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SUMMARY
Healthy aging is an ambitious aspiration for humans, but neurodegenerative disorders, such as Alzheimer’s
disease (AD), strongly affect quality of life. Using an integrated omics approach, we investigate alterations
in the molecular composition of postmortem hippocampus samples of healthy persons and individuals
with AD. Profound differences are apparent between control and AD male and female cohorts in terms of
up- and downregulated metabolic pathways. A decrease in the insulin response is evident in AD when
comparing the female with the male group. The serine metabolism (linked to the glycolytic pathway and
generating the N-methyl-D-aspartate [NMDA] receptor coagonist D-serine) is also significantly modulated:
the D-Ser/total serine ratio represents a way to counteract age-related cognitive decline in healthy men
and during ADonset inwomen. These results showhowADchanges and, in certain respects, almost reverses
sex-specific proteomic and metabolomic profiles, highlighting how different pathophysiological mecha-
nisms are active in men and women.
INTRODUCTION

Sporadic and late-onset Alzheimer’s disease (AD), the major

contributor to dementia worldwide (World Alzheimer Report

2019, available at https://www.alz.co.uk/research/world-report-

2019), is an age-dependent neurodegenerative disorder affecting

different brain regions, in particular the hippocampus, an area that

is critical for learning and memory (Kapogiannis and Mattson,

2011). Although the specific cause of AD is unknown, the greatest

risk factors are genetic background, environment, dysfunctional

glucosemetabolismassociatedwith oxidative stress and neuroin-

flammation, and sex (Podcasy and Epperson, 2016; Butterfield

and Halliwell, 2019; Arnold et al., 2020). Compared with men,

women are at increased risk for AD because of their longer life ex-

pectancy, worse consequences linked to APOE4 expression (Alt-

mann et al., 2014; Gamache et al., 2020), and the decline in estro-

gen levels at menopause (Podcasy and Epperson, 2016; Arnold

et al., 2020). In individuals with AD, glucose hypometabolism,
C
This is an open access article under the CC BY-N
which occurs before symptoms or pathology become manifest

(Sposato et al., 2019), activates feedback loops that perturb

various metabolic pathways essential for neuronal homeostasis

and neurotransmission (Daulatzai, 2017), contributing to neurode-

generation. Alterations of glycolysis and the tricarboxylic acid

(TCA) cycle have an effect on acetyl-coenzyme A (CoA) meta-

bolism, which strictly correlates with reported reduced energy

production in mitochondria and impaired cholinergic neurotrans-

mission (because of the reduction of acetylcholine synthesis) in

AD (Szutowicz et al., 2013; Paglia et al., 2016).

Intimately connected to glucose metabolism is L-serine

(L-Ser), which is classified as a nutritional nonessential amino

acid for humans and animals. L-Ser is required in protein syn-

thesis, functioning as a precursor of other nonessential amino

acids (glycine [Gly] and cysteine [Cys]) and of phosphatidyl-

serine, and is needed for ceramide synthesis; it also provides

carbons for synthesis of glutathione (GSH) and reduced

nicotinamide adenine dinucleotide phosphate (NADPH) via
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its conversion into Gly in astrocytes (Fan et al., 2014) and

feeds folate and methionine cycles. The latter two cycles

represent pathways related to one-carbon metabolism,

which generates building blocks for new cellular components;

e.g., purine and thymidine. L-Ser is present in the blood, and

it diffuses poorly through the blood-brain barrier, at rates

�5–7 times lower than other amino acids (Oldendorf, 1971).

In the brain, L-Ser is produced de novo from the glycolytic

intermediate 3-phosphoglycerate (3PG) through the cytosolic

‘‘phosphorylated pathway’’ (PP), which involves three en-

zymes: 3PG dehydrogenase (PHGDH), phosphoserine amino-

transferase (PSAT), and phosphoserine phosphatase (PSP)

(Murtas et al., 2020). The PP plays a critical role in the brain,

controlling L-Ser production and using/producing central

metabolites and cofactors (glutamate [Glu], 2-ketoglutarate,

and reduced/oxidised ratio of nicotinamide adenine dinucleo-

tide [NADH/NAD+]). In the brain, L-Ser is mainly synthesized

in glial cells (Murtas et al., 2020; Maugard et al., 2021), and

the amino acid transporter ASC1 mediates shuttling of

this amino acid to neurons (Wolosker, 2011; Neame et al.,

2019).

L-Ser is also the precursor of two molecules that regulate

excitatory glutamatergic transmission: D-Ser and Gly. D-Ser

is the main coagonist of synaptic N-methyl-D-aspartate

(NMDA) receptors (NMDARs) in the hippocampus, and Gly

plays the same role at extrasynaptic sites (Papouin et al.,

2012) and acts as an inhibitory neurotransmitter via ionotropic

Gly receptors. Because the coagonist binding site of NMDAR is

not saturated in vivo, a tiny change in D-Ser levels can dynam-

ically modulate receptor responses, including synaptic trans-

mission and plasticity. NMDAR signaling levels, which must

be balanced to promote neuronal survival and prevent neuro-

degeneration, are known to be altered in AD (Paula-Lima

et al., 2013; Armada-Moreira et al., 2020). NMDAR neurotrans-

mission can be controlled by acting on metabolism and avail-

ability of D-Ser; brain-produced L-Ser is converted into the

D-enantiomer by Ser racemase (SR or SRR) mainly in neurons

and shuttled to astrocytes, where it is degraded by SR and

D-amino acid oxidase (DAAO or DAO) (Pollegioni and Sacchi,

2010; Wolosker, 2011). NMDAR activation by D-Ser and Gly

might also be regulated by the PP (Neame et al., 2019), and

various Ser synthesis disorders because of mutations in the en-

zymes of the PP have been identified in individuals with neuro-

logical symptoms (Shaheen et al., 2014; Murtas et al., 2021).

PHGDH is the only gene found to be consistently upregulated

in transcriptomes from five brain regions (temporal cortex,

dorsolateral prefrontal cortex, superior temporal gyrus, para-

hippocampal gyrus, and inferior frontal gyrus) of individuals

with AD (Yan et al., 2020). Additional amino acids are related

to neurotransmission and AD onset. For example, arginine

(Arg) levels and signaling are involved in inhibitory and excit-

atory neurotransmission via adenosine and other metabolites,

in maintaining microtubule stability, in degrading protein aggre-

gates (Savarin et al., 2010; Hunt et al., 2015), in b-amyloid

deposition and microglial activation (Ma et al., 2021), and in

tau aggregation (Sandusky-Beltran et al., 2021).

Here we evaluated the alterations observed in hippocampal

regions of individuals with AD compared with healthy individuals
2 Cell Reports 40, 111271, September 6, 2022
by using a multi-omics approach, focusing on the relevant path-

ways related to Ser metabolism and on the sex effect.

RESULTS

Altered transcriptomics profile of hippocampal tissues
in individuals with AD: Sex has a main effect
We examined the transcriptomics profile of the hippocampus in a

cohort of 21 individuals affected by AD and 19 cognitively normal

controls (see Table S1 for clinical pathological information about

samples). Analysis of differentially expressed genes by DeqSeq2

identified a total of 476 differentially expressed genes (DEGs)

(p adjusted % 0.05) between AD individuals and controls: 204

were upregulated, and 272were downregulated. Differentially ex-

pressed protein-coding genes account for 76% of upregulated

and 69% of downregulated genes, with the remaining being

long non-coding RNA (lncRNA) (Figures 1A and 1B).

To compare our transcriptome analysis with the recently and

comprehensive transcriptome investigation performed on hip-

pocampal samples from a large cohort of individuals with AD

(Crist et al., 2021) and with single-cell RNA analysis performed

in the prefrontal cortex (PFC) during AD progression (Mathys

et al., 2019), a rotation gene set test based on the tables of

DEGs available in the two reported studies was performed.

From both studies, only tables related to our biological question

were selected; almost all genes reported (>93%) were detected

in our RNA sequencing (RNA-seq) experiment too (Table S2;

Figure S1). The analysis shows a significant enrichment for the

hippocampal sample dataset as well as for astrocytes and inhib-

itory neurons of the single-cell RNA dataset, suggesting results

compatible with the related tables of the selected publications.

