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Abstract: Phosphorus depletion represents a significant problem. Ash of incinerated biological
sewage sludge (BSS) contains P, but the presence of heavy metals (e.g., Fe and Al) is the main issue.
Based on chemical characterization by SEM-EDS, ED-XRF and ICP-OES techniques, the characteristics
and P content of bottom ash (BA) and fly ash (FA) of incinerated BSS were very similar. On BA,
P extraction carried out in counter- current with an S:L ratio of 1:10 and H,SO4 0.5 M led to better
extraction yields than those of a similar test with HySO4 1 M and an S:L ratio of 1:5 (93% vs. 86%).
Comparing yields with HySO4 0.5 M (S:L ratio of 1:10), the counter-current method gave better results
than those of the crossflow method (93% vs. 83.9%), also improving the performance obtained with
HCl in crossflow (93% vs. 89.3%). The results suggest that the purification of the acid extract from
heavy metals with pH variation was impractical due to metal precipitation as phosphates. Extraction
with HpSO4 and subsequent treatment with isoamyl alcohol represented the best option to extract
and purify P, leading to 81% extraction yields of P with low amounts of metals.

Keywords: phosphorus recovery; sewage sludge; circular economy; acid extraction

1. Introduction

On average, in 2020, more than 13 million tons of biological sewage sludge (BSS) were
produced in EU27 [1]. This quantity is destined to increase in the coming years due to
the expected increase in the number of wastewater treatment plants (WWTPs) due to the
stricter limits for the discharge of treated effluents into the water body [2,3]. As for all waste,
hierarchical criteria must also be followed for the management of BSS: (i) minimization of
production, (i) material recovery, (iii) energy recovery, and (iv) residual disposal [4].

To date, there are several techniques for minimizing BSS that make it possible to
significantly reduce production within the WWTPs [5,6]. In any case, a residual share of
BSS will still be produced by biological treatments. These must be valorized first through
the recovery of matter and then through energy recovery. To date, one of the most applied
techniques for material recovery is spreading in agriculture, which aims to supply the
soil with nutrients (mainly C, N, and P) [7,8]. This is essential for the development of
crops [9] and is extremely important, especially in territories such as the Mediterranean
area (e.g., Spain, Portugal, and Italy), where soil organic matter and nutrient depletion has
reached worrying levels [10,11]. Other forms of material recovery, currently a minority in
Europe, concern reuse in the construction sector (e.g., bricks and cement production and
road construction) [12-14] and as adsorbent materials [15].
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After material recovery, the hierarchy criteria of the EU requires energy recovery to
be adopted before final disposal of the residue [4]. To date, there are several techniques
that can be used to recover energy from BSS, namely (i) combustion [16], (ii) pyrolysis [17],
and (iii) gasification [18]. The main drawbacks of these technologies are represented by
(i) the need for pre-dewatering treatment; (ii) the need for disposal of final residues in
combustion, such as bottom ash (BA) and fly ash (FA); and (iii) limited experience of real
scale plant management for pyrolysis and gasification [5,19-21]. Recent studies [22,23]
evaluated the presence of P within these residues, which could therefore be a potentially
exploitable source.

P depletion represents a significant problem [24-26]. Even if a complete depletion
of P deposits is not expected in the short to medium term [27], the significant increase
in its use has led to greater attention being paid to the possibility of its recovery and
reuse. While BSS-based fertilizers proved to be more suitable alternatives of P sources
than chemical fertilizers [28], P is also contained in ashes of incinerated sludge [29], but in
this form, it is not available for crops [30]. Moreover, the presence of heavy metals (e.g.,
Fe and Al) represents a barrier [30]. The evaluation of which techniques can be adopted to
separate and valorize P in the ashes resulting from the BSS incineration is fundamental.

Wet extraction of P from incinerated BSS is a widely studied technique [31-34]. It is
based on the application of acids or other leaching agents to extract P from BSS ash and on
the subsequent purification of the extract by different techniques, such as ion exchange,
filtration, precipitation, and solvent extraction [32]. Xu et al. [35] extracted more than 95% of
the total P content from BSS ash as struvite by applying 0.5 mol L~! of HCl at a liquid /solid
ratio of 50 mL g~ !. Moreover, they also found that extracted material had low heavy metal
content and high P bioavailability [35]. Fang et al. [33] studied the minimization of P
co-precipitation with heavy metals present in incinerated BSS ashes. They found that by
using Ca(OH); (at pH = 4) and adopting a two-step extraction method, the presence of
heavy metals in the extract significantly decreased (50%) compared to a single-step method
of extraction [33].

