare lands (L6) on sandstones (U3)
and to woodland (class L5) on limestones (class U1).

4.3. InfoVAL Analysis

From the calculated InfoVAL index (Table 4), it is apparent that lithology has a moder-
ate effect on predisposing the slopes to landsliding: positive Wi values are associated with
silty and flysch-like units, but only small positive correlations can be supposed. On the
other hand, sandstones represent a more stable terrain over which landsliding is inhibited.
The land use classes predisposing landsliding are woods and shrubs, with a striking high
value associated with bare rocks and badlands. The slope classes are particularly indicative
of a susceptibility between 20◦ and 40◦ and for extremely high values (60–80◦).

Table 4. Summary of the considered classes as possible predisposing factors and calculated InfoVAL
index (Wi).

Predictor Class InfoVAL Index (Wi)

Lithology
U1: Competent massive or
well-bedded rocks (mainly
limestones and dolostones)

0.09

U2: Siltstones, marls and
limestones interbedded with

marls
0.14

U3: Sandstones and
sandstones interbedded with

marls and siltstones
−0.41

U4: Conglomerates and
breccias −0.48

U5: Gypsum (massive or
breccia facies) 0.08

Land use L1: Urban (residential and
industrial) −1.60

L2: Arable land −0.67
L3: Agricultural (trees and

shrubs) −0.53

L4: Meadows −0.23
L5: Woods (both evergreen

and deciduous) 0.56

L6: Bare rock and badlands 1.57
L7: Shrubs 0.45

L8: Water (lakes, rivers and
swamps) 0.22

Slope (◦) 0–10 −0.31
10–20 0.13
20–30 0.62
30–40 0.71
40–50 0.60
50–60 0.44
60–70 0.79
70–80 2.16
80–90 -

Distance from roads (m) 0–200 −0.07
200–400 0.46
400–600 0.56
600–800 0.40
800–1000 0.19

1000–1200 −0.24
1200–1400 −0.81
1400–1600 −0.46
1600–1800 −0.70
1800–2000 −0.14
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Finally, the distance from roads is somehow indicating an augmented hazard in the
range of 200–800 m. The majority of landslides mapped in our study lie within 200 m from
a road. This result is consistent with those obtained by [28], who realized an inventory of
1687 landslides triggered by a rainfall episode that occurred in the Umbria and Marche
regions on 15 September 2022. They found that 60% of the mapped landslides lie within
50 m from the roads, and the percentage grows to 89% within 200 m from the roads.
It is important to note that the methods of [28] are different from the ones used here:
indeed, they realized the extensive reconnaissance field surveys by driving along main and
secondary roads and stopping at every landslide or scenery point.

5. Discussion
5.1. Comparison with Other Case Studies

The inventory presented in this study includes 47,523 landslides, thus representing
one of the most numerous event inventories on a global scale. Here, we compare the figures
of the Emilia-Romagna inventory with other case histories available in the literature to
look for common patterns or, on the contrary, peculiarity in the case study presented here.
Comparative studies have been realized on a dataset of 16 inventories pertaining to events
that occurred between 2002 and 2019 [18,23]. The events cover a variety of precipitation
patterns (cyclones, typhoons, local storms and prolonged intense rainfall) and geographic
settings (Central and South America, East Africa, India and East Asia). The total event
rainfall ranges between 45 and 2500 mm. A strong influence on the triggered landslides is
played by the total storm rainfall, while topographic parameters (e.g., slope) have a lower
impact [18]. Overall, a non-linear increase in total landsliding is observed with respect to
total rainfall. The number of triggered landslides also scales with the total rainfall amount,
although the scatter is higher; this latter point can be due to the fact that the inventories
were delineated on images with a different resolution [18].

As a comparison, we recall that the rainfall in the Emilia-Romagna region reached
254 mm on 1–2 May 2023 and 260 mm on 16–17 May 2023, while the cumulated rainfall
over the entire period (1–17 May 2023) was about 570 mm. These figures suggest that the
case study presented here is consistent with the literature data.

Figure 12a presents the number of landslides versus the total rainfall amount for the
dataset by [23], while Figure 12b presents the empirical relationship between the total
rainfall and the landslide area presented by [18]. We supplemented the graph with three
Italian case histories [15,27,28] and with the inventory presented in this study. It is quite
evident that the Emilia-Romagna case history plots well above previous investigated events.
Several factors may account for such a difference, including (i) the fact that the case study
presented here was particularly effective in triggering landslides, or (ii) there is an issue of
completeness in the landslide mapping, or (iii) there is some fundamental difference in the
considered events or methodological assumptions. We prefer the former two hypotheses,
because some of the inventories in the literature were derived from the same kind of
satellite imagery and with comparable methods; the frequency–area distribution of the
Emilia-Romagna inventory has a rollover at ca. 120–150 m2, while the inventories have
rollovers ranging between 102 and 103 m2, suggesting that our inventory contains a larger
number of small landslides.
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Figure 12. (a) Number of landslides versus total rainfall (mm), global data after [23], Italian cases
after [15,27,28]; (b) total landslide area versus total rainfall, global data after [18], Italian cases
after [15,27,28].