DEG (p < 0.05) over-representation analysis (ORA) using the

ConsensusPathDB (http://cpdb.molgen.mpg.de/CPDB/tutorial#

moreinfo.discl) identified several pathways enriched in the ADda-

taset compared with control (CTR) samples, which have been re-

ported previously to be affected in AD (Cortes-Canteli et al., 2015;

van Rooij et al., 2019). These pathways include calcineurin-

dependent nuclear factor of activated T cells (NFAT) signaling

(Kipanyula et al., 2016), bile acid and bile salt signaling, insulin-

mediated glucose transport and g-aminobutyric acid (GABA) syn-

thesis, and amino acid metabolism (Gly, Ser, Ala, Pro, Thr, and

Asp) (Griffin and Bradshaw, 2017; Table S3A). These findings

have been largely confirmed by ingenuity pathway analysis

(IPA) of the canonical pathways associated with DEGs identified

in our AD samples (Figure 1C; Table S3A). Two of the enriched

pathways linked to cholesterol metabolism/clearance and neuro-

inflammation (atherosclerosis signaling and bile acid and salt

biosynthesis) are known to be altered in the brain of individuals

with AD and contribute to cognitive decline (Baloni et al., 2020;

Gamba et al., 2021). The most significantly upregulated genes

associated with the atherosclerosis pathway were the ones en-

coding the lipoxygenase ALOX15 and chemokine receptor 4

(CRCX4), which were found in cell types that mediate

inflammation in the brain, such as microglia, and are involved in

plaque formation in arteries. This latter process, like that impli-

cated in tau and amyloid buildup in AD (Sergin et al., 2016), is

the main cause of cerebral hypoperfusion and the ensuing

oxidative stress (Polis and Samson, 2019). IPA predicted a

http://cpdb.molgen.mpg.de/CPDB/tutorial#moreinfo.discl
http://cpdb.molgen.mpg.de/CPDB/tutorial#moreinfo.discl


Figure 1. Distribution of significant DEGs (false discovery rate [FDR]-adjusted p % 0.05) between AD and CTRs

(A) The proportion of upregulated genes is represented in green, and downregulated genes are represented in red. The total number of significant DEGs is

provided on each bar.

(B) Pie chart of DEG biotype classification based on Ingenuity annotation.

(C) Top 10 canonical pathways obtained from Ingenuity analysis of the downregulated protein-coding genes in late-onset AD hippocampus. Each bar represents

the score (-log p value) obtained for the ORA. The full list of pathways is available in Table S3A.

Article
ll

OPEN ACCESS
nondirectional protein interaction map in the form of networks

with associated functions, including those linked to neurological

diseases (as expected), tissue development, cell-to-cell signaling

and interaction, organismal injury, and cellular assembly and or-

ganization (Table S3A). Analysis of these networks supports the

heterogeneous nature of AD, highlighting various pathophysio-

logical mechanisms beyond the typical dogma of b-amyloid

cascade and tau pathology (Neff et al., 2021).

To test the effect of sex on our transcriptomics dataset,

healthy male CTRs (CTRM; n = 9) and female CTRs (CTRF; n =

10) were compared. ORA identified the most enriched pathways

related to this comparison, among which were aminoacyl-tRNA

biosynthesis, the TCA cycle and respiratory electron transport,

and thermogenesis (Table S3B). The top networks identified by

IPA are related to molecular transport, cancer, cell development,
and cell-to-cell signaling. Focusing on female samples, from IPA

of DEGs in AD females (ADF) (n = 10) versus CTRF (n = 10), many

pathways were downregulated, in particular amyotrophic lateral

sclerosis signaling, mitogen-associated protein kinase (MAPK),

epidermal growth factor (EGF), and erythroblastic leukemia viral

oncogene homolog (ErbB) signaling, 14-3-3-mediated signaling,

and unfolded protein response (Table S3C shows the complete

IPA, including the main networks activated). As concerns men,

among the DEGs regulated between AD males (ADM) (n = 11)

versus CTRM (n = 9), many were lncRNAs and antisense

RNAs. The main top networks involved are related to glucocorti-

coid receptor signaling, protein ubiquitination, HIF1a signaling,

and androgen and aldosterone signaling (see IPA in

Table S3D). Network analysis identified neurological diseases

and free radical scavenging networks. Increasing evidence
Cell Reports 40, 111271, September 6, 2022 3
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suggests that oxidative stress has a key role in late-onset spo-

radic forms, which are the majority of AD cases (Tönnies and

Trushina, 2017). Finally, the effect of sex on the transcriptomics

profile in AD was also evident by comparing ADF (n = 10) and

ADM (n = 11) (Table S3E). ORA showed that the most enriched

pathways were related to chromatin modification and organiza-

tion, suggesting a main epigenomic effect at the transcriptomic

level between male and female hippocampus samples in AD.

Our transcriptional analysis compares well with a previous

large cohort of hippocampal AD samples (Crist et al., 2021),

highlights selected pathways altered differently in AD versus

healthy CTRs, and suggests a main effect of sex in physiological

aging and pathological AD.

Proteome analyses of hippocampal tissues: Effect of AD
and sex
To analyze the alterations in the hippocampal proteome associ-

ated with AD, a quantitative shotgun, label-free strategy was

applied (Table S1). The analysis highlighted significant differ-

ences between AD (n = 23) and CTR (n = 20) samples (Fig-

ures S2A and S2B; Table S4A). Bioinformatics analysis by

ClueGo on the differentially expressed proteins (DEPs) showed

that almost 57% of the terms enriched in AD samples were

related tometabolic processes, confirming the profound involve-

ment of cell metabolism in this neurological disorder (Figure S2C;

Tables S4B–S4D). Other factors known to be heavily altered in

AD, such as cytoskeleton, transport, neuronal system, axon

guidance, and synapse organization, were among the most

decreased terms in AD samples, in accordance with most of

the data reported so far in the literature (Rayaprolu et al.,

2021). The results from the David and Panther programs

confirmed this trend (Tables S4C and S4D), well in accordance

with the finding by Johnson et al. (2020), who carried out a

large-scale proteomics analysis of AD brains (dorsolateral PFC)

and highlighted the importance of inflammation, sugar meta-

bolism, mitochondrial function, synaptic function, RNA-associ-

ated proteins, and glia in the pathogenesis of AD.

We compared the proteomics profiles of hippocampal tissues

according to sex in affected individuals and healthy subjects. By

comparing CTRM (n = 9) andCTRF (n = 10), the analysis revealed

an evident separation of the sexes (Figures 2A, S2A, and S2C;

Table S5A). Multiple analyses by ClueGo, David, and Panther

identified the most enriched pathways among the differentially

abundant proteins in each group, suggesting significant enrich-

ment in proteins related to membrane trafficking, neutrophil

degranulation, lipid metabolism, amino acid metabolism, Cys/

Met metabolism, and response to oxidative stress in CTRFs,

whereas vesicle transport, axon guidance, synaptic transmis-

sion, neurotransmitter secretion, amino acids transport, and

activation of various receptors were prevalent in CTRMs (Fig-

ure 2A; Tables S4 and S5).

Based on these findings, sex separation was taken into

account, focusing on specific comparisons (i.e., ADF versus

CTRF, ADM versus CTRM, and ADF versus ADM); a summary

of the results is reported in Figures 3A and S2C, and

Tables S5B–S5D list the DEPs or the ones exclusively expressed

in one condition of these three comparisons (the corresponding

volcano plots are shown in Figure S2B).
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Differential protein expression in ADF in comparison to CTRF

strongly suggests a cell response to oxidative stress and inflam-

matory conditions, increase in aggrephagy (Figure S2C;

Table S4), and significant alteration of intracellular cytosolic traf-

ficking, secretion, membrane fusion, cytoskeleton organization,

and cell adhesion pathways, which are also increased. There

is a decrease in chemokine- and cytokine-mediated inflamma-

tion (Table S4D). Proteins involved in synaptic transmission,

Golgi apparatus-to-endoplasmic reticulum (ER) transport, pro-

tein folding and localization, membrane trafficking, axon guid-

ance, microtubule and, above all, organelle organization were

decreased (Figure S2C; Table S4B), pointing to alterations in

the complex interplay between fusion and fission inmitochondria

and the ER and suggesting that removal of damaged organelles

is compromised, as are quality, bioenergetic capacity, and mito-

chondrial homeostasis (Flannery and Trushina, 2019).

In men, terms referring to metabolic alterations were prevalent

in AD in comparison with CTRs. Ser family amino acid metabolic

process, Cys, Met, GSH, and other amino acid metabolisms

constitute 53.17% of the terms enriched in ADM (Figure S2C;

Tables S4B and S4D). Vesicle-mediated transport and establish-

ment of cell localization were increased. Modulation of peroxi-

some proliferation-activated receptor (PPAR) signaling, which

controls expression of genes involved in adipogenesis, lipid

metabolism, inflammation, and maintenance of metabolic ho-

meostasis, and a reduction of the TCA cycle, lipid catabolism,

and aerobic respiration were additional pathways identified by

bioinformatics analysis of ADM versus CTRM.

The effect of sex on the proteomics pattern in AD was also

evident by comparing ADF and ADM samples. Cadherin bind-

ing, cellular response to hypoxia and stress, axon guidance,

nervous system development, protein localization to the ER,

and amino acid metabolism were mainly increased in ADF in

comparison with ADM; Glu NMDAR activation, regulation of in-

sulin secretion, neuron projection, morphogenesis, endocytosis

and mitochondrial protein import, synapses, and bone develop-

ment were prevalent in ADM (Figures 3 and S5; Tables S4B–

S4D and S5D).