However, to determine the large-scale application feasibility of P recovery from
incinerated BSS ashes, evaluation of how effectively this element can be extracted from
the ashes and separated from the other metals contained therein is necessary to optimize
the process. This work, therefore, aims to provide a basis on which to develop a future
technical-economic analysis of the feasibility of recovering P from ashes of incinerated
sludge. BA and FA samples of incinerated BSS were chemically characterized by non-
destructive (SEM-EDS and ED-XRF) and destructive (ICP-OES) techniques to quantify the
presence of P for potential recovery. On the BA sample, acid extractions with H,SO, and
HCI were performed in crossflow and counter current modes to evaluate the best option.
The acid extract was then subjected to two different purification processes (pH variation
and addition of isoamyl alcohol) to evaluate which is more effective in separating the P
from the metals present within the liquid matrix. The purification of phosphorus from
phosphate rocks by organic solvents (specifically isoamyl alcohol) is a known and applied
procedure [36,37]; however, the innovative aspect of this work is that the same approach
has been applied to purify the phosphorus contained in the acid extract of BA.

2. Materials and Methods
2.1. Sample Preparation

Combustion residues were obtained from a fluidized bed incineration plant of BSS.
BA (1 kg) was sampled from the bottom of the combustion chamber, while FA (1 kg) was
sampled from cyclones placed on the fume’s treatment line. Before the subsequent analyses,
both samples were ground to reduce the particle size (<200 um) using a PM100 planetary
ball mill (Retsch GmbH, Germany) in 500 mL zirconia jars with zirconia spheres with a
diameter of 40 mm and a 20:1 (spheres mass:powder mass) ratio. The plate rotation speed
was set to 400 rpm.
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2.2. Sample Characterization
2.2.1. SEM-EDS

These analyses were performed coupling an energy dispersion spectroscopy (EDS)
X-max 50 mm? probe (Oxford Instruments, UK) with an EVO MA10 (Zeiss, Germany)
scanning electron microscope (SEM). For the EDS analyses, 2 mm? of area was analyzed.
In SEM, the samples were analyzed at 8.5 mm and with a voltage of 20 kV.

2.2.2. ICP-OES
Before the analysis, the samples were mineralized with four different methods:

ml: 2 mL HNOj + 7.5 mL HCI + microwave (P = 800 W; T = 175° C; t = 10 min);
m2: 6 mL HNOj3 + 2.5 mL HCI + microwave (P =800 W; T = 175° C; t = 10 min);
m3: 7.5 mL HNOj3 + 1 mL H,O, + microwave (P = 800 W; T = 175° C; t = 10 min);
m4: 2 mL HNO; + 7.5 mL HCl (boiling temperature; t = 150 min) according to [32];

The microwave oven used was a Mars 5 (CEM, Charlotte, NC, USA) with temperature
control via an infrared sensor. In m1, m2 and m3, 0.25 g of BA was used, while in m4,
0.5 g BA was tested. Before mineralization, samples were micronized in agate mortar.
HNO;3 (65%) and H,O; (30%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
HCI (30%) was purchased from Merck. After m2, m3 and m4, the suspension was filtered
through a 1.2 um glass microfiber filter (GF/C) (Whatman, Maidstone, UK) and analyzed
by IPC-OES.

For the analysis of the matrices by inductively coupled plasma-optical emission
spectrometry (ICP-OES), an iCAP7000 (Thermo Fisher Scientific, Waltham, MA, USA) was
used following the method developed for the analysis of water and waste by the U.S.
EPA [38]. The instrument allowed operation in both axial and radial modes. Based on the
relative sensitivity of the spectral line, the measure modes of the instrument were chosen
as a function of the expected signal (Table S1). The radiofrequency power was 1150 W.
The nebulization gas flow, the cooling gas flow, and the auxiliary gas flow were 0.5 L min~!,
12 L min~!, and 0.5 L min~!, respectively. The peristaltic pump speed and the frequency
were maintained at 50 rpm and 500 Hz, respectively.

