Impact of preoperative glycometabolic status on outcomes in cardiac surgery: Systematic review and meta-analysis

Check for updates

Claudio Corazzari, MD,^{a,b} Matteo Matteucci, MD,^{a,b} Michalina Kołodziejczak, MD,^{c,d} Mariusz Kowalewski, MD,^{a,e,f} Anna Maria Formenti, MD,^g Andrea Giustina, MD,^g Cesare Beghi, MD,^b Fabio Barili, MD, PhD, MStat,^h and Roberto Lorusso, MD, PhD,^{a,i}

ABSTRACT

Background: Historically, impaired glucose metabolism has been associated with early and late complicated clinical outcomes after cardiac surgery; however, such a condition is not specific to subjects with diabetes mellitus and involves a larger patient population.

Methods: Databases were screened (January 2000 to December 2020) to identify eligible articles; studies that evaluated the association between preoperative metabolic status, as assessed by glycosylated hemoglobin levels and clinical outcomes, were considered. The studies were stratified in thresholds by baseline glycosylated hemoglobin level (lower vs higher).

Results: Thirty studies, involving 34,650 patients, were included in the review. In a meta-analysis stratified by glycosylated hemoglobin levels, early mortality was numerically reduced in each threshold comparison and yielded the highest reductions when less than 5.5% versus greater than 5.5% glycosylated hemoglobin levels were compared (risk ratio, 0.39; 95% confidence interval, 0.18-0.84; P = .02). Comparing higher glycosylated hemoglobin threshold values yielded comparable results. Late mortality was reduced with lower levels of glycosylated hemoglobin. Low preoperative glycosylated hemoglobin was associated with the lowest risk of sternal wound infections (risk ratio, 0.50; 95% confidence interval, 0.32-0.80; P = .003 and risk ratio, 0.53; 95% confidence interval, 0.39-0.70; P < .0001) for comparisons of less than 7.5% versus greater than 7.5% and less than 7.0% versus greater than 7.0% glycosylated hemoglobin thresholds, respectively. Additionally, levels of glycosylated hemoglobin lower than 7% were associated with reduced hospital stay, lower risk of stroke/transient ischemic attack (risk ratio 0.53; 95% confidence interval, 0.39-0.70; P < .0001), and acute kidney injury (risk ratio, 0.65; 95% confidence interval, 0.54-0.79; *P* < .0001).

Conclusions: Lower levels of glycosylated hemoglobin in patients undergoing cardiac surgery are associated with a lower risk of early and late mortality, as well as in the incidence of postoperative acute kidney injury, neurologic complications, and wound infection, compared with higher levels. (J Thorac Cardiovasc Surg 2022;164:1950-60)

Prospero ID: CRD42020160942.

Drs Corazzari and Matteucci contributed equally to this work.

Address for reprints: Matteo Matteucci, MD, Cardiothoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre, P. Debyelaan, 12—6221 AZ Maastricht, The Netherlands (E-mail: matteomatteucci87@ gmail.com).

0022-5223

Copyright © 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1016/j.jtcvs.2021.05.035

Reduction of risk for early mortality in patients with preoperative optimal glycemic control.

CENTRAL MESSAGE

A J-shaped relationship exists between lower values of preoperative HbA1c and lower risk of early and late mortality after surgery, as well as in the incidence of preoperative AKI, stroke/TIA, and sternal wound infection.

PERSPECTIVE

This meta-analysis of 30 studies, including approximately 35,000 patients, found that compared with lower thresholds of HbA1c, higher preoperative HbA1c levels were associated with an increased risk of postoperative mortality and morbidity in patients who underwent cardiac surgery. Therefore, intensive HbA1c lowering is advisable to reduce the operative risk for worse outcomes.

See Commentaries on pages 1961 and 1963.

From the ^aDepartment of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, the Netherlands; ^bDepartment of Surgical and Morphological Sciences, Circolo Hospital, University of Insubria, Varese, Italy; ^oDepartment of Anaesthesiology and Intensive Care, Collegium Medicum Nicolaus Copernicus University, Antoni Jurasz University Hospital No. 1, Bydgoszcz, Poland; ^dYale Cardiovascular Research Group, Yale School of Medicine, New Haven, Conn; ^oDepartment of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior, Centre of Postgraduate Medical Education, Warsaw, Poland; ^bThoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, Bydgoszcz, Poland; ^gInstitute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University, IRCCS San Raffaele Hospital, Milan, Italy; ^bCardiac Surgery Unit, S. Croce Hospital, Cuneo, Italy; and ⁱCardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.

Received for publication Aug 17, 2020; revisions received April 21, 2021; accepted for publication May 13, 2021; available ahead of print June 1, 2021.

Abbrevia	tions and Acronyms
AKI	= acute kidney injury
CABG	= coronary artery bypass grafting
CI	= confidence interval
DM	= diabetes mellitus
HbA1c	= glycosylated hemoglobin
MD	= mean difference
MI	= myocardial infarction
RR	= risk ratio
TIA	= transient ischemic attack

Scanning this QR code will take you to the table of contents to access supplementary information.

Diabetes mellitus (DM) is one of the most challenging concerns for public health. According to the latest 2016 data from the World Health Organization, an estimated 422 million of adults are affected by DM.¹ Patients with DM have a 2- to 4-fold increase in the risk of developing cardiovascular disease than those without DM and a 2- to 5-fold increased mortality due to cardiovascular disease when compared with age- and sex-matched persons without DM.²

Patients with DM represent approximately 25% of subjects undergoing coronary revascularization,³ and coronary artery bypass grafting (CABG) is the preferred method of revascularization for this subgroup of patients in the presence of multivessel coronary disease.⁴⁻⁷ Previous studies have clearly demonstrated that high perioperative blood glucose levels are associated with an increased incidence of postoperative complications and reduced survival after CABG.^{8,9} Yet, hyperglycemia on random serum samples does not necessarily reflect the long-term status of glycometabolic control being potentially influenced by several concomitant factors, including underlying diseases and related treatments leading to hospitalization.¹⁰ Hyperglycemia has been reported to act as a strong predictor of both morbidity and mortality in subjects without a previous diagnosis of DM undergoing cardiac surgery.¹¹ An adjunctive potentially confounding factor may be underdiagnosis and consequent underestimation of DM in the general population.¹²

Measuring glycosylated hemoglobin (HbA1c) levels preoperatively is the method of choice for defining glycometabolic status because it reflects blood glucose levels of the 2 to 3 months before the assessment.¹³ The American Diabetes Association currently advocates that diabetic subjects should achieve target HbA1c levels less than 7% because it is associated with a lower risk of diabetes-related complications.¹³ Several studies have evaluated the potential clinical implications of HbA1c levels in diabetic and nondiabetic patients undergoing cardiac surgery. However, most of these studies were retrospective in design, with no adequate statistical power, due to the relatively small sample size, to draw definitive conclusions. Therefore, we performed a systematic review and meta-analysis of the existing literature to evaluate whether baseline preoperative glycometabolic status, as assessed by serum HbA1c levels, is associated with the early and long-term cardiac surgery outcomes reductions.