Metabolomics profile of hippocampal tissues: Sex
differences between CTRs and AD
Given the high number of DEPs involved in metabolic processes

(Figures 2A and 3A), we explored the metabolome of healthy and

AD-affected individuals by performing an untargeted metabolo-

mics analysis on the same hippocampal samples. When

comparing CTR (n = 20) and AD (n = 23) samples (Table S1),

separated profiles were apparent according to partial least-

squares discriminant analysis (PLS-DA) (Figure S3A); of 126 me-

tabolites detected, 13 and 11 were up- and downregulated,

respectively (Table S6). Set enrichment analysis revealed that

the most significantly upregulated pathways in AD samples

were Arg/Pro metabolism and the pentose phosphate pathway

(PPP) (Figure S3B). In contrast, the most significantly downregu-

lated ones in AD samples were Ala/Asp/Glu metabolism,

pyruvate metabolism, glycolysis/gluconeogenesis, pyrimidine

metabolism, and aminoacyl-tRNA biosynthesis (Figure S3B;

Table S6). Arg and the PPPwere among the most enriched path-

ways altered in the plasma of individuals with AD as well as of



Figure 2. Proteomics and metabolomics comparison between sexes for CTR in hippocampal samples

(A) Bioinformatics analyses were carried out using ClueGo software (Cytoskape release 3.8.2) to cluster enriched annotation groups of biological processes,

pathways, and networks within the set of DEPs to compare CTRF and CTRM. Functional grouping was based on Fisher’s exact test (p % 0.05) and at least 3

counts.

(B) Metabolite enrichment analysis of upregulated and downregulated pathways in CTRF compared with CTRM. All upregulated metabolites were identified and

analyzed using MetaboAnalyst 5.0 software. Metabolomic analysis was performed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatog-

raphy-MS (LC-MS) on five biological replicates for each group, each analyzed in technical duplicate.

See also Figures S2 and S3; data are reported in Tables S4, S5A, and S6.
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mouse models of AD (Demarest et al., 2020). In particular, an in-

crease in glucose-6-phosphate, whose level has been reported

to increase in the mouse brain during aging (Ding et al., 2021),

was found in AD samples. A similar glucose-6-phosphate in-

crease was also observed in the serum of AD mouse models

and in the AD human inferior frontotemporal gyrus (Demarest

et al., 2020), indicative of alterations in the glycolytic pathway

associated with AD. In keeping with these findings, we observed

downregulation of lactic acid in the hippocampus, as reported
previously in serum from individuals with AD (Demarest et al.,

2020).

Evidence highlights differences in the levels of many metabo-

lites between the sexes under normal conditions in serum (Krum-

siek et al., 2015), but little is knownabout this issue in postmortem

brain tissues. Accordingly, metabolomics profiles of hippocam-

pal tissues considering sex separation were compared. All

healthy male (n = 9) and female (n = 11) samples (Table S1)

were well separated in the PLS-DA analysis (Figure S3A). Of the
Cell Reports 40, 111271, September 6, 2022 5



Figure 3. Proteomics and metabolomics comparison between sexes for AD in hippocampal samples

(A) Bioinformatics analyses were carried out by CLUEGO software (see legend of Figure 2) within the set of DEPs in the ADF versus ADM comparison.

(B) Metabolite enrichment analysis of upregulated and downregulated pathways in ADF compared with ADM. All differently regulated metabolites were identified

and analyzed using MetaboAnalyst 5.0 software.

See also Figures S2 and S3A; data are reported in Tables S4, S5D, and S6.
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126metabolites detected, 20were significantly different between

the sexes (p < 0.05), half of which were upregulated and half

downregulated in CTRF comparedwith CTRM (Table S6). Among

the downregulated ones were nitrogen metabolism, Ala/Asp/Glu

and Arg metabolism, and pantothenate and CoA biosynthesis,
6 Cell Reports 40, 111271, September 6, 2022
whereas Cys/Met metabolism was higher in CTRF than in

CTRM, and metabolites of the pyrimidine pathway were up-

and downregulated (Figure 2B).

Regarding the CTRM and ADM comparison, PLS-DA anal-

ysis shows that CTR (n = 9) and AD (n = 11) samples were



(legend on next page)
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well separated among men (Figure S3A). Of the 126 metabo-

lites detected, 25 were significantly different in CTRM versus

ADM brain tissues (12 and 13 up- and downregulated, respec-

tively) (Table S6). Set enrichment analysis revealed that the

PPP and Val/Leu/Ile biosynthesis were the most up- and

downregulated in ADM, respectively, whereas metabolites of

the pyrimidine metabolism were up- and downregulated

(Figure S3C).

Comparing female hippocampal tissues of CTRs (n = 11)

versus disease condition (n = 12), the groups could be well

distinguished by PLS-DA analysis (Figure S3A). Among 126

metabolites detected, 30 were significantly different in ADF

brain tissues compared to CTRF, half of which were upregu-

lated and half downregulated (Table S6). Set enrichment

analysis showed that Arg biosynthesis and the PPP were upre-

gulated in ADF, whereas Gly/Ser/Thr, Cys/Met, and Ala/Asp/

Glu metabolism, along with several other pathways related to

carbon metabolism, were among the most significantly down-

regulated ones (Figure S3D).

In accordance with the proteomics analysis, sex differences

were better highlighted when comparing ADF and ADM samples

(Figure 3B; Table S6). Among 126metabolites detected, 25 were

significantly different in ADF brain tissues compared with ADM,

with 10 and 15 up- and downregulated, respectively. Val/Leu/

Ile and Arg/Pro metabolism and butanoate and ketone body

metabolism were prevalent in ADF in comparison with ADM,

whereas purine metabolism as well as Cys/Met metabolism

and pantothenate and CoA biosynthesis (downregulated in

ADF versus CTRF; Figure S3D) were significantly downregulated

in ADF (Figure 3B).

Proteomics and metabolomics data integration
highlights sex differences
Integrating proteomics and metabolomics data using Metaboa-

nalyst 5.0 software clearly suggests that, in CTRF, the processes

related to energetic metabolism (TCA cycle, glycolysis, gluco-

neogenesis, pyruvate, and PPP) were upregulated in compari-

son with CTRM, together with HIF-1 signaling pathway, focal

adhesion, actin cytoskeleton regulation, adherens junction,

and metabolism of purine and various amino acids (especially

Cys, Met, Val, Leu, and Ile) (Figure 4; Table S7). In contrast,

Ala, Asp, andGlumetabolism; Arg biosynthesis; and glutamater-

gic synapse were prevalent in men (Figure 4; Table S7).

Some of the major pathways enriched in healthy women

compared with men were also increased in ADF versus CTRF

and in ADM compared with CTRM: glycolysis, PPP, Cys/Met,

pyruvate and purine metabolism, and adherens junction. Other

pathways higher in CTRF versus CTRM decreased in ADF

versus ADM (i.e., the TCA cycle and ErbB signaling pathway)

(Figure 4; Table S7). On the other hand, pathways such as

Arg biosynthesis and Ala, Asp, and Glu metabolism, which

were more upregulated in CTRM than in CTRF, were higher
Figure 4. Proteomics and metabolomics data integration

Integration of proteomics and metabolomics data was performed using MetaboA

(white to red) reflects increasing statistical significance based on the p value [�lo

pathway impact values from the pathway topology analysis (0–1). For clarity, only

the full list is shown in Table S7.
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in AD independent of sex. Proteins involved in the insulin

pathway and secretion presented a sex-dependent distribution

in AD: they were lower in ADF than in ADM and in ADF versus

CTRF but higher in ADM than in CTRM. The AD changes, in

some respects, almost reverse the sex-specific proteomics

and metabolomics profiles.

Ser metabolism of hippocampal brain tissues reveals
sex-based differences
Given the recent association between AD progression and Ser

metabolism (Piubelli et al., 2021), we focused on genes, en-

zymes, and metabolites of the Ser biosynthesis pathway.

Transcriptomics data indicate that the PHGDH, PSAT, and

PSP genes encoding the PP enzymes were expressed at

comparable levels in the hippocampus of CTR and AD subjects

(Figure S4A). Differential transcript usage (DTU) analysis by

DRIMSeq did not reveal any difference in the isoform landscape

of these genes in AD samples compared with CTRs (Figure S4A;

Table S8A). Similar results were obtained for genes encoding SR

and DAAO, the enzymes involved in D-Ser metabolism (Polle-

gioni and Sacchi, 2010); changes never reached a statistical sig-

nificance (Figure S4A). Neither the gene coding Ser dehydratase

(SDH) nor the one coding Ser hydroxymethyltransferase 2

(SHMT2; the mitochondrial isoform of the enzyme), which

connects Ser to Gly, was altered in AD samples. Overall, the en-

zymes involved in the L- and D- Ser pathway were not regulated

differently at the transcriptional level in individuals with AD and

healthy CTRs, at least in the hippocampus.