2.2.3. ED-XRF

A total of 1 g of LisBO3 was added to the samples (4 g) as a binder. The mixture was
then placed in a homogenizer for 5 min. At the end of this phase, the powders were pressed
(150 MPa) for 4 min, and 32 mm diameter tablets with a smooth surface were obtained.
A Spectro XEPOS ED-XRF spectrometer (Spectro Analytical Instruments GmbH, Germany)
was used.

2.3. Phosphorus Extraction
P was extracted from BA with crossflow and counter-current methods.

2.3.1. Extraction in Crossflow

A total of 80 g of the BA sample was placed in contact with 240 mL of H,SO4 3 M
(95-97%), purchased from Sigma-Aldrich (U.SA), using a Teflon propeller stirrer to keep
the resulting suspension homogeneous and dispersed. The suspension was centrifuged
after 240 min, and the solid was treated again with 80 mL of H,SO4 3M under stirring for
240 min. This operation was then repeated, thus carrying out three consecutive extractions,
maintaining the solid:liquid (S:L) ratios at 1:3, 1:1, and 1:1, respectively. The same tests
were also conducted using HCI 3 M (30%) in place of HySO4. These tests were performed
in duplicate.

To study the optimal P extraction time defining the extraction curves, during the first
step of extraction, small aliquots of suspension during and after 30 min, 60 min, 120 min
and 240 min were sampled; filtered in a glass microfiber filter (GF/C); and analyzed
by ICP-OES.
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2.3.2. Extraction in Counter Current

Each portion of the solid sample that enters the process comes out after undergoing
five consecutive extractions by an acid that is gradually enriching in the extracted elements.
Two processes were set up in parallel, one using H,SO, 1M in an S:L ratio of 1:5 (5 g of
sample and 25 mL of HySOy), and one using HySO4 0.5M in an S:L ratio of 1:10 (3 g of
sample and 30 mL of HySOy). Extractions were made in Falcon™ tubes (50 mL) purchased
from Thermo Fisher Scientific (USA) moved by a rocking shaker. Each extraction step
was kept under stirring for 4 h, and the resulting suspension was subsequently separated
by centrifugation. After each extraction cycle, the pH and volume of the resulting liquid
phases were measured.

2.4. Phosphorus Purification
2.4.1. Purification by pH Variation

A total of 15 g of bottom ash was placed in contact with 150 mL of H,SO4 1 M for
4 h, and, subsequently, the sample was subjected to centrifugation. To purify the P in
the form of H3POy, the pH of the aqueous phase was varied by adding NaOH 0.25 M
(Carlo Erba Reagents, Italy) and causing, at pH 3.7, the precipitation of the metals as
hydroxides. The starting aqueous phase (pH < 1) and the aqueous phase with pH 3.7 were
then analyzed in ICP-OES.

2.4.2. Purification by Organic Solvent Extraction

As suggested by Israel Mining Industries (IMI) [39,40] and subsequently taken up
by others (e.g., [41-43]), the purification of phosphorus from phosphate rocks can be
achieved with the extraction by organic solvent. In this work, this approach was tested on
phosphorus contained in BA.

The procedure was tested on both the HCl (as reported in [39-43]) and H,SO4 extracts.
The extract with HCl derived from crossflow extraction kinetics tests (Section 2.3.1). As the
H,S0; extract obtained during the kinetics tests was no longer available, it was obtained
by treating BA in crossflow (ratio S:L equal to 1:10) for 4 h.

Acid solutions, after centrifugation, were treated for three consecutive extractions
with isoamyl alcohol (purchased from Carlo Erba Reagents, Italy) in a 1:1 ratio. In this case,
the three organic phases were kept separate and analyzed by ICP-OES.

3. Results and Discussion
3.1. FA and BA Characterization

According to the SEM-EDS analysis of both BA and FA, before grinding, BA exhibited a
larger particle size than FA according to the literature [44] (Figure 1). Moreover, the content
of P in BA and FA is equal to 6.80% and 6.88% (in weight percentage, wt%), respectively,
with no substantial difference (Table 1).

Figure 1. SEM-EDS image of (a) BA and (b) FA (before grinding).