MATERIALS AND METHODS

This systematic review and meta-analysis were conducted in accordance to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines¹⁴ and registered in PROSPERO (International Prospective Register of Systematic Reviews) (ID: CRD42020160942). The need for ethical approval and consent was waived for this systematic review.

Search Strategy and Data Extraction

MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched for eligible studies from January 1, 2000, to December 31, 2020. Keywords pertinent to the exposure of interest were used in relevant combinations: "cardiac surgery," "open-heart surgery," "hyperglycemia," "glycemic control," "glucose variability," "glycated hemoglobin," "glycosylated hemoglobin." The literature search was limited to articles published in English. Reference lists were reviewed manually and crosschecked for other relevant reports.

Randomized controlled trials, prospective, and retrospective observational cohort studies that compared clinical outcomes in patients undergoing cardiac surgery based on preoperative glycometabolic control, as assessed by glycated hemoglobin (HbA1c) thresholds, were included in our analysis.

Studies were excluded if they met one of the following exclusion criteria: (1) pediatric (age <18 years) and congenital heart surgery-related studies; (2) reviews or case reports; (3) nonhuman studies; (4) studies or arms in which HbA1c levels could not be ascertained or was reported as continuous variable; (5) studies not reporting the clinical outcomes of interest. In case of multiple publications on the same patient cohort and institution, the most complete study in terms of outcome and patient information was selected for reporting, unless providing, separately, long-term follow-up.

Titles, abstracts, and full-text articles were independently reviewed by 2 investigators (C.C. and M.M.) against the specified inclusion criteria. Discrepancies were resolved through consensus and consultation with a third investigator (R.L.). Two reviewers (C.C. and M.M.) extracted data from the selected studies by using a standardized form, and a third investigator (R.L.) checked the collected data for completeness and accuracy.

Outcome Measures and Quality Assessment

The primary outcome of this meta-analysis was early mortality, defined as any death, regardless of cause, occurring in-hospital or within 30 days after surgery; death occurring after 30 days during was only considered if during the index hospitalization subsequent to the surgery. Secondary outcomes included postoperative complications: acute kidney injury (AKI), sternal wound infection, cerebrovascular events inclusive of stroke or transient ischemic attack (TIA), and myocardial infarction (MI). Outcome definitions were adopted as for the included studies. Additionally, we meta-analyzed the postoperative length of hospital stay and late (>1 year) mortality.

The quality assessment of included studies has been performed in accordance with the recommendations given by the Cochrane Prognosis Methods Group for evaluating risk of bias in prognostic factor studies; thus, risk of bias at the individual study level was assessed using the Quality In Prognosis Studies tool.^{15,16}

Statistical Analysis

Statistical analysis was performed using Review Manager version 5.3.5 (The Nordic Cochrane Centre, Copenhagen, Denmark) and Comprehensive Meta-Analysis 2.2 (Biostat, Englewood, NJ). The Cochran's Q test and I^2 test were performed to judge the heterogeneity among the studies included in the meta-analysis. Heterogeneity was also considered to be significant at *P* less than .10 for the Q statistic. An I^2 value less 40% indicates low heterogeneity, values between 40% and 70% suggest moderate heterogeneity, and I^2 greater than 70% were considered high heterogeneity. To best account for within- and between studies variance, pooled analyses were performed by the random-effects model. Studies reporting outcomes of interest were included in subgroups representing thresholds of preoperative glycometabolic control: (1) HbA1c less than 5.5% versus more than 5.5%; (2) less than 6.0% versus more than 6.0%; (3) less than 6.5% versus more than 6.5%; (4) less than 7.0% versus more than 7.0%; (5) less than 7.5% versus more than 7.5%: and (6) less than 8.0% versus more than 8.0%. The data were assigned to specific thresholds based on the stratification applied in the original study. Pooled risk ratios (RRs) were reported with 95% confidence intervals (CIs) for each subgroup. For the analysis of length of hospital stay, mean difference (MD) along with 95% CIs is reported. Whenever applicable, median and interquartile ranges were converted to mean \pm standard deviation according to Wan and colleagues.¹⁷ RRs per person-years accounting for potential differences in follow-up are reported for the more than 1 year mortality again for each threshold comparison. Publication bias was examined by the visual assessment of funnel plots¹⁸ and by Egger's regression. Additionally, by means of meta-regression, we addressed potential relationships between early mortality and baseline characteristics by counter-opposing available baseline characteristics versus log mortality RR, across different thresholds of HbA1c; and given single study arms' HbA1c thresholds versus logit mortality event rate. Study arms reporting "0 events" in both compared HbA1c thresholds were not considered for a subgroup meta-analysis. Single arms reporting "0 events" were not considered for meta-regression.

RESULTS

Study Selection and Participants

The Preferred Reporting Items for Systematic Review and Meta-Analysis flow diagram describing the study selection along with the reasons for exclusion is presented in Figure E1. After removal of reports not pertinent to the design of the current review, 30 observational studies that met inclusion criteria remained, ^{19-25,E1-E23} including a total of 34,650 patients. The selected articles were published between 2008 and 2020, and the number of patients for each trial ranged from 72 to 6415. Engoren and colleagues^{E24} report long-term outcomes in a separate report. Of 30 studies, 21 compared 2 thresholds and 9 reported on more subgroups.

Tables E1 and E2 summarize the main characteristics and outcomes of the included studies. The mean age of the patients was 63.2 ± 3.2 years, and approximately 60% of cases had preoperative history of DM. CABG was the surgical procedure most frequently performed (94.9%), followed by valve surgery (3.3%). A summary of the risk of biases of included trial is reported in Table E3. Overall, quality assessment indicated no low-quality study.

Early Mortality

All 30 studies contributed to the analysis of early mortality. Visual inspection of the funnel plot for the primary end point showed a symmetrical distribution indicating no evidence of publication bias, and this was confirmed in Egger's test (Figure E2). Overall early mortality was 1.9% (656/34,650) (Table E2). The direction of the estimates in each glycemic level comparison subgroup favored lower HbA1c level, which reached significance in the subgroup comparing less than 5.5% versus more than 5.5%, with 1.06% (23/2177 patients) and 2.05% (102/4973 patients) corresponding early mortality rates (RR, 0.39, 95% CI, 0.18-0.84, P = .02, heterogeneity P = .24, $I^2 = 29\%$) (Figure 1). A "J-shaped" relationship was found between log RR of early mortality and HbA1c successive thresholds (Figure 2) (exponential function = coefficient 6.91 CIs [6.69-7.14], P < .001). The trend of reduction was present in the subgroup comparing less than 7.0% versus more than 7.0%, with 1.57% (248/15,644 patients) and 2.26% (209/9267 patients) dying in an early postoperative period (RR, 0.79, 95% CI, 0.59-1.05, P = .10, heterogeneity P = .09, $I^2 = 31\%$). Meta-regression analysis performed counter-opposing RR of early mortality against baseline characteristics of patients in the included studies (age, gender, diabetes, heart failure) in each threshold did not show the RR, being significantly influenced by variability of these characteristics in single studies. A trend toward lesser benefit with HbA1c less than 7.5% and HbA1c less than 8.0% was seen with increasing number of patients with a history of heart failure (Table E4). Restricting the analysis to the patients undergoing CABG (eg, excluding 2 studies^{E7,E23} conducted in the setting of valve surgery exclusively) did not change the direction or magnitude of the estimates. As a further sensitivity analysis, a metaregression of single study arms' HbA1c thresholds versus logit mortality event rate was performed; there was a significant linear relationship with lower baseline HbA1c levels and lower mortality rates (β coefficient = -1.175; P = .025).