In contrast, proteomics analysis of Ser metabolism highlighted

significant differences in the hippocampus of individuals with

AD. PSAT, PHGDH, and SR levels increased in individuals

affected by AD compared with CTRs (Figure 5), whereas PSP

and DAAO levels were below the detection limit of the instru-

mental setup. Considering sex separation, SR expression was

detected in healthy men, whereas it was below detection in fe-

male subjects (Figure 5; Table S5A) and was higher in female

and male individuals with AD than in CTRs (Tables S5C and

S5D). The differences for PHGDH and PSAT did not reach statis-

tical significance between sexes in healthy and AD subjects.

However, PHGDH significantly increased in ADF and ADM,

and PSAT showed a statistical difference in AD versus CTR in

men only (Figure 5). When comparing ADF and ADM samples,

no statistically significant differences were observed for PP

enzymes, whereas SR expression was higher in AD-affected

women. For all comparisons, no changes were observed in

SHMT2 expression (Table S5). In contrast, expression of the

SDH-like (SDSL) enzyme, which catalyzes threonine and Ser

deamination with different KM values (one order higher for Thr),

was significantly increased in individuals with AD (Table S5D),

similar to that observed for SR.

The expression levels of some of these enzymes were evalu-

ated further by western blot analysis (Figures 5 and S4B). Only
nalyst software R5.0 based on a Fisher’s exact test (p % 0.05). Color intensity

g p] from the pathway enrichment analysis, and circle dimension is based on

the most important pathways in terms of enrichment and impact are reported;



Figure 5. Comparison of the expression of PP enzymes (PHGDH, PSAT, and PSP) and SR in CTR and AD hippocampal samples

(P) indicates panels showing proteomics analysis, with the median of label-free quantification (LFQ) intensity values obtained from 5 replicates in each group,

analyzed by Student’s t test (*p < 0.05). (Wb) indicates panels showing western blot analysis, with graphs reporting single data points (dots, corresponding to

single biological replicates analyzed in at least 3 technical replicates); see Figure S4B. Bars represent the means ± SEM of values obtained from 21 healthy CTRs

(9 men, 12 women) and 27 individuals with AD (12 men, 15 women); *p < 0.05, **p < 0.01. Data are reported in Tables S5 and S8B.
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one relevant band was detected for each protein: at 57 kDa for

PHGDH, at 40 kDa for PSAT, and at 30 kDa for PSP. PSP showed

the lowest expression (�25- to 50-fold lower than those for

PHGDH and PSAT), with no changes in protein levels between

the different conditions (Table S8B). In contrast, PHGDH and

PSAT levels were significantly increased in individuals affected

by AD, in line with the proteomics data (Figure 5). When data

were disaggregated by sex, a significant statistical increase in

levels of PHGDH and PSAT was apparent for men and women

with AD. Again, no differences were observed in PSP levels for

male or female AD samples compared with CTRs.

At the metabolomics level, a statistically significant lower Ser

level was apparent in ADF samples compared with CTRF as

well as in ADF versus ADM (Table S6). To examine the contribu-

tion of L- and D- enantiomers in depth, levels of Ser and Asp en-

antiomers and those of Gly were determined by enantiomeric

high-pressure liquid chromatography (HPLC) (Figure 6;

Table S8C). A decreased L-Ser level in AD versus CTR samples

was observed (�28.74%) and was coupled with an increase in

D-Ser levels (+4.35%, not reaching a statistically significant

threshold); a statistically significant increase for the D/total Ser

ratio was observed in individuals with AD (+46.76%; Figure 6B).

No significant alterations in the levels of D-Asp, L-Asp, and D/to-

tal Asp were detected (Figure 6A). A statistically significant

decrease in Gly levels was determined for AD compared with

CTRs (�17.70%; Figure 6C). When sex separation was consid-

ered, still no significant differences in Asp levels were found be-

tween AD and CTR samples (Figure 6D). However, sex did affect

the Ser enantiomers (Figure 6E). In ADF, L-Ser levels were lower

(�35.95%), in keeping with the metabolomics analysis

(Table S6), resulting in a significant 2-fold increase in the D/to-

tal-Ser ratio, whereas no significant differences were found in

men with AD and CTRs (Figure 6E). Gly levels decreased for

ADF compared with CTRF (�21.61%, Figure 6F).

These data indicate that the Ser/Gly pathway (Figure S5) is

mainly altered in women with AD.

DISCUSSION

During aging, the brain undergoes metabolic changes that pri-

marily involve glucose metabolism, glucose transport, and in-

sulin signaling, with consequent alterations and an imbalance

in other intracellular metabolic cascades. Thus, it is crucial to

compare these age-associated metabolic alterations with

those occurring in AD for developing new therapeutic strate-

gies for this age-associated, devastating dementia. A recent

analysis of the literature on the whole central nervous system

(Altiné-Samey et al., 2021) showed that the pathways most

significantly altered in AD are Arg biosynthesis and Ala/Asp/
Figure 6. Levels of Ser and Asp enantiomers and of Gly in hippocampa

(A–C) D- and L-Asp (A; left and center, respectively), D- and L-Ser (B; left and cente

(A and B, right, for Asp and Ser, respectively) detected in the hippocampus of ind

from metabolomic analysis are reported in Table S6.

(D–F) Sex variations of D- and L-Asp (D, left and center panels, respectively), D- a

D/total amino acid content (D and E, right panel for Asp and Ser, respectively) o

points (corresponding to single biological replicates analyzed in 3–6 technical re

(Mann-Whitney unpaired test).
Glu metabolism, whose metabolites were also confirmed to

be significantly changed in our study (Figures 4 and S3B;

Table S7).

Starting from transcriptional analyses, our study highlights a

strong sex effect under normal aging and AD conditions, partic-

ularly relevant for insulin signaling and amino acid metabolism.

Integration of proteomics and metabolomics data clearly shows

that some pathways are enriched in AD irrespective of sex:

glycolysis/gluconeogenesis, PPP, pyruvate pathway, Cys/Met,

purine metabolism, adherens junctions, focal adhesion, Ala/

Asp/Glu metabolism, Arg biosynthesis, and glutamatergic syn-

apses (Figure 7A). Sex-associated differences are apparent in

healthy CTRs and individuals with AD. Under healthy conditions,

specific pathways are enriched in women when comparing

CTRF and CTRM (glycolysis/gluconeogenesis, PPP, pyruvate

pathway, Cys/Met, purine metabolism, adherens junctions,

and focal adhesion), whereas Ala/Asp/Glu metabolism, Arg

biosynthesis, and glutamatergic synapses are lower in CTRF

versus CTRM (Figure 7).

TCA cycle, ErbB signaling, and HIF-1 pathway/insulin secre-

tion are higher in CTRF versus CTRM. Also, they are lower in

ADF versus ADM, indicating that they are completely overturned

under disease conditions (Figure 7A). In particular, proteins

involved in insulin growth factor (IGF) transport and uptake are

increased in CTRF versus CTRM. Conversely, in ADF versus

ADM, there is a decrease in proteins involved in the response

to insulin stimulus and in GLP1 (glucagon-like peptide-1) regula-

tion of insulin secretion, some of which are implicated in

GABAergic synapses and circadian entrainment. Hyperinsuline-

mia and insulin resistance have been demonstrated to have sig-

nificant effects on cognitive impairment, to play a significant role

in AD, and to be prevalent among female subjects (Simsir et al.,

2018). GLP1 is a 30-amino-acid incretin hormone known to act

as a neuropeptide in the brain and to show neurotrophic and

neuroprotective effects in the central nervous system (Xie

et al., 2021) and in AD. Therefore, the decrease in GLP1 regula-

tion of insulin secretion in ADF in comparison with ADM may

contribute to the marked difference in AD incidence between

sexes (Figure 7A).

Accumulating evidence is demonstrating that hyperglycemia

is a potential risk factor for development of AD and that a

low insulin response is associated with a higher risk for AD.

Accordingly, our proteomics data show increased expression

of IGF-binding protein 7 (IGFBP7), which is apparent in ADF

(Table S5D). Secretion of this protein is upregulated in response

to oxidative stress and linked to insulin resistance and impaired

insulin signaling in AD, being a critical regulator of memory

consolidation (Agbemenyah et al., 2014). Differences can be

also observed regarding the expression of mitochondrial
l samples

r, respectively), andGly (C) levels and ratio betweenD/total amino acid content

ividuals with AD compared with healthy subjects (CTR); see Table S8C. Values

nd L-Ser (E, left and center panels, respectively), and Gly (F) and ratio between

f individuals with AD compared with healthy CTRs. Graphs report single data

plicates) as well as mean values ± SEM. *p < 0.05, **p < 0.01, ***p < 0.0001
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Figure 7. Comparison between sexes during healthy aging and AD onset

(A) Graphical representation of the enrichment pathways of healthy men and women and those with AD. Integration between proteomics andmetabolomics data

was performed using MetaboAnalyst software R5.0 based on a Fisher’s exact test (p % 0.05). The top panel reports pathways higher in women with AD (ADF

versus CTRF) and men with AD (ADM versus CTRM). The bottom panel reports pathways higher in ADM and lower in ADF when comparing ADF and ADM.