5.2. Limitations of the Inventory

Here, we highlight some critical aspects and limitations of our study, related either to
the methodological mapping and analytical choices, or actual limitations in the input data.

In the first days after the 16–17 May rainfall episode, persistent cloud cover hampered
the identification of landslides; the inventory is thus based on multitemporal images
acquired on different dates. The high revisit time of the Planet images allows for closely
bracketing the time of occurrence of the landslides. Figure 2d shows that no significant
rainfall occurred after the 16–17 May episode; nevertheless, we cannot rule out that some
slope movements may have been triggered a few days after the rainfall episode. The same
reasoning applies to landslides that may have occurred in the first half of May (i.e., after
the 1–2 May rainfall): Figure 4 shows that most of the movements have been triggered after
the 16–17 May rainfall, but some landslides may have been mobilized before that episode.
Overall, our inventory has to be intended as the cumulative effect of both the 1–2 and 16–17
May rainfall spells.

The inventory was released on 28 June 2023, i.e., 1.5 months after the main triggering
event; in this sense, our inventory can be assimilated to rapid response products (e.g., [49]).
Some operative choices represent a trade-off between the rapidity of execution and data
quality/resolution, for instance, the mapping was realized at a 1:5000 scale and should be
consulted at most at the same scale; a side effect is that our mapping is not recommended
for higher resolution susceptibility studies, unless a field verification is undertaken. We
underline that our inventory is one of the few that have been publicly released; to our
knowledge only one other inventory has been published to date, realized through automatic
mapping from Sentinel-1 images ([50]; publication date 1 June 2023).
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The investigated AOI is 5764 km2 wide, meaning that the inventory does not entirely
cover the area hit by rainfall. However, we argue that the inventory effectively captures the
worst hit area and represents a significant snapshot of the event.

We expect that our inventory may contain a certain number of false positives, especially
in agricultural fields, built-up areas or close to riverbanks; indeed, in the post-event imagery,
such areas show spectral characteristics similar to landslide areas (e.g., [10,11]). We also
expect some completeness issues (false negatives) in the vicinity of roads and river networks:
our limited field surveys allow us to ascertain the occurrence of a high number of slope
movements affecting the road network. Figure 13 presents some representative cases of
field photos and satellite images: the two areas shown in Figure 13a,b lie about 1 km apart
on Province Road SP610 in the Castel del Rio Municipality. In the first case (Figure 13a,c,d),
the slope movement is clearly visible in the satellite image and is included in the inventory;
the landslide intercepts the road and flows down, reaching the Santerno River course. In
the second case (Figure 13b,e), a small slope movement occurred along the road bank;
this landslide is not visible in the 3 m resolution Planet image and thus is not included
in our inventory. The latter example suggests that the abundance of slope movements
within 200 m from roads (see Figure 8b) may be underestimated. The high influence of a
dense road network as a predisposing factor for landslides has been already pointed out in
previous studies (e.g., [51]).

Figure 13. Satellite images and field photographs of landslides impacting the road network along
Province Road SP610 in the Castel del Rio Municipality: (a,b) Planet images acquired on 23 May,
yellow dots are the locations where pictures were taken; (c,d) field photos of a landslide impacting the
road, the deposit area lies in proximity of Santerno River; and (e) field photo of a smaller landslide,
not recognizable on satellite imagery. All the photographs were shot by M. F. Ferrario on 30 July 2023.
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Finally, we highlight that very limited field verification has been realized so far and no
systematic evaluation of the reliability and accuracy of the inventory has been carried out.
Indeed, the quality and reliability of the inventory control the overall quality of derivative
products, such as the susceptibility and risk assessment [52,53]. Such aspects are beyond
the scope of this paper but should be addressed whether the inventory presented here is
used as input data for further studies.

6. Conclusions

In this paper, we present an inventory of 47,523 landslides triggered by heavy rainfall
that occurred in May 2023 in the Emilia-Romagna and conterminous regions (Italy). A first
precipitation episode occurred on 1–2 May 2023 and a second one on 16–17 May; the latter
was responsible for most of the observed landslides.

The inventory was realized by a visual inspection of the pre- and post-event satellite
imagery with a resolution of 3 m. The adopted methods are standard practice, and our effort
is devoted to filling the data gap existing for the investigated triggering event. A limited
field survey at selected locations was conducted to validate the inventory. We statistically
investigate the relationship between landslide density and triggering (precipitation) and
predisposing factors using the InfoVAL method. A strong influence is due to steep slopes
and some land use categories (bare rocks and badlands, and woodlands), while a weaker
positive correlation is found with respect to lithology because a higher landslide density is
obtained for silty and flysch-like units.

The inventory presented here is one of the most numerous on a global scale and we
argue that it can support the validation of other products, for instance, that are obtained
through automatic mapping methods. The statistical results on triggering and predisposing
factors may be useful for susceptibility assessment and land planning (e.g., landslide
zoning) or the derivation of empirical rainfall thresholds for landslide triggering.
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