Late Mortality

Eight studies^{19,23,E4,E6,E11,E13,E15,E24} with 15,464 patients provided late mortality data. Mean (weighted) follow-up was 3.9 ± 1.4 years (range, 1.0-5.5 years) (Table E2). A lower HbA1c level resulted in reduced late mortality in every glycometabolic level comparison subgroup: less than 5.5% versus more than 5.5% (-44% rate reduction, P = .09), 6.0% versus more than 6.0% (-45% rate reduction, P = .07), less than 6.5% versus more than 6.5% (-41% rate reduction, P = .01), less than 7.0% versus more than 7.0% (-26% rate reduction, P = .01), less than 7.5% versus more than 7.5% (-25% rate reduction, P = .01), less than 8.0% versus more than 8.0% (-22% rate reduction, P = .003) (Figure 3).

Sternal Wound Infection

A total of 22 studies^{19-25,E1-E3,E5,E7-E16,E22} enrolling 25,843 patients contributed to the analysis of sternal wound infections. The highest HbA1c subgroup comparisons were associated with the highest benefit of lower glycometabolic

Study or Subgroup	Lower HbA1c leve Events Tota	I Higher Hi Events	A1c leve Total	l Weight	Risk Ratio IV, Random, 95% Cl	Risk Ratio IV, Random, 95% Cl
1.1.1 HbA1c < 5.5% vs > 5.5%				-		
Alserius T 2008	2 339	6	122	17.9%	0.12 [0.02, 0.59]	
Kocogullari C 2017*	2 112	6	90	18.1%	0.27 [0.06, 1.30]	
Robich M 2019*	19 1713	87	4702	57.7%	0.60 [0.37, 0.98]	
Surer S 2016	0 10	3	59	6.4%	0.61 [0.03, 11.19]	
Subtotal (95% CI)	2177	102	4973	100.0%	0.39 [0.18, 0.84]	-
Heterogeneity: Tau ² = 0.20; Chi ² = 4 Test for overall effect: $Z = 2.41$ ($P = 1$.25, df = 3 (P = .24); .02)	² = 29%				
1.1.2 HbA1c < 6.0% vs > 6.0%	,					
Surer S 2016	0 13	. 3	14	4 5%	0 15 [0 01 2 71]	
Alserius T 2008	4 483	6	122	15.5%	0.17 [0.05, 0.59]	
Tekumit H 2010	0 44	2	122	4.2%	0.55 [0.03, 11.17]	
Robich M 2019	19 1713	87	4702	29.4%	0.60 [0.37, 0.98]	
Engoren M 2014	10 300	10	293	24.2%	1 76 [0 76 4 09]	
Subtotal (95% CI)	2770		5833	100.0%	0.65 [0.34, 1.25]	→ ⁻
Total events	44	125				
Heterogeneity: Tau ² = 0.32; Chi ² = 1	1.58, df = 5 (P = .04)	$I^2 = 57\%$				
Test for overall effect: $Z = 1.28$ ($P = 1.28$.20)					
1.1.3 HbA1c < 6.5% vs > 6.5%						
Matsuura K 2009	0 47	0	54		Not estimable	
Tsuruta R 2011	0 115	0	191		Not estimable	
Surer S 2016	0 13	3	14	0.8%	0.15 [0.01, 2.71]	· · · · · · · · · · · · · · · · · · ·
Alserius T 2008	4 483	1	68	1.4%	0.56 [0.06, 4.96]	
Naravan P 2017	76 2476	· 93	2202	43.9%	0.73 [0.54, 0.98]	
Robich M 2019	62 4218	44	2197	32.1%	0.73 [0.50, 1.08]	
Subramaniam B 2014	30 1003	12	458	13.7%	1.14 [0.59, 2.21]	- -
Bardia A 2017	10 654	1	109	1.6%	1.67 [0.22, 12.89]	
Subtotal (95% CI)	9370		275 5637	4.0%	0.81 [0.63, 10.99]	
Total events	194	161		10010 /0	0101 [0100, 1100]	•
Heterogeneity: $Tau^2 = 0.02$: $Chi^2 = 7$.94. df = 7 (P = .34);	² = 12%				
Test for overall effect: Z = 1.53 (P =	.13)					
1.1.4 HbA1c < 7.0% vs > 7.0%						
Surer S 2016	0 13	3	14	1.0%	0.15 [0.01, 2.71]	
Biskupski A 2014	2 195	5	155	2.8%	0.32 [0.06, 1.62]	
Aydınlı B 2018	6 160	22	194	7.0%	0.33 [0.14, 0.80]	
Ramadan M 2018	1 40) 3	40	1.6%	0.33 [0.04, 3.07]	
Almogati JG 2019	3 110	12	195	4.3%	0.44 [0.13, 1.54]	
Shoghli M 2019	4 106	9	118	4.8%	0.49 [0.16, 1.56]	
Halkos M 2008	18 2275	13	814	8.9%	0.50 [0.24, 1.01]	
Knapik P 2011	7 453	8	282	5.9%	0.54 [0.20, 1.49]	— • +
Robich M 2019	62 4218	17	820	2.6%	0.62 [0.12, 3.26]	
Finger B 2017	13 474	2	57	3.3%	0.78 [0.18, 3.38]	
Kuhl J 2016	49 2771	77	3542	14.8%	0.81 [0.57, 1.16]	
Khan M 2019	20 818	8	315	7.7%	0.96 [0.43, 2.16]	
Göksedef D 2010	9 534 4 93	1 2	57	2.6%	1.14 [0.15, 6.66]	
Kim J 2020	5 287	5	416	4.3%	1.45 [0.42, 4.96]	
Strahan S 2012	2 265	2	447	2.0%	1.69 [0.24, 11.90]	
Engoren M 2014	18 605	3	275	4.4%	2.73 [0.81, 9.18]	
Nicolini F 2018	16 1954	1	652	4.9%	5.34 [0.71, 40,18]	
Subtotal (95% CI)	15,644		9267	100.0%	0.79 [0.59, 1.05]	•
Total events	248	209				
Heterogeneity: Tau ² = 0.12; Chi ² = 2	8.99, df = 20 (P = .09); I ² = 31%				
Test for overall effect: $Z = 1.62$ ($P = 1.62$.10)					
1.1.5 HbA1c < 7.5% vs > 7.5%						
Tsuruta R 2011	0 211	0	191		Not estimable	
Surer S 2016	0 13	3	14	4.0%	0.15 [0.01, 2.71]	
Biskupski A 2014 Robich M 2019	2 195	3	67	9.1%	0.23 [0.04, 1.34]	
Kuhl J 2016	49 2771	41	1763	35.0%	0.76 [0.42, 1.21]	
Nicolini F 2018	16 1954	0	102	4.2%	1.74 [0.11, 28.78]	
Nystrom T 2015	4 67	8	507	16.2%	3.78 [1.17, 12.23]	
Subtotal (95% CI)	9429	70	3464	100.0%	0.84 [0.46, 1.54]	-
Hotorogonoity: Tev? 0.00: 01:12	133 0.40 df = 5 (D = 00)	/2				
Test for overall effect: $7 = 0.57$ (P -	0.49, ui = 5 (P = .06) .57)	i- = 52%				
116 HbA10 < 8.0%	/					
1.1.0 FIDA IC < 0.0% VS > 8.0%	0 50		14	2 20/	0.04 [0.00.0.07]	
Biskupski A 2014	4 283	. 3	67	2.2%	0.32 [0.07, 1.38]	·
Robich M 2019	89 5595	17	820	32.6%	0.77 [0.46, 1.28]	- - +
Kuhl J 2016	85 4550	41	1763	41.3%	0.80 [0.56, 1.16]	
Nystrom T 2015 Nicolini E 2018	6 257	8	507	13.7%	1.48 [0.52, 4.22]	
Subtotal (95% CI)	12,697	, ,	3273	100.0%	0.76 [0.49. 1.18]	•
Total events	200	72				
Heterogeneity: Tau ² = 0.09; Chi ² = 7	.49, df = 5 (P = .19);	² = 33%				
Test for overall effect: Z = 1.21 (P =	.23)					
					(0.002 0.1 1 10 500
Test for subgroup differences: Chi2 -	-355 df = 5 (P - 69	$I^2 = 0\%$			·	Favors lower HbA1c level Favors higher HbA1c level
reactor aubgroup unierences. CHF =	-0.00, ur = 0 (r = .02)	, i = 0 /o				ravors lower riberte level Favors nigher riberte level