In both panels, the pathways higher in healthy women (CTRF versus CTRM) are indicated in red, and shown in blue are those higher in men (CTRF versus CTRM).

(B–D) Schematic of enzymes and metabolic pathways when comparing ADF and CTRF (B), ADM and CTRM (C), and ADF and ADM (D). Red and blue indicate

upregulation and downregulation, respectively.
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pyruvate carrier 1 (MPC1), which shows a statistically significant

reduction in ADM versus CTRM (Table S5D; Figure S4C), resem-

bling that reported previously in Drosophila (Yamazaki et al.,

2014). MPC1 is thought to play a central role in glucose-stimu-
12 Cell Reports 40, 111271, September 6, 2022
lated insulin secretion, systemic glucose homeostasis in b cells,

and in the insulin-resistant state (McCommis et al., 2016). These

data indicate how different pathophysiological mechanisms are

active in men and women (Figure 7A).
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The metabolism of amino acids is the most altered pathway.

Human postmortem brain tissue research has shown that distur-

bances in Arg metabolism accompany AD and contribute to its

pathogenesis. The increase in Arg/Pro metabolism in AD,

confirmed also by our results (Figure 7), is more apparent in

ADF than ADM (Figure 3B) and correlates with the higher rate

of tau aggregation and amyloid burden and deposition that

have been reported in women relative to men (Wang et al.,

2003; Smith et al., 2020). The Arg/Pro metabolism, via its related

metabolites (Cohen andNadler, 1997; Kotagale et al., 2020), may

also contribute to the dysfunction of NMDAR signaling in AD

(Zhang et al., 2016; Liu et al., 2019). NMDAR signaling is specif-

ically related to the metabolism of the coagonist D-Ser and

closely linked to energetic metabolism. A recent study reported

that extracellular levels of L- and D-Ser were reduced at an early

stage of AD, before b-amyloid plaque was deposited in the hip-

pocampus of amousemodel that displays lower glycolytic flux in

hippocampal astrocytes (Le Douce et al., 2020). The glycolytic

flux may control brain L-Ser synthesis (Figure S5); phosphoglyc-

erate kinase (PGK) and phosphoglycerate mutase (PGM1) are

mainly responsible for the relatively high levels of cellular L-Ser

(0.18–0.55 mM) (Jin et al., 2020) because the KM of human

PHGDH for 3PG (0.36 mM) is larger than its cellular level (Murtas

et al., 2021). Although human PHGDH activity is not affected by

L-Ser (Murtas et al., 2021), the pyruvate kinase M2 isoform

(PKM2,mainly expressed in tumor cells and in astrocytes) is acti-

vated by L-Ser binding (Chaneton et al., 2012), supporting

glycolysis and lactate production. Conversely, at low L-Ser

levels, the glycolytic flux to lactate is transiently reduced, favor-

ing accumulation (doubling) of 3PG, which can be rerouted to

produce L-Ser (Ye et al., 2012); a bidirectional control between

PP and glycolysis is active (Figure S5). Glucose controls acetyla-

tion of K58 in PHGDH; a decrease in glucose level, by decreasing

acetylation, pushes PHGDH degradation through RNF5 E3 ubiq-

uitin ligase, yielding a decrease in Ser andGly levels, reactive ox-

ygen species increase, and cell growth inhibition (Wang et al.,

2020). PHGDH and Ser metabolism are directly regulated by

NAD+/NADH availability in the cytosol (a ratio strictly linked to

glycolysis), and Ser feeds NADH to mitochondria when respira-

tion is impaired (Yang et al., 2020). Our results show an increase

in PHGDH, PSAT, and SR levels in AD hippocampal samples

(Figures 5 and 7B), in good agreement with the increase deter-

mined in brains of individuals affected by AD (Yan et al., 2020;

Chen et al., 2022), as a mechanism to increase NMDAR activity

by providing more D-Ser. The effect of sex on Ser levels might

affect long-term potentiation (LTP) differently. (1) In healthy

men, the increase in D-Ser/total Ser ratio should represent a

way to counteract age-related cognitive decline mainly related

to learning and memory (Balu and Coyle, 2015), in keeping

with the study by Yamazaki et al. (2014) in Drosophila, reporting

that, during aging in men, the reduced pyruvate levels are paral-

leled by increased D-Ser levels (as reported for the human sam-

ples in Figures 6E and 7B), resulting in decreased age-related

memory impairment. (2) Analogously, the higher D-Ser/total

Ser ratio levels shouldmake it possible to increase LTP in women

during AD onset, reaching values resembling those determined

in CTRM (Figure 6). This represents a specific attempt to rescue

NMDAR hypofunction by overproducing D-Ser from SR and the
PP, in perfect agreement with the observed increase in blood

D-Ser levels during AD progression (Piubelli et al., 2021). Of

course, NMDAR stimulation by D-Ser is a two-edged sword;

increasing D-Ser in the early phases of AD might be beneficial

because it can inhibit apoptosis (Esposito et al., 2012), but

excessive D-Ser release induced by b-amyloid (Ab) aggregates

(Wu et al., 2004) or PHGDH increase (Chen et al., 2022) contrib-

utes to neuronal death through excitotoxicity.

Our data, together with previous reports, suggest that NMDAR

activation might be regulated in two different ways in individuals

with AD: by increasing the Arg/Pro metabolism in both sexes,

which could contribute to NMDAR overactivation by stimulating

Ca2+ entry (Henzi et al., 1992), and by increasing the level of the

coagonist D-Ser in women only. This proposal suggests that a

further mechanism contributes to those underlying the known

sex differences in Glu systems in AD (Wickens et al., 2018) that

have been ascribed to the interaction of the glutamatergic sys-

tem with sex hormones: ‘‘As women age, their estrogen levels

decline and this decline in estrogen may increase vulnerability’’

to AD (Pike, 2017). Tau pathology further contributes to reducing

estrogen activity in the AD brain by sequestering estrogen recep-

tor a in the cytoplasm (Wang et al., 2016). Whether this effect is

more deleterious in women than in men should be investigated,

as should the effects of androgens, whose levels decline in aged

men and women (Raber, 2004), and the altered estrogen/

androgen balance.

Limitations of this study
This work is hindered by a limited number of analyzed samples

(21 CTR and 27 AD samples, selected for their quality) and by

their European origin only (Table S1).
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Antibodies

Rabbit polyclonal anti-PHGDH Sigma Cat#HPA024031; RRID:AB_1855300

Rabbit polyclonal anti-PSAT1 (anti-PSAT) Antibodies online Cat#abin2856767; RRID: AB_2923163

Rabbit polyclonal anti-PSPH (anti-PSP) Invitrogen Cat#PA5-22003; RRID:AB_11154135

Mouse monoclonal anti-GAPDH antibody Thermo Fisher Scientific Cat#MA5-15738; RRID:AB_10977387

Rabbit polyclonal anti-SR (home-made) Davids Biotechnologie N/A; RRID: AB_2923175

Rabbit polyclonal anti-DAAO Abcam Cat# ab187525; RRID: AB_2912164

Rabbit polyclonal anti-MPC1 Sigma Cat# HPA045119; RRID: AB_10960421

Goat anti-rabbit IgG Alexa-Fluor Plus 800 Invitrogen Cat#A32735; RRID:AB_2633284

IRDye 680RD Goat anti-Mouse IgG antibody LI-COR Biosciences Cat# 926-68070; RRID:AB_10956588

Biological samples

Human brain samples (hippocampus) from male

and female AD patients and healthy controls

Medical Research Council (MRC)

London Neurodegenerative

Diseases Brain Bank

N/A

Chemicals, peptides, and recombinant proteins

TRIzol reagent Invitrogen, Thermo Fisher Scientific Cat#15596026

Urea Sigma-Aldrich Cat#U0631

Hepes Sigma-Aldrich Cat#H7523

cOmpleteTM, Mini Protease Inhibitor Cocktail Roche Cat#11836153001

Phosphatase Inhibitor Cocktail (100X) Cell Signaling Cat#5870

Dithioerythriol (1,4-dithioerythritol) Sigma-Aldrich Cat#D9680

Iodoacetamide Sigma-Aldrich Cat#I1149

Sequence Grade Modified Trypsin Promega Cat#V5111

Acetonitrile (ACN) Sigma-Aldrich Carlo Erba Cat#34851 Cat#75-05-8

Formic acid Thermo Fisher Scientific Cat#28905

Methanol LC-MS CHROMASOLV� Honeywell - Riedel-de Haen� Cat#34966

Methyl-tert-butyl ether (MTBE), CHROMASOLVTM

Plus for HPLC, 99.9%

Honeywell - Riedel-de Haen� Cat#650560

Reserpine Supelco-Merck Cat#43530

Methoxyamine hydrochloride 2% in pyridine,

Methoxamine (MOX) Reagent

Thermo Fisher Scientific Cat#TS-45950

N-methyl-N-(trimethylsilyl) trifluoroacetamid with

1% trimethylchlorosilane (MSTFA)