This corresponds to a P titer expressed in P,Os5 of approximately 16% for both BA
and FA. The characterization using the ED-XRF technique highlighted comparable results
detecting a content of 6.4-7.4% of P (equal to a P,Os titer of 15-16%). Therefore, concerning
P composition, the results obtained with the two techniques were similar. The initial
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characterization by mineralization and subsequent analysis in ICP-OES was performed
only on the BAs, given the similar FA and BA results obtained with SEM-EDS and ED-XRF.

Table 1. Elements constituting BA and FA. n.a.: not available.

Bottom ash (BA) Fly ash (FA)
IPC-OES
SEM-EDS ED-XRF SEM-EDS ED-XRF
ml m2 m3 m4
Mg (%) 1.7 14 1.5 1.3 1.4 1.8 1.8 2.1
Al (%) 4.1 2.2 2.1 1.9 2.1 4.7 3.9 5.2
Si (%) 14.5 na. n.a. n.a. n.a. 18 12.9 15
P (%) 6.8 45 5.1 5 5.1 6.4 6.88 74
S (%) n.a. n.a. n.a. n.a. n.a. n.a. 0.35 n.a.
K (%) 1.53 0.71 0.58 0.57 0.62 1.8 1.36 1.6
Ca (%) 7 5.7 5.8 5.6 57 5.8 7.7 7.2
Ti (%) 0.66 na. n.a. na. n.a. n.a. 0.66 na.
Fe (%) 154 9.4 11 7 11 11 17.5 15
Cu (%) n.a. n.a. n.a. n.a. n.a. n.a. 0.29 n.a.

The data obtained using ICP-OES after different mineralization were subjected to
statistical analysis to verify the absence of outliers (Q test) and the differences between min-
eralization methods in relation to the recovery of P. From the statistical analysis (ANOVA)
of the data related to the P element, the variances in the results cannot be considered the
same for 95% of cases (p < 0.05). The results obtained with m1 differed significantly from
those obtained with m2, m3, and m4, which on the contrary gave similar results (p > 0.05).
Excluding the results of m1, the average value of P obtained with ICP-OES was equal to
5.1 & 0.1% (P,Os titer in BA equals 12%) (Table S2).

The results obtained with IPC-OES were significantly different (p < 0.05) from the data
obtained by the non-destructive techniques (SEM-EDS and ED-XRF), which provided an
average value of 6.6 + 0.3% of P content.

P content in incinerated sewage sludge ashes was consistent with previous literature
results. For instance, Kleeman et al. [45] found 7.2-7.5%, and Franz [29] stated that P
content in sewage sludge ash varied from 4% to 9%. Moreover, Donatello et al. [46] studied
seven different samples of incinerated BSS ash (precisely FA) and evaluated a P content of
5.7-7.8%.

This P content was decidedly lower than usual content in the minerals (e.g., phospho-
rites and apatite) used as source to extract P [47-50]. However, it was considerable and
could make this waste a sustainable alternative source to produce phosphate fertilizers.
The main barrier to the use of these materials in the conventional cycles of production of
P compounds by wet processes is represented by the concentration of Fe (7-15.4% in BA
and 15-17.5% in FA) and Al (1.9-4.7% in BA and 3.9-5.2% in FA). This limit was also high-
lighted by other authors (e.g., [29,34,51]) and, therefore, involves the need for purification
post-treatments of the extracted P. These results are therefore particularly interesting for
understanding the feasibility of the recovery of P from the ashes of BSS after incineration.

3.2. Phosphorus Extraction

The use of acid attacks to extract P from BA allowed promising results. The results
show that the complete equilibrium situation between the solid sample and the extracting
acids (H2SO4 and HCI) was reached between 2 h and 4 h (Figure 2a). This result agrees
with the findings of Biswas et al. [52]. The result is also consistent with the findings
of Donatello et al. [46]. Using H»SOy4, they extracted about 85% of the P present in the
incinerated BSS sample in the first 30 min and over 90% after 2h, while the total extraction
was observed after approximately only 12 h [46]. However, it is not necessarily convenient
to conduct extraction with extremely long acid attack times. For example, Ottosen et al. [30]
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found that the acid attack with H,SO4 of incinerated sludge for 1 week led to a concentration
of metals (i.e., Cu) in the extract greater than that obtained with an attack time of 2 h.