FIGURE 1. Stratified meta-analysis of lower versus higher HbA1c levels for the analysis of primary end point: early mortality. RRs are reported for each study and pooled within the respective subgroup. *Size of a square* corresponds to statistical weight of a study; *red diamonds* are indicative of effect estimate. *HbA1c*, Glycosylated hemoglobin; *IV*, inverse variance; *CI*, confidence interval. *Study was included in the threshold following approximation of achieved HbA1c level: Kocogullari C 2017: HbA1c 5.6% instead of 5.5%; Robich M 2019: HbA1c 5.7% instead of 5.5%; Gumus F 2013: HbA1c 5.9% instead of 6.0%.

EARLY MORTALITY

FIGURE 2. Reduction of risk for early mortality in patients with preoperative optimal glycemic control. *HbA1c*, Glycosylated hemoglobin.

level comparator, with a risk reduction of -77% (P < .0001, < 8.0% vs > 8.0%), -78% (P < .001, < 7.5% vs > 7.5%), -63% (P < .0001, < 7.0% vs > 7.0%), -52%(P < .0001, < 6.5% vs > 6.5%), -53% (P = .02, 6.0% vs > 6.0%) (Figure 4).

Stroke/Transient Ischemic Attack

A total of 19 studies^{20-25,E1,E3,E5,E7-E15,E18} with 24,451 patients provided data for the stroke/TIA analysis. Two subgroups, less than 7.0% versus more than 7.0% (RR, 0.53, 95% CI, 0.39-0.70, P < .0001, heterogeneity P = .78, $I^2 = 0\%$) and less than 7.5% versus more than 7.5% (RR, 0.50, 95% CI, 0.32-0.80, P = .003, heterogeneity P = .67, $I^2 = 0\%$), yielded the highest stroke/TIA. The statistically significant stroke/TIA reduction in the lower HbA1c group was also present in all remaining comparisons: less than 6.5% versus more than 6.5% (RR, 0.72, 95% CI, 0.53-0.97, P = .03, heterogeneity P = .36, $I^2 = 9\%$) and less than 8.0% versus more than 8.0% (RR, 0.56, 95% CI, 0.36-0.87, P = .01, heterogeneity P = .84, $I^2 = 0\%$) (Figure 5).

Acute Kidney Injury

A total of 21 studies^{20-25,E1-E3,E5,E7-E15,E18,E20} with 24,869

patients provided data for the AKI analysis. The direction of the estimates in each glycemic level comparison subgroup favored lower HbA1c level, which reached a trend of reduction in the subgroup comparing less than 6.0% versus more than 6.0% (RR, 0.46, 95% CI, 0.18-1.15, P = .10, heterogeneity P = .005, $I^2 = 81\%$). The subgroup less than 7.0% versus more than 7.0% yielded the lower AKI rate (RR, 0.65, 95% CI, 0.54-0.79, P < .0001, heterogeneity P = .10, $I^2 = 35\%$). The statistically significant AKI reduction in the lower HbA1c group was also present in all remaining comparison thresholds: less than 6.5% versus more than 6.5% (RR, 0.77, 95% CI, 0.71-0.84, P < .0001, heterogeneity P = .58, $I^2 = 0\%$), less than 7.5% versus more than 7.5% (RR, 0.73, 95% CI, 0.65-0.82, P < .0001, heterogeneity P = .74, $I^2 = 0\%$), and less than 8.0% versus more than 8.0% (RR, 0.76, 95% CI, 0.68-0.85, P < .0001, heterogeneity P = .60, $I^2 = 0\%$) (Figure 6).

Myocardial Infarction

Thirteen studies^{19,20,22-25,E1-E3,E5,E7,E11,E18} with 9803 patients reported MI data. There were no statistically significant differences between lower and higher values of HbA1c in terms of MI (Figure E3), although there was a numeric reduction in the number of MIs in the subgroup comparison less than 7.0% versus more than 7.0%: 1.59% (64/4036) versus 2.21% (47/2122) (RR, 0.71, 95% CI, 0.44-1.15, P = .17, heterogeneity P = .30, $I^2 = 16\%$).

Hospital Length of Stay

Thirteen studies^{10-22,24,25,E8,E11,E14-E16,E21,E23} with 8092 patients contributed to the analysis of length of hospital stay, which was estimated at 9.5 ± 4.1 days in the entire cohort (Table E2). Lower levels of HbA1c were associated with a significantly reduced length of stay: MD -0.61 (95% CI, -1.23 to -0.00, P = .05, heterogeneity P = .45; $I^2 = 0\%$) in 6.0% versus more than 6.0%, MD -0.92 (95% CI, -1.69, -0.15, P = .02, heterogeneity P = .50; $I^2 = 0\%$) in less than 6.5% versus more than 6.5%, MD -0.81 (95% CI, -1.11, -0.51, P < .0001, heterogeneity P = .32; $I^2 = 14\%$) in less than 7.0% versus more than 7.0% (Figure E4).