Supelco (Merck) Cat#69478

d27-Myristic acid 0.75 mg/mL Agilent Cat#400505-54

EGTA Sigma Aldrich Cat#E3889

NP-40 - Tergitol Sigma-Aldrich Cat#NP40S

Tween-20 Sigma-Aldrich Cat#93773

TCA - Trichloroacetic acid Sigma-Aldrich Cat#T9159

o-phthaldialdehyde Sigma-Aldrich Cat#P0657

N-acetyl L-cysteine Sigma-Aldrich Cat#A7250

Tetrahydrofuran Carlo Erba Cat#412451000

D-serine Sigma-Aldrich Cat#S4250

L-serine Sigma-Aldrich Cat#S4500

D-aspartic acid Sigma-Aldrich Cat#219096

L-aspartic acid Sigma-Aldrich Cat#11195
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Glycine Sigma-Aldrich Cat#G7126

Bradford reagent BioRad Cat#500-0205

M213R Rhodotorula gracilis D-amino acid

oxidase (RgDAAO) variant

Sacchi et al., 2002 N/A

Critical commercial assays

Trio RNA-Seq library kit-NuGEN Tecan Cat#0506

Agilent DNA 1000 Kit Agilent Cat#5067-1504

Agilent DNA 1000 Reagents Agilent Cat#5067-1505

QubitTM dsDNA BR Assay Kit Thermo Fisher Scientific Cat#Q32850

Deposited data

RNA-Seq data This paper NCBI SRA: PRJNA739253

Mass spectrometry proteomics data This paper PRIDE ProteomeXchange: PXD034137

Original western blot images This paper Mendeley: https://doi.org/10.17632/

y8sp3489xt.2

Software and algorithms

Novaseq sequencing control software Illumina, Inc. https://emea.support.illumina.com/

sequencing/sequencing_instruments/

novaseq-6000/downloads.htm

BCL2FASTQ v2.20 software Illumina, Inc. https://emea.support.illumina.com/

downloads/bcl2fastq-conversion-

software-v2-20.html

FASTQC software Illumina, Inc. https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

STAR 2.7.3 Dobin and Gingeras, 2015 https://github.com/alexdobin/STAR/

releases/tag/2.7.3a

Deseq2 Love et al., 2014 https://github.com/mikelove/DESeq2

apeglm package Zhu et al., 2019 https://bioconductor.org/packages/apeglm

SALMON 0.13.1 Patro et al., 2017 https://github.com/COMBINE-lab/salmon/

releases/tag/v1.3.0

tximportData Love, 2022. R package

version 1.24.0

https://bioconductor.org/packages/release/

data/experiment/html/tximportData.html

DRIMSeq Nowicka and Robinson, 2016 https://bioconductor.org/packages/release/

bioc/html/DRIMSeq.html

ConsensusPathDB Kamburov et al., 2009 http://cpdb.molgen.mpg.de

Ingenuity Pathway Analysis Ingenuity� Systems www.ingenuity.com

MaxQuant Max-Planck-Institute of

Biochemistry

https://www.maxquant.org/

Perseus Max-Planck-Institute of

Biochemistry

https://maxquant.net/perseus/

Panther Thomas lab at the University

of Southern California.

http://pantherdb.org/

DAVID Laboratory of Human Retrovirology

and Immunoinformatics (LHRI)

https://david.ncifcrf.gov/home.jsp

CLUEGO Cytoskape http://apps.cytoscape.org/apps/cluego

MetaboAnalyst McGill Computational Structural &

Systems Biology Lab

https://www.metaboanalyst.ca/

MassHunter Agilent

Image Studio LI-COR https://licor.app.box.com/s/

4hrk823vov7vittqjg3onj51tb0wbo6w

Prism Graphpad Software https://www.graphpad.com/scientific-

software/prism/
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Other

NanoDrop 2000c Thermo Fisher Scientific Cat#ND-2000C

Agilent Bioanalyzer 2100 Agilent Cat#G2939BA

Qubit 2.0 Fluorometer Thermo Fisher Scientific Cat#Q32866

�NovaSeqTM6000 Sequencing System Illumina N/A

Dionex UltiMate 3000 RSLCnano LC System Thermo Fisher Scientific ULTIM3000RSLCNANO

Zip-Tip C18 - TMC18 Tips, 100 uL Pierce Cat#87784

Orbitrap Fusion Tribrid mass spectrometer Thermo Fisher Scientific IQLAAEGAAPFADBMBCX

Easy-Spray PepMap RSLC C18 column Thermo Fisher Scientific ES900

TissueLyser II Qiagen Cat# 85300

Vacufuge plus Eppendorf Cat# EP022822993

1290 Infinity UHPLC system Agilent N/A

InfinityLab Poroshell 120 PFP column Agilent Cat#695775-408

6550 iFunnel Q-TOF mass spectrometer Agilent N/A

Sample Prep WorkBench Agilent Cat#7696A

DB-35MS column Agilent Cat#122-3832UI-INT

Intuvo 9000 GC System Agilent N/A

Mini Trans-Blot Electrophoretic Transfer Cell BIO RAD Cat# 1703930

Odyssey Fc LI-COR N/A

HPLC apparatus LC-2000Plus (PU-2089Plus

Quaternary low pressure gradient pump,

CO-2065 column oven, FP-2020 fluorescence

detector, AS-2059 autosampler)

Jasco N/A

Symmetry C8 reversed-phase column Waters Cat#WAT054270
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Silvia Sac-

chi (silvia.sacchi@uninsubria.it).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d RNA-seq raw data reported in this paper have been deposited at NCBI SRA and are publicly available as of the date of pub-

lication. The BioProject ID is listed in the key resources table. Mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository. The dataset identifier is listed in the key resources table. Orig-

inal Western blot images have been deposited at Mendeley and are publicly available as of the date of publication. The DOI is

listed in the key resources table. All metabolomics data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohorts and brain samples
Control (CTR) and Alzheimer’s disease (AD) brain samples (hippocampus) were obtained from the Medical Research Council (MRC)

London Neurodegenerative Diseases Brain Bank hosted at the Institute of Psychiatry, Psychology and Neuroscience, KCL. All cases

were collected under informed consent, and the bank operates under a licence from the Human Tissue Authority, and ethical

approval as a research tissue bank (08/MRE09/38+5). Neuropathological evaluation for neurodegenerative diseases was performed

in accordance with standard criteria. All methods were carried out in accordance with relevant guidelines and regulations and the

study was approved by the Institutional Review Board of the University of Rome ‘‘Tor Vergata’’ (Protocol N�98.18). All sampled in-

dividuals were European; men and women showed a comparable age of death (Mann-Whitney test >0.5).
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The age distribution of CTR samples was in the 81.2±4.9 range (mean ± SD) with PMI intervals included between 3 and 48 h

(Table S1). All CTR samples derived from both female and male patients that were classified as normal brains with minimal ageing

changes (Table S1). Similar age distribution was obtained for AD samples (82.8±5.9), with PMI intervals included between 4 and

20.5 h (Table S1). Details of each sample are described in Table S1. Considering sex separation: CTRF: n = 12, age distribution =

81.2 ± 5.25, 3 < PMI<35 hours; CTRM: n = 9, age distribution 81.3 ± 4.8, 6 < PMI<48 hours; ADF: n = 15, age distribution 85.1 ±

4.5, 4 < PMI<13; ADM: n = 12, age distribution 80.0 ± 6.45, 5.25 < PMI<20.5. CTRs were defined as having no evidence of dementia,

i.e. donors with minimal aging changes, mild cognitive impairment and neuropathological findings insufficient to meet criteria for AD.

All patients with AD had Braak stages in the range of IV-VI. Tissue samples of 500–1000mgwere dissected and stored at�80�C until

analysis.

METHOD DETAILS

RNA extraction, libraries, and sequencing
Total RNA was extracted using TRIzol reagent (Invitrogen, Thermo Fisher Scientific) following the manufacturer’s protocol from CTR

and AD samples (Table S1). Both CTRL and AD samples have comparable age (82.40 ± 2.02 vs 86.43 ± 2.10; Mann Whitney test =

0.32) and PMI (12.40 ± 4.10 vs 10.93 ± 0.94; Mann Whitney test = 0.93). RNA was quantitatively and qualitatively evaluated using

NanoDrop 2000c (Thermo Fisher Scientific) and Agilent Bioanalyzer 2100 (Agilent), respectively. RNA-seq libraries were prepared

from 1 mg of total hippocampal RNA, using the Trio RNA-Seq library kit-NuGEN (Tecan) according to the manufacturer’s protocol.