(a) O Hel O H,50, (b) Me1 He2 @e3
— 20,000 100
7 s y = 949.73In(x) + 9509.6

a0 16,000 § —~ g0 .
£ R o S

= 120004 @70 QT

S S G Q _5 60 -
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s [ y =2912.7In(x) - 2859.1 g 40 -
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Time (min) Hcl H,SO,
Figure 2. P extraction in crossflow mode. (a) Kinetics of P extraction during the first acid attack with the addition of

H,SO4 and HCL. (b) P extracted in each of the three sequential acid attacks (E1, E2, and E3). The analysis of P content was
performed by ICP-OES. (n = 2).

In the present study, the extraction of P by acid attack in three-stage crossflow mode
with S:L 1:3, 1:1 and 1:1 ratios granted recovery yields of 83.9% and 89.3% with H;SO4 and
HCI, respectively (Figure 2b). Moreover, the results show that the highest share of P was
extracted after the first attack with H,SOy (83.5% of total P extracted) and HCI (88.2% of
total P extracted).

Taking into consideration a future industrial application, the extraction was conducted
also as a five-stage counter current process. This type of extraction was carried out only
with HySOy, with two different S:L ratios (1:5 and 1:10) while maintaining the ratio of ash
mass attacked and mole numbers of HySOy. The results obtained show that the extraction
carried out in conditions of a 1:10 S:L ratio and H,SO4 0.5 M led to better extraction
yields compared to the similar test with H;SO4 1 M and an S:L ratio of 1:5 (93% vs. 86%)
(Figure 3). Therefore, providing a higher volume of acid with the same moles number of
H,S0O, allowed us to obtain better results in terms of P extraction. Comparing yields with
H,S04 0.5 M, the counter-current method gave better results than those of the crossflow

method (93% vs.83.9%), also improving the performance obtained with HCl in crossflow
(93% vs. 89.3%).

Crossflow Counter current
100
g 80
§ 60
e
Q
S a0
x
()
a 20
0
H,S0, HCI H,S0, H,S0,
(*) (**)

Figure 3. Percentages of P recovery with the different extraction procedures (extraction time: 4 h).
(*) HpSOy4 1 M (S:L ratio 1:5), (**) HySO4 0.5 M (S:L ratio 1:10).
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3.3. Phosphorus Purification

The acid extract still contained an important share of Fe and Al, which, overall,
exceeded 2 wt% (Table 2). The use of H,SO4 and the consequent presence of high-
concentration SO4%~ ions led to the precipitation of Ca?* as CaSOy, thus producing an
extract with a much lower concentration of this element than that obtained by extraction
with HCL To obtain a separation between the phosphorus and metals, the acid extracts
were subjected to a purification process. The need to proceed with a purification phase
due to the co-presence of metals within the extract was also reported by several other
studies [46,52-54]. In the present study, two different treatments were tested: (i) separation
by pH variation and (ii) separation with organic solvent extraction.

Table 2. Elements constituting the extracts obtained with the different extraction procedures (extrac-
tion time: 4 h). The analysis was performed by ICP-OES.

Crossflow Extraction Counter Current Extraction
HzSO4 HCl H2504 (1!5) HzSO4 (1:10)
Al (%) 0.99 1.20 1.20 1.50
Ca (%) 0.06 5.10 0.32 0.65
Fe (%) 1.30 0.90 0.89 0.89
K (%) 0.16 0.28 0.34 0.27
Mg (%) 0.95 1.10 1.20 1.30
P (%) 4.20 4.40 4.40 4.70

3.3.1. Purification by pH Variation

An onset of precipitation was observed at pH nearly 2. This phenomenon increased
with the subsequent additions of NaOH up to a pH of 3.7. The contents of the liquid phase
of P, Al, Fe, and Ca decreased drastically with increasing pH (Figure 4). The precipitate
was, in fact, constituted by phosphates of Ca, Fe, and Al It is reasonable to assume that at
pH 3.7, the precipitation of Caz(POy),, FePOy, and AIPOy sequestered P from the solution,
reducing its extraction yield. This result is consistent with the finding of He et al. [55].
Although at this pH range, P occurred in several forms (including H,PO4~ and HPO,4%7),
it precipitated in the form of complex phosphates [56]. Therefore, the extraction yield of P
dropped from 90% to 25%, passing from pH lower than 1 to pH of 3.7. The purification of
the acid extract from heavy metals with this technique was therefore impractical.