DISCUSSION

The incidence of insulin resistance and DM continues to increase and remains a tremendous threat to public health.¹ However, increased random blood glucose levels are not specific to diabetic subjects. Hyperglycemia may be encountered in surgical and critically ill nondiabetic patients.^{E25} Multiple daily glucose measurements or continuous blood glucose monitoring can give more reliable information on the glycometabolic status but are not applicable to a general population.¹⁰ In addition to glucose measurements, a variety of different approaches have been proposed over time to evaluate and monitoring glycometabolic status.^{E26} HbA1c values reflect the 2- to 3-month average endogenous exposure to glucose, including postprandial spikes in the blood glucose, and have low intraindividual variability, particularly in persons without DM. E27 Therefore, HbA1c is currently thought to be a solid marker of the long-term glycometabolic status both in patients with and without DM.¹

Limited numbers of studies have investigated the relationship between preoperative glycemic control, assessed by glycated hemoglobin (HbA1c) levels, and surgical outcomes in patients undergoing cardiac operation. The current

ADULT

Study or Subgroup	log [Rate Ratio]	SE	Weight	Rate Ratio IV, Random, 95% CI	Rate IV, Rando	Ratio m, 95% Cl	
211 Hb A1 a < 5.5% yrs	5 5%						
Algoriug T 2008	_1 67257	0 35611	27.6%	0 10 [0 00 0 38]			
Engoren M 2013	0.07/30	0.00011	2/ 1%	1 08 [0 71 1 63]			
Poblob M 2010*	0.07439	0.21209	20 20/		_		
Subtotal (95% CI)	-0.30310	0.00149	100.0%	0.00 [0.00, 0.00]			
Hotorogonoity: $Tau^2 = 0.20$	· Chi ² - 17 74 df -	2(P - 00)	100.070	0.50 [0.20, 1.10]		1	
Test for overall effect: $Z = 1$	1.69 (P = .09)	2 (7 = .000	JT), T = 03	/0			
2.1.2 HbA1c < 6.0% vs >	6.0%						
Alserius T 2008	-1.51576	0.30574	28.9%	0.22 [0.12, 0.40]			
Engoren M 2013	-0.02128	0.22179	33.0%	0.98 [0.63, 1.51]			
Robich M 2019*	-0.38318	0.08149	38.1%	0.68 [0.58, 0.80]	-		
Subtotal (95% CI)			100.0%	0.55 [0.29, 1.04]		4	
Heterogeneity: $Tau^2 = 0.26$ Test for overall effect: Z = 1	; Chi ² = 16.26, df = .84 (<i>P</i> = .07)	2 (<i>P</i> = .000	03); l ² = 88	%	-		
2.1.3 HbA1c < 6.5% vs >	6.5%						
Alserius T 2008	-1.36267	0.37538	19.8%	0.26 [0.12, 0.53]	_		
Engoren M 2013	-0.26194	0.21014	33.5%	0.77 [0.51, 1.16]		+	
Robich M 2019*	-0.36891	0.06571	46.7%	0.69 [0.61, 0.79]	-		
Subtotal (95% CI)			100.0%	0.59 [0.38, 0.90]			
Heterogeneity: $Tau^2 = 0.10$: Chi ² = 7.19. df = 2	(P = .03):	l ² = 72%	. / .	-		
Test for overall effect: $Z = 2$	2.45 (<i>P</i> = .01)	(
2.1.4 HbA1c < 7.0% vs >	7.0%						
Alserius T 2008	-0.99865	0.34951	8.6%	0.37 [0.19, 0.73]			
Engoren M 2013	-0.24245	0.19414	17.1%	0.78 [0.54, 1.15]		+	
Kuhl J 2016	-0.13824	0.05104	29.2%	0.87 [0.79, 0.96]	-	r	
Nystrom T 2015	-0.00885	0.19432	17.1%	0.99 [0.68, 1.45]		∳ —	
Ramadan M 2018	-0.40547	0.91287	1.6%	0.67 [0.11, 3.99]		<u> </u>	
Robich M 2019*	-0.49559	0.08757	26.5%	0.61 [0.51, 0.72]	+		
Subtotal (95% CI)			100.0%	0.74 [0.58, 0.93]			
Heterogeneity: $Tau^2 = 0.05$ Test for overall effect: $Z = 2$; Chi ² = 18.60, df = 2.55 (<i>P</i> = .01)	5 (<i>P</i> = .002	2); I ² = 73%	6			
2.1.5 HbA1c < 7.5% vs >	7.5%						
Kuhl J 2016	-0.2337	0.0581	42.6%	0.79 [0.71, 0.89]	-		
Nystrom T 2015	-0.03161	0.1971	20.0%	0.97 [0.66, 1.43]	_		
Robich M 2019	-0.49559	0.08757	37.4%	0.61 [0.51, 0.72]	-		
Subtotal (95% CI)			100.0%	0.75 [0.60, 0.94]	•		
Heterogeneity: $Tau^2 = 0.03$ Test for overall effect: $Z = 2$; Chi ² = 8.14, df = 2 2.52 (<i>P</i> = .01)	(<i>P</i> = .02);	l ² = 75%				
2.1.6 HbA1c < 8.0% vs >	8.0%						
Kuhl J 2016	-0.22181	0.05198	41.5%	0.80 [0.72, 0.89]	-		
Nystrom T 2015	-0.07301	0.11786	25.3%	0.93 [0.74, 1.17]	-	+	
Robich M 2019	-0.41754	0.08431	33.2%	0.66 [0.56, 0.78]	-		
Subtotal (95% CI)			100.0%	0.78 [0.66, 0.92]	•		
Heterogeneity: $Tau^2 = 0.01$ Test for overall effect: $Z = 2$; Chi ² = 6.50, df = 2 2.93 (<i>P</i> = .003)	(<i>P</i> = .04);	l ² = 69%				
				. <u> </u>			
				0.01	0.1	1 10	100
Test for subgroup difference	es: Chi ² = 2.96, df =	= 5 (<i>P</i> = .71), l ² = 0%		Favours lower HbA1c level	Favours higher HbA1c le	vel

FIGURE 3. Stratified meta-analysis of lower versus higher HbA1c levels for the analysis of late mortality. RRs per person-years are reported for each study and pooled within the respective subgroup. Remaining information as in legend to Figure 1. SE, Standard error; IV, inverse variance; CI, confidence interval; HbA1c, glycosylated hemoglobin.

meta-analysis aimed to highlight the prognostic significance of preoperative glycometabolic status on long-term outcome in subjects undergoing a wide range of cardiac surgery procedures.

Our study provides a notable insight into the association between preoperative HbA1c level and morbidity, as well as mortality of patients undergoing cardiac surgeries. The degree of glycometabolic control affected the overall survival even in the early 30-day period. The highest benefit of the early mortality reduction was observed in the less than 5.0% versus more than 5.0% HbA1c level. Likewise, the late mortality had the lowest prevalence within the lowest HbA1c level comparison, which, driven by a higher number of events observed over longer period of time, reached statistical significance in every analyzed threshold, as resembled by the J-shaped mortality curve. To our knowledge, this is the first report to present results of even slightly elevated HbA1c levels, a nonprocedure-specific variable, that may affect a hard clinical outcome such as mortality at short-term follow-up.