The Nugen system is optimised for the amplification of low input amounts RNA, where amplification is initiated at the 30 end as

well as randomly throughout the whole transcriptome. cDNA libraries were checked on a DNA 1000 Chip using the corresponding

reagents (Agilent DNA 1000 Kit) and the Bioanalyzer 2100 (Agilent) and quantified using QubitTM dsDNA BR Assay Kit on Qubit

2.0 Fluorometer (Thermo Fisher Scientific). Sequencing was performed on �NovaSeqTM6000 Sequencing System (Illumina, Inc),

generating for each sample almost 40 million of 2x150 bp paired-end reads.

RNA sequencing was performed at CBM Scrl (Consorzio per il Centro di Medicina Molecolare) Area Science Park, Basovizza,

Trieste (Italy).

Preprocessing and analysis of RNA-seq data
Real-time image analysis and base calling were performed directly on the Novaseq instrument using the recommended sequencing

control software. Illumina BCL2FASTQ v2.20 softwarewas used for de-multiplexing and production of FASTQ sequence files. FASTQ

raw sequence files were subsequently quality checked with FASTQC software. Subsequently, sequences with a low-quality score

Q<20 or including adaptor dimers or mitochondrial or ribosomal sequences, were discarded from the analysis. The resulting set

of selected reads were aligned onto the complete human genome using Spliced Transcripts Alignment to a Reference algorithm

STAR version 2.7.3 (Dobin and Gingeras, 2015) using hg38 Genome Assembly and Gencode.v26 as gene definition. The resulting

Mapped reads were used as input for feature Counts function of Rsubread packages and used as Genes counts for differentially

expression analysis using Deseq2 package (Love et al., 2014). We used the shrinkage estimator from the apeglm package (Zhu

et al., 2019) for visualization and ranking.

Original FASTQ files have been aligned against hg38 by means of SALMON version 0.13.1 (Patro et al., 2017) against all 57,820

gene features in gencode.v26.pc_transcripts (Liao et al., 2014). Pondering 10 as the lowest number of reads to map a given gene,

RNA-seq data analysis identified 20689 annotated genes as expressed in all sequenced samples. Transcript levels have been loaded

in R environment using tximportData package while differential transcript usage (DTU) has been evaluated using DRIMSeq package

(Nowicka and Robinson, 2016). DTU analysis, a measure of the relative contribution of one transcript to the overall expression of the

gene (i.e. the total transcriptional output) based on individual transcript read counts normalized to the sumof all transcript read counts

of the gene, was used to characterize differences in the isoform landscape of PHGDH,PSAT,PSP,SR, andDAAO. The RNA seq data

has been deposited to the SRA repository with the BioProject identifier PRJNA739253.

To compare our transcriptome analysis with other published data (since not all published data are available), we used the fry func-

tion of the package EdgeR for a Rotation Gene Set test creating a gene sets starting from tables of DEGs available in the two papers

reported (Crist et al., 2021, PMID_33875655; Mathys et al., 2019, PMID_31042697).

Mass-spectrometry-based proteomics analysis
Human hippocampus proteome from control patients (9 men and 10 women) and patients with AD (10 men and 10 women) was

analyzed by a shotgun label free proteomic approach for the identification and quantification of expressed proteins. Approximately

20 mg of brain tissues from each subject were homogenized using a Potter homogenizer in 100 mL of extraction buffer (8 M urea,

20 mM Hepes pH 8.0, with Protease and Phosphatase Inhibitors cocktail) at full speed for 1 min as previously reported in (Nonnis

et al., 2016). The homogenate was sonicated using an ultrasonic probe in bursts of 20–30 s and centrifuged at 16060 3 g for

15 min at 18�C to pellet the tissue debris. Prior to proteolysis, proteins were reduced with 13 mM dithioerythriol (30 min at 55�C)
and alkylated with 26 mM iodoacetamide (30 min at room temperature). Protein digestion was performed using sequence-grade

trypsin (Promega) for 16 h at 37�C using a protein: enzyme ratio of 20:1. The collected peptides were desalted using Zip-Tip C18

before Mass Spectrometric (MS) analysis as reported in (Galli et al., 2018). NanoHPLC coupled to MS/MS analysis was performed
Cell Reports 40, 111271, September 6, 2022 e4
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on Dionex UltiMate 3000 directly connected to an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific) by a nano-

electrospray ion source. Peptide mixtures were enriched on 75 mm ID 3 150 mm EASY-Spray PepMap RSLC C18 column (Thermo

Fisher Scientific) and separated using the LC gradient: 1% acetonitrile (ACN) in 0.1% formic acid for 10 min, 1–4% ACN in 0.1% for-

mic acid for 6min, 4–30%ACN in 0.1% formic acid for 147min and 30–50%ACN in 0.1% formic for 3min at a flow rate of 0.3 mL/min.

Orbitrap-MS spectra of eluting peptides were collected over an m/z range of 375–1500 at resolution of 120,000, operating in a data-

dependent mode with a cycle time of 3 s between master scans. HCD MS/MS spectra were acquired in Orbitrap at resolution of

15,000 using a normalized collision energy of 35%, and an isolation window of 1.6 m/z. Dynamic exclusion was set to 60 s. Rejection

of +1, and unassigned charge states were enabled.

Themass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al.,

2016) partner repository.

Metabolites extraction
For LC-MS analyses, 200 mL ice-cold 50:50methanol-water were added to 20mg of frozen tissue and samples were homogenized in

a bead mill (TissueLyser II, Qiagen) with stainless steel beads (5 mm) for 1 min, 30 Hz power. After a 30 min incubation at �80�C,
100 mL of homogenate was vortexed with 320 mL of ice-cold methanol for 2 min. Then, 80 mL of methyl-tert-butyl ether (MTBE)

was added and samples were placed in a thermoshaker for 1 h at 4�C.
On the other hand, for GC-MS analyses 400 mL ice-cold 50:50 methanol-water was added to the same amount of frozen tissue

(20 mg) and samples were homogenized and incubated at �80�C as above. Then, samples were centrifuged at 12,000 g for

10 min at 4�C. 400 mL of ice-cold chloroform was added and samples were placed in a thermoshaker for 1 h at 4�C.
In both cases, extracted sampleswere subsequently centrifuged at 12,000 g for 10min at 4�C. 400 mL of supernatant was collected

in a glass insert and dried in a centrifugal vacuum concentrator (Concentrator plus/Vacufuge plus, Eppendorf) at 30�C for about 2.5 h.

Samples for LC-MS analysis were then resuspended in 150 mL of H2O prior to analyses, whereas samples for GC-MS analysis were

subjected to derivatization as detailed below.

Metabolic profiling
LC separation during LC-MS analyses was performed using an Agilent 1290 Infinity UHPLC system and an InfinityLab Poroshell 120

PFP column (2.13 100 mm, 2.7 mm; Agilent). Mobile phase A was water with 0.1% formic acid. Mobile phase B was ACN with 0.1%

formic acid. The injection volume was 15 mL and LC gradient conditions were: 0 min: 100% A; 2 min: 100% A; 4 min: 99% A; 7 min:

98%; 8min: 70%A; 10min: 70%A; 13min: 30%A; 15min: 30%A; 16min: 100%A; 18min: 100%Awith 2min of post-run. Flow rate

was 0.2 mL/min and column temperature was 35�C. MS detection was performed using an Agilent 6550 iFunnel Q-TOF mass spec-

trometer with Dual JetStream source operating in negative ionization mode. MS parameters were: gas temperature: 285�C; gas flow:

14 L/min; nebulizer pressure: 45 psig; sheath gas temp: 330�C; sheath gas flow: 12 L/min; VCap: 3700 V; Fragmentor: 175 V;

Skimmer: 65 V; Octopole RF: 750 V. Active reference mass correction was performed through a second nebulizer using

masses with m/z: 112.9855 and 1033.9881 dissolved in the mobile phase 2-propanol-ACN-water (70:20:10 v/v) at a flow rate of

0.15 mL/min. Data were acquired from m/z 60 to 1050.

For GC-MS analyses, derivatization was performed using an automated sample prep WorkBench instrument (Agilent). Dried polar

metabolites were dissolved in 60 mL of 2%methoxyamine hydrochloride in pyridine and held at 40�C for 6 h. After the reaction, 90 mL

of N-methyl-N-(trimethylsilyl) trifluoroacetamid (MSTFA) was added and sampleswere incubated at 60�C for 1 h. Derivatized samples

were analyzed by GC-MS using a DB-35MS column (30 m3 0.25 mm, i.d. x 0.25 mm; Agilent) installed in an Agilent Intuvo 9000 gas

chromatograph interfaced with a 5977B mass spectrometer operating under electron impact (EI) ionization at 70 eV. Samples (1 mL)

were injected in a splitless mode at 250�C, using helium as the carrier gas at a flow rate of 1 mL/min. The GC oven temperature was

held at 100�C for 2 min and increased to 325�C at 10�C/min.