3.3.2. Purification by Organic Solvent Extraction

Since Fe and Al are elements to be removed in the acid extracts obtained, the pu-
rification procedure of isoamyl alcohol addition was tested. The purification tests were
conducted on both H,SO4 and HClI acid extracts.

The solution extracted in HySO4 in contact with isoamyl alcohol did not lead to the
separation of two phases unless after adding tridistilled water in the first extraction (10 mL).
The extraction of the acid solution from HCI in isoamyl alcohol instead immediately led to
the formation of a clear separation surface between the two phases. In terms of P extraction,
the addition of isoamyl alcohol on acid extract with H,SO4 allowed us to obtain better
results: 81% against 64% obtained from the solutions produced by P extraction with HCl
(Figure 5).
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Figure 4. Extraction yields before and after pH variation (initial pH < 1; final pH = 3.7). The analysis
on samples was performed by ICP-OES.
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Figure 5. Extraction yields of Fe, P and Al from acid phase obtained with crossflow extractions by HCl and H,SOy, after each
of the three sequential extractions (E1, E2, and E3) with isoamyl alcohol. In all extractions, the ratio between organic phase
and acid phase was 1:1. The analysis on samples was performed by ICP-OES.

The mass of Fe in organic phases after extraction with H,SO4 was clearly lower than
that in the case of extraction with HCl, and the mass of P was mostly distributed into the
organic phases (Figure 5). The situation for the mass of P was also favorable with HC],
even if the recovery was lower than in the previous case. In the case of HCI extraction,
the mass of Fe was very high (86%), especially in the first organic phase (84.2% of total
Fe extracted). It is reasonable to assume that the high concentrations of chlorides led to
the formation of undissociated FeCls species. For these reasons, extraction with HySO4
and subsequent treatment with isoamyl alcohol represented the best option to extract and
purify P from BA of incinerated BSS sludge.

It is established that the efficiency of extraction and purification of P significantly
depends on several parameters, such as the initial matrix, the extraction mode (crossflow
or counter current), the type of acid used during extraction and the S:L ratio, the type
of purification, and the organic solvents used during L:L extraction. Thus, the present
results can hardly be compared to results already present in the literature. However, similar
results in different conditions were obtained by other authors. For instance, Hong et al. [54]
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separated 76% of P present in the acid extract (obtained with HCl extraction) by 1-butanol
with an L:L ratio of 1.5:1.

4. Conclusions

In this work, the characteristics of BA and FA generated by the incineration of BSS
were analyzed. According to the SEM-EDS analysis, the P content in BA and FA is equal
to 6.80% and 6.88%, respectively. Comparable results were obtained with the characteri-
zation using the ED-XRF technique (6.4—7.4%). The results obtained with IPC-OES were
significantly different (p < 0.05) from the data obtained by the non-destructive techniques,
which provided an average value of 6.6 = 0.3% of P content. The results show that the
complete equilibrium situation between the solid sample and the extracting acids (H2SO4
and HCI) was reached between 2 h and 4 h. Moreover, the results show that in crossflow,
the highest share of P was extracted after the first attack with H,SO4 (83.5% of total P
extracted) and HCI (88.2% of total P extracted). Extraction carried out in counter current
with an S:L ratio of 1:10 and HySO4 0.5 M led to better extraction yields than those of the
similar test with HySO4 1 M and an S:L ratio of 1:5 (93% vs. 86%). Comparing yields with
H,S04 0.5 M (S:L ratio 1:10), the counter-current method gave better results than those
of the crossflow method (93% vs. 83.9%), also improving the performance obtained with
HCl in crossflow (93% vs. 89.3%). The results suggest that the purification of the acid
extract from heavy metals with pH variation was impractical due to metal precipitation
as phosphates. Extraction with H,SO4 and subsequent treatment with isoamyl alcohol
represented the best option to extract and purify P, leading to 81% extraction yields of
P with a low amount of metals. Other aspects that should be further investigated are
(i) the optimization of the purification process; (ii) the research for alternative methods of
purification, such as the use of diluted H3POj, as an extractant to produce H3PO4 enriched
in a percentage of P,Os; (iii) the study of extracted P availability for crops, with leaching
tests; and (iv) cost-benefit analysis of this type of P recovery.
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