Study or Subgroup	Lower H Events	lbA1c Total	Higher I Events	HbA1c Total	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% Cl
3.1.1 HbA1c < 5.5% ve >	5.5%						
Alserius T 2008	22	339	22	122	100.0%	0.36 [0.21, 0.63]	
Subtotal (95% CI)		339		122	100.0%	0.36 [0.21, 0.63]	
Total events	22		22				
Heterogeneity: Not applica Test for overall effect: $Z = 3$	ble 3.62 (<i>P</i> = .0	0003)					
3.1.2 HbA1c < 6.0% vs >	6.0%						
Engoren M 2014	0	300	4	580	4.9%	0.21 [0.01, 3.97]	
Alserius T 2008	35	483	22	122	80.0%	0.40 [0.24, 0.66]	
Subtotal (95% CI)	3	1000	3	293	15.2%	1.35 [0.28, 6.63] 0.47 [0.24, 0.90]	
Total events	38	1000	29	555	100.0 /6	0.47 [0.24, 0.90]	
Heterogeneity: $Tau^2 = 0.08$: Chi ² = 2.	27. df =	2 (P = .32): l ² = 12	2%		
Test for overall effect: $Z = 2$	$P_{2.27}(P = .0)$)2)	_ (0_	,,	.,.		
3.1.3 HbA1c < 6.5% vs >	6.5%						
Engoren M 2014	0	300	0	275		Not estimable	
Subramaniam B 2014	5	1003	10	458	11.4%	0.23 [0.08, 0.66]	
Tsuruta R 2011	0	115	2	191	1.4%	0.33 [0.02, 6.84]	
Narayan P 2017 Sata H 2010	24	2476	44	2202	53.2%	0.49 [0.30, 0.80]	
Sal0 Π 2010 Bardia Δ 2017	1	657	2	100	∠.3% 5.3%	0.57 [0.05, 6.08]	
Alserius T 2008	35	483	2	68	24.7%	0.62 [0.30, 1.27]	
Matsuura K 2009	1	47	1	54	1.7%	1.15 [0.07, 17,87]	
Subtotal (95% CI)		5139		3426	100.0%	0.48 [0.34, 0.69]	◆
Total events	73		69				
Heterogeneity: Tau ² = 0.00	; Chi² = 2.	84, df =	6 (<i>P</i> = .83); l ² = 0%	6		
Test for overall effect: $Z = 3$	8.96 (<i>P</i> < .0	0001)					
3.1.4 HbA1c < 7.0% vs >	7.0%						
Faritous Z 2014	4	165	8	51	7.0%	0.15 [0.05, 0.49]	
Halkos M 2008	4 10	474 2275	3 10	57 817	4.7%	0.16[0.04, 0.70]	
Ramadan M 2018	0	40	2	40	1.3%	0.19 [0.09, 0.40]	
Santos J 2015	0	38	3	58	1.3%	0.22 [0.01, 4.07]	
Knapik P 2011	2	453	4	282	3.7%	0.31 [0.06, 1.69]	
Nicolini F 2018	62	1954	66	652	24.2%	0.31 [0.22, 0.44]	-
Biskupski A 2014	3	195	7	155	5.6%	0.34 [0.09, 1.30]	
Kim J 2020	/	287	26	416	11.4%	0.39 [0.17, 0.89]	
Göksedef D 2010	1	93	9	195 57	0.9% 1.5%	0.59 [0.16, 2.14]	
Alserius T 2008	49	537	8	68	13.7%	0.78 [0.38, 1.57]	
Khan M 2019	9	818	3	315	5.8%	1.16 [0.31, 4.24]	
Engoren M 2014	4	605	0	275	1.4%	4.10 [0.22, 75.87]	
Subtotal (95% CI)		8044		3435	100.0%	0.37 [0.26, 0.52]	•
Total events	158		159	10) 12	000/		
Test for overall effect: $Z = 5$	$0; Cn^2 = 17$ 5.67 ($P < .0$.96, af = 00001)	= 13 (<i>P</i> = .	16); I [_] =	28%		
3.1.5 HbA1c < 7.5% vs >	7.5%						
Teuruta B 2011			0	95	2.6%	0 09 [0 00 1 87] -	
1301010112011	0	211	2	00		0.00 [0.00, 1.07]	
Nicolini F 2018	0 62	211 1954	15	102	86.3%	0.22 [0.13, 0.37]	
Nicolini F 2018 Biskupski A 2014	0 62 3	211 1954 195	2 15 4	102 67	86.3% 11.1%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12]	
Nicolini F 2018 Biskupski A 2014 Subtotal (95% CI)	0 62 3	211 1954 195 2360	2 15 4	102 67 264	86.3% 11.1% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35]	• •
Nicolini F 2018 Biskupski A 2014 Subtotal (95% CI) Total events	0 62 3 65	211 1954 195 2360	2 15 4 21	102 67 264	86.3% 11.1% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35]	•
Nicolini F 2018 Biskupski A 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: $Z = 6$	0 62 3 65 5. Chi ² = 0.	211 1954 195 2360 37, df =	2 15 4 21 2 (<i>P</i> = .83	102 67 264); l ² = 0%	86.3% 11.1% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35]	•
Nicolini F 2018 Biskupski A 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: $Z = 6$ 3.1.6 HbA1c < 8.0% vs >	0 62 3 65 5; Chi ² = 0. 5.14 (<i>P</i> < .0 8.0%	211 1954 195 2360 37, df = 00001)	2 15 4 21 2 (<i>P</i> = .83	102 67 264); l ² = 09	86.3% 11.1% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35]	•
Nicolini F 2018 Biskupski A 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: $Z = 6$ 3.1.6 HbA1c < 8.0% vs > Nicolini F 2018	0 62 3 65 1; Chi ² = 0. 5.14 ($P < .0$ 8.0% 62	211 1954 195 2360 37, df = 00001)	2 15 4 21 2 (<i>P</i> = .83	102 67 264); l ² = 09	86.3% 11.1% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35]	
Nicolini F 2018 Biskupski A 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 6 3.1.6 HbA1c < 8.0% vs > Nicolini F 2018 Biskupski A 2014	$0 \\ 62 \\ 3 \\ 65 \\ 0.14 (P < .0 \\ 8.0\% \\ 62 \\ 6$	211 1954 195 2360 37, df = 00001) 1954 283	2 15 4 21 2 (<i>P</i> = .83 15 4	102 67 264); l ² = 09 102 67	86.3% 11.1% 100.0% 84.6% 15.4%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35] 0.22 [0.13, 0.35]	* *
Nicolini F 2018 Biskupski A 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 6 3.1.6 HbA1c < 8.0% vs > Nicolini F 2018 Biskupski A 2014 Subtotal (95% CI)	$0 \\ 62 \\ 3 \\ 65 \\ 0.14 (P < .0 \\ 8.0\% \\ 62 \\ 6$	211 1954 195 2360 37, df = 00001) 1954 283 2237	2 15 4 21 2 (<i>P</i> = .83 15 4	102 67 264); l ² = 09 102 67 169	86.3% 11.1% 100.0% 84.6% 15.4% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35] 0.22 [0.13, 0.37] 0.36 [0.10, 1.22] 0.23 [0.14, 0.38]	
Nicolini F 2018 Biskupski A 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 6 3.1.6 HbA1c < 8.0% vs > Nicolini F 2018 Biskupski A 2014 Subtotal (95% Cl) Total events	$0 \\ 62 \\ 3 \\ 65 \\ ; Chi2 = 0. \\ 6.14 (P < .0 \\ 8.0\% \\ 62 \\ 6 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 $	211 1954 195 2360 37, df = 00001) 1954 283 2237	2 15 4 21 2 (<i>P</i> = .83 15 4 19	102 67 264); I ² = 0? 102 67 169	86.3% 11.1% 100.0% % 84.6% 15.4% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35] 0.22 [0.13, 0.35] 0.26 [0.10, 1.22] 0.23 [0.14, 0.38]	
Nicolini F 2018 Biskupski A 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 6 3.1.6 HbA1c < 8.0% vs > Nicolini F 2018 Biskupski A 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.00	0 62 3 65 5; Chi ² = 0 64 62 6 62 6 68 68 68 5; Chi ² = 0 62 62 68 68 68 68 68 68 68 69 68 69 68 69 62 65 65 65 65 65 65 65 65 65 65	211 1954 195 2360 37, df = 00001) 1954 283 2237 53, df =	2 15 4 21 2 (<i>P</i> = .83 15 4 19 1 (<i>P</i> = .47	102 67 264); l ² = 0? 102 67 169); l ² = 0?	86.3% 11.1% 100.0% % 84.6% 15.4% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35] 0.22 [0.13, 0.35] 0.22 [0.13, 0.37] 0.36 [0.10, 1.22] 0.23 [0.14, 0.38]	
Nicolini F 2018 Biskupski A 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 6 3.1.6 HbA1c < 8.0% vs > Nicolini F 2018 Biskupski A 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 5	0 62 3 (Chi ² = 0. 5.14 ($P < .0$ 8.0% 62 6 8.0% 62 6 8.0% 62 6 8.0% 62 6 8.0% 62 6 8.0% 62 6 8.0%	211 1954 195 2360 37, df = 00001) 1954 283 2237 53, df = 00001)	2 15 4 21 2 (P = .83 15 4 19 1 (P = .47	102 67 264); l ² = 0° 102 67 169); l ² = 0°	86.3% 11.1% 100.0% % 84.6% 15.4% 100.0%	0.22 [0.13, 0.37] 0.26 [0.06, 1.12] 0.22 [0.13, 0.35] 0.22 [0.13, 0.35] 0.23 [0.10, 1.22] 0.23 [0.14, 0.38]	