The metabolic analyses were carried out in outsourcing by the ISBE.IT/Center of Systems Biology, Milan, Italy.

Western blot analysis
Brain samples were homogenized in 20mMHEPES pH 8.0, 1mMEGTA, 0.4%NP-40, and added of complete protease- (Roche) and

phosphatase-inhibitor (Cell Signaling) cocktails, prepared following the manufacturer’s instructions, (100 mL for 10 mg of tissue), us-

ing a pellet micro-pestle and then subjected to sonication (3 cycles, 20 s each). The lysates were centrifuged at 13,0003 g for 10 min

at 4�C and, after discarding the pellet, the concentration of total proteins in the supernatant was determined using the Bradford re-

agent (BioRad). For each sample 40 mg of total proteins were subjected to SDS-PAGE and transferred on a PVDF membrane using

the Mini Trans-Blot Cell system (BioRad). Themembranes were developed using rabbit anti-PHGDH (Sigma-Aldrich), anti-PSAT (An-

tibodies online), anti-PSP (Invitrogen), anti-SR (Davids Biotechnologie), anti-DAAO (Abcam) and anti-MPC1 (Sigma-Aldrich) anti-

bodies. The membrane was blocked overnight at 4�C with 4% dried milk in Tris-saline buffer pH 8.0 added of 0.1% Tween 20

and subsequently incubated with primary antibodies, the anti-SR diluted 1:10, the anti-MPC1 diluted 1:500 all the others diluted

1:1000 in 2% dried milk in Tris-saline buffer pH 8.0 added of 0.05% Tween 20 overnight at 4�C for the anti-MPC1 and for 2 h at

room temperature for all the others. After extensive washing, the membrane was incubated for 1 h at room temperature with goat

anti-rabbit IgG (Alexa-Fluor Plus 800 Invitrogen, 1:20,000 dilution in Tris-saline buffer pH 8.0 added 0.05% Tween 20). Western blots

were analyzed by an Odyssey Fc apparatus equipped with the ImageStudio software (LI-COR Biosciences): the intensity signal of
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each sample was normalized by the GAPDH signal (detected using amouse anti-GAPDH antibody, 1:2000, Thermo Fisher Scientific;

and a goat anti-mouse IgG IRDye 680RD, 1:5000, LI-COR Biosciences). The content of each protein was calculated by the software

based on the intensity of known amounts of recombinant proteins and was related to the mg of total proteins loaded into the gel. Con-

trols included the addition of a known amount (10 ng PHGDH and PSAT and 2.5 ng PSP) of recombinant proteins to the samples.

Each sample was analyzed at least three times (in three different SDS-PAGE runs).

Enantiomeric HPLC analysis
Brain tissue samples were analyzed using the procedure reported in (Punzo et al., 2016) with minor modifications. Samples were ho-

mogenized in 1:10 (w/v) 0.2M TCA, sonicated (three cycles of 10 s each), and centrifuged at 13,0003 g for 20min at 4�C. The precip-
itated protein pellets were stored at �80�C for quantification, and 10 mL of the supernatants were neutralized with NaOH and sub-

jected to precolumn derivatization with 20 mL of 74.5 mM o-phthaldialdehyde and 30.5 mM N-acetyl L-cysteine in 50% methanol.

Diastereoisomer derivatives were then resolved on a Symmetry C8 reversed-phase column (5 mm, 4.63 250 mm,Waters) under iso-

cratic conditions (0.1 M sodium acetate buffer, pH 6.2, 1% tetrahydrofuran, at 1 mL/min flow rate). A washing step in 0.1 M sodium

acetate buffer, 3% tetrahydrofuran and 47% ACNwas performed after each run. Identification and quantification of D- and L-Ser, D-

and L-Asp, and Gly were based on retention times and peak areas, compared with those associated with external standards. The

identity of D-Ser and D-Asp peaks was further confirmed by adding known amounts of external standards and by their selective

degradation using wild-type or M213R RgDAAO variant, respectively (Sacchi et al., 2002). The enzymatic treatment allowed a

more precise estimation of the amino acid concentration: the samples were added with 10 mg of the enzymes (approx. 600 and

60 mU for wild-type and M213R RgDAAO, respectively), incubated at 30�C for 60 min and then derivatized. The amino acids total

amount detected in homogenates was normalized by grams of tissue.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data analysis
DESeq2 uses a generalized linear model to evaluate differential expression while accounting for biological variance and uses a Wald

test statistic to estimate significance. The Principal Component Analysis (PCA) was calculated using ‘‘prcomp’’ in R on gene expres-

sion values obtained by DEseq2 on RNA-seq aligned reads after removing the sex effect via the Sva package. DEGs with |Log2(FC)|

R 1 and adjusted p value% 0.05 were used as input to performGene Set Enrichment Analysis (GSEA) and pathway enrichment anal-

ysis. GSEA was performed using Over-Representation Analysis (ORA) of the ConsensusPathDB functional interaction database

(Kamburov et al., 2009). ConsensusPathDB includes several known biological pathway databases including KEGG, BioCarta, Reac-

tome, andWikipathways. It performs a hypergeometric test while relating a background gene list, assembles results from each data-

base and corrects for multiple testing using (false discovery rate) FDR (Kamburov et al., 2009). GSEA analysis was performed setting

at 2 the minimum overlap between the query signature and database. Pathway enrichment analysis was also performed by Ingenuity

Pathway Analysis (IPA) (Ingenuity Systems). DRIMseq, used to identify differential transcript usage, is based on modeling the counts

of transcripts with the Dirichlet-multinomial distribution.

Label-free proteomics
A database search was conducted against the Homo sapiens Uniprot sequence database (https://www.uniprot.org/proteomes,

released 9 January 2020) with MaxQuant (version 1.6.1.0) software. The initial maximum allowed mass deviation was set to 10

ppm for monoisotopic precursor ions and 0.5 Da for MS/MS peaks. Enzyme specificity was set to trypsin, defined as C-terminal

to Arg and Lys excluding Pro, and a maximum of two missed cleavages were allowed. Carbamidomethylcysteine was set as a fixed

modification, while N-terminal acetylation, Met oxidation, Asn/Gln deamidation and Ser/Thr/Tyr phosphorylation were set as variable

modifications. Quantification in MaxQuant was performed using the built-in label free quantification algorithms (LFQ) based on ex-

tracted ion intensity of precursor ions. False protein identifications (1%) were estimated by searching MS/MS spectra against the

corresponding reversed-sequence (decoy) database. Statistical analysis was performed using the Perseus software (version

1.5.5.3) (Tyanova et al., 2016). Only proteins present and quantified in at least 80% of the repeats were positively identified in a sam-

ple and used for statistical analysis. Focusing on specific comparisons, proteins were considered differentially expressed if they were

present only in one condition or showed significant t test difference (Student’s t-test p value % 0.05) (Schulte et al., 2017).

Bioinformatic analyses were carried out by Panther software (release 16.0) (Mi et al., 2013), DAVID software (release 6.8) (Huang

et al., 2009) and CLUEGO software (Cytoskape release 3.8.2) (Bindea et al., 2009) to cluster enriched annotation groups of Biological

Processes, Pathways, and Networks within the set of identified proteins. Functional grouping was based on Fischer’s exact test

p value% 0.05 and at least 3 counts. Integration between proteomic andmetabolomics data was performed byMetaboAnalyst soft-

ware R5.0 based on a Fischer’s exact test p value % 0.05 (Tripodi et al., 2020). The topology analysis aimed to evaluate whether a

given gene or metabolite plays an important role in a biological response, based on its position within a pathway (pathway impact).

Metabolic profiling
LC-MS data analysis and isotopic natural abundance correction was performed with MassHunter ProFinder (Agilent). Relative

metabolite abundance was carried out after normalization to internal standard reserpine.
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GC/MS data processing was performed using Agilent Mass Hunter software. Relative metabolite abundance was carried out after

normalization to internal standard d27-myristic acid. Statistical analyses were performed using MetaboAnalyst 5.0, p value % 0.05

(Chong et al., 2019).

Western blot analysis
The results were analyzed using GraphPad Prism version 7.0 for Windows (GraphPad Software). The D’Agostino and Pearson

normality test was used to analyze the distribution of variables: since a non-normal distribution was observed, a non-parametric

approach was used for all statistical analyses. Variation of protein levels between controls and AD patients was evaluated using

the two-tailed Mann-Whitney test. A p value < 0.05 was considered as statistically significant.

Enantiomeric HPLC analysis
All statistical analyses were performed using GraphPad Prism 7.0. Distribution of the values of variables was assessed by the

D’Agostino and Pearson or Shapiro-Wilk (for sex comparison) normality tests. Since not all groups showed Gaussian distribution,

analyses were performed using the non-parametric two-tailed Mann–Whitney test. A p value lower than 0.05 was considered statis-

tically significant. In all statistical analyses, one outlier in the dataset of the female control group was excluded.
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