Favors lower HbA1c levels Favors higher HbA1c levels

FIGURE 4. Stratified meta-analysis of lower versus higher HbA1c levels for the analysis of sternal wound infection. RRs are reported for each study and pooled within the respective subgroup. Remaining information as in legend to Figure 1. *HbA1c*, Glycosylated hemoglobin; *IV*, inverse variance; *CI*, confidence interval.

Independently of diabetic status, perioperative elevated levels of blood glucose have been linked with increases in morbidity and mortality, and prolonged hospitalization after surgery.^{E28} Hyperglycemia-induced oxidative stress induces endothelial dysfunction that plays a central role in the pathogenesis of tissue and organ damage.^{E29} Trials

Study or Subgroup	Lower HbA ⁻ Events	1c levels Total	Higher Hl Events	oA1c lev Total	els Weight	Risk Ratio IV, Random, 95% Cl	Risk Ratio IV, Random, 95% Cl
4.1.1 HbA1c < 5.5% v Robich M 2019* Subtotal (95% Cl) Total events Heterogeneity: Not ap Test for overall effect:	/s > 5.5% 18 18 plicable Z = 1.15 (<i>P</i> =	1713 1713 :.25)	67 67	4702 4702	100.0% 100.0%	0.74 [0.44, 1.24] 0.74 [0.44, 1.24]	*
4.1.2 HbA1c < 6.0% v Robich M 2019* Gumus F 2013* Engoren M 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² =	vs > 6.0% 18 4 9 31 0.49; Chi ² =	1713 217 300 2230 6.42, df = 1	67 6 5 78 2 (<i>P</i> = .04); I [:]	4702 293 580 5575 ² = 69%	42.9% 26.8% 30.2% 100.0%	0.74 [0.44, 1.24] 0.90 [0.26, 3.15] 3.48 [1.18, 10.29] 1.24 [0.47, 3.26]	
4.1.3 HbA1c < 6.5% n Tsuruta R 2011 Matsuura K 2009 Narayan P 2017 Robich M 2019 Subramaniam B 2014 Bardia A 2017 Engoren M 2014 Sato H 2010 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect:	z = 0.44 (r = - rs > 6.5% 0 0 45 49 12 21 9 2 138 0.02; Chi ² = r = -2 18 (<i>P</i> =	115 47 2476 4218 1003 654 300 61 8874 7.73, df =	2 1 72 36 7 2 4 1 125 7 (<i>P</i> = .36); F	191 54 2202 2197 458 109 275 69 5555	1.0% 0.9% 42.4% 34.5% 9.5% 4.1% 6.1% 1.5% 100.0%	0.33 [0.02, 6.84] 0.38 [0.02, 9.16] 0.56 [0.38, 0.80] 0.71 [0.46, 1.09] 0.78 [0.31, 1.98] 1.75 [0.42, 7.36] 2.06 [0.64, 6.62] 2.26 [0.21, 24.34] 0.72 [0.53, 0.97]	
4.1.4 HbA1c < 7.0% N Santos J 2015 Ramadan M 2018 Almogati JG 2019 Knapik P 2011 Nicolini F 2018 Halkos M 2008 Kim J 2020 Biskupski A 2014 Robich M 2019 Finger B 2017 Strahan S 2012 Engoren M 2014 Subtotal (95% CI) Total events	Z = 2.18 (P = 100) S = 7.0% 0 0 0 0 1 6 14 30 2 7 49 6 3 4 122 0.000 (Chi ²	38 40 110 453 1954 2275 287 195 4218 474 265 605 10,914	0 1 5 9 11 23 6 10 17 0 2 0 84	58 40 195 2852 814 416 155 820 57 447 275 4211	0.8% 1.9% 8.1% 13.8% 29.4% 3.3% 9.6% 28.4% 1.0% 2.7% 1.0% 100.0%	Not estimable 0.33 [0.01, 7.95] 0.35 [0.04, 3.00] 0.42 [0.15, 1.15] 0.42 [0.19, 0.93] 0.47 [0.27, 0.80] 0.48 [0.10, 2.38] 0.56 [0.22, 1.43] 0.56 [0.32, 0.97] 1.59 [0.09, 27.81] 2.53 [0.43, 15.04] 4.10 [0.22, 75.87] 0.53 [0.39, 0.70]	
Heterogeneity: Iau ² = Test for overall effect: 4.1.5 HbA1c < 7.5% n Tsuruta R 2011 Nicolini F 2018 Biskupski A 2014 Robich M 2019 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	$0.00; Chi^{2} = 1$ Z = 4.33 (P < 0) is > 7.5% 0 14 7 49 70 $0.00; Chi^{2} = 0$ 7 = 2.94 (P = 0)	6.42, df = 211 1954 195 4218 6578 1.57, df = =	2 2 5 17 26 3 (P = .67); F	$1^{2} = 0\%$ 95 102 67 820 1084 $2^{2} = 0\%$	2.3% 9.8% 17.1% 70.8% 100.0%	0.09 [0.00, 1.87] 0.37 [0.08, 1.59] 0.48 [0.16, 1.46] 0.56 [0.32, 0.97] 0.50 [0.32, 0.80]	
4.1.6 HbA1c < 8.0% Nicolini F 2018 Biskupski A 2014 Robich M 2019 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	s > 8.0% 14 12 68 94 0.00; Chi ² = 1 Z = 2.57 (P = 1)	1954 283 5595 7832 0.35, df = 1	2 5 17 24 2 (<i>P</i> = .84); F	$102 \\ 67 \\ 820 \\ 989 \\ ^{2} = 0\%$	9.2% 19.4% 71.4% 100.0%	0.37 [0.08, 1.59] 0.57 [0.21, 1.56] 0.59 [0.35, 0.99] 0.56 [0.36, 0.87]	
						0.001	0.1 1 10 1000

Favors lower HbA1c levels Favors higher HbA1c levels

FIGURE 5. Stratified meta-analysis of lower versus higher HbA1c levels for the analysis of stroke or TIA. RRs are reported for each study and pooled within the respective subgroup. Remaining information as in legend to Figure 1. *HbA1c*, Glycosylated hemoglobin; *IV*, inverse variance; *CI*, confidence interval.

have clearly demonstrated that the risk of cardiovascular events and deaths can be reduced by intensive glucose control.^{11,E30} Our findings suggest that altered relatively long-term glycometabolic status, regardless of a preexisting

diagnosis of DM, is associated with an increased risk of postoperative mortality, AKI, neurologic complications, wound infection, and prolonged hospital length of stay in patients undergoing cardiac surgery.

Study or Subgroup	Lower HbA Events	1c levels Total	Higher Hi Events	DA1c lev Total	els Weight	Risk Ratio IV, Random, 95% CI	Risk Rat IV, Random, s	io 95% Cl
5.1.1 HbA1c < 5.5%	vs > 5.5%							
Kocogullari C 2017* Robich M 2019* Subtotal (95% CI)	4 344	112 1713 1825	15 1166	90 4702 4792	41.7% 58.3% 100.0%	0.21 [0.07, 0.62] 0.81 [0.73, 0.90] 0.47 [0.13, 1.68]		
Total events Heterogeneity: Tau ² = Test for overall effect:	348 = 0.73; Chi ² = Z = 1.17 (<i>P</i> =	5.90, df = .24)	1181 1 (<i>P</i> = .02); l ²	2 = 83%				
5.1.2 HbA1c < 6.0%	vs > 6.0%							
Gumus F 2013* Engoren M 2014 Robich M 2019* Subtotal (95% CI)	4 6 344	217 300 1713 2230	35 20 1166	293 580 4702 5575	27.8% 30.0% 42.2% 100.0%	0.15 [0.06, 0.43] 0.58 [0.24, 1.43] 0.81 [0.73, 0.90] 0.46 [0.18, 1.15]		-
Total events	354		1221					
Heterogeneity: Tau ² = Test for overall effect:	= 0.51; Chi ² = Z = 1.65 (<i>P</i> =	10.51, df = 10)	= 2 (<i>P</i> = .005)	; l ² = 81°	%			
5.1.3 HbA1c < 6.5%	vs > 6.5%							
Sato H 2010 Engoren M 2014 Narayan P 2017 Subramaniam B 2017 Robich M 2019 Tsuruta R 2011 Bardia A 2017 Matsuura K 2009 Subtotal (95% CI)	1 6 73 4 27 908 2 22 3	61 300 2476 1003 4218 115 654 47 8874	3 12 96 17 602 3 3 0	69 275 2202 458 2197 191 109 54 5555	0.1% 0.8% 7.9% 2.0% 88.5% 0.2% 0.5% 0.1% 100.0%	0.38 [0.04, 3.53] 0.46 [0.17, 1.20] 0.68 [0.50, 0.91] 0.73 [0.40, 1.32] 0.79 [0.72, 0.86] 1.11 [0.19, 6.53] 1.22 [0.37, 4.01] 8.02 [0.42, 151.39] 0.77 [0.71, 0.84]		_
Total events	1042		736					
Heterogeneity: Tau ² = Test for overall effect:	= 0.00; Chi ² = Z = 5.96 (<i>P</i> <	5.62, df = .00001)	7 (<i>P</i> = .58); l ²	² = 0%				
5.1.4 HbA1c < 7.0%	vs > 7.0%							
Santos J 2015 Ramadan M 2018 Halkos M 2008 Biskupski A 2014	0 1 40 4	38 40 2275 195	6 3 40 7	58 40 814 155	0.4% 0.7% 12.5% 2.2%	0.12 [0.01, 2.01] 0.33 [0.04, 3.07] 0.36 [0.23, 0.55] 0.45 [0.14, 1.52]		_
Kim J 2020 Knapik P 2011 Engoren M 2014	7 3 14	287 453 605	22 4 12	416 282 275	4.4% 1.5% 5.2%	0.46 [0.20, 1.07] 0.47 [0.11, 2.07] 0.53 [0.25, 1.13]		
Faritous Z 2014 Robich M 2019 Almogati JG 2019	6 908 5	165 4218 110	3 242 12	51 820 195	1.8% 32.4% 3.1%	0.62 [0.16, 2.38] 0.73 [0.65, 0.82] 0.74 [0.27, 2.04]		-
Nicolini F 2018	381	1954	168	652	29.5%	0.76 [0.65, 0.89]	=	
Finger B 2017 Subtotal (95% CI)	4 67	474 11,079	5	57 4262	4.1% 100.0%	1.61 [0.68, 3.83] 0.65 [0.54, 0.79]	•	
Total events Heterogeneity: Tau ² =	1440 = 0.02; Chi ² = 7 = 4 49 (P =	18.51, df =	532 12 (<i>P</i> = .10) =	; l ² = 35°	%			
5 1 5 HbA1a - 7 E%	$L = -7.40 (1^{\circ} < 0.00)$							
Biskupski A 2014 Tsuruta R 2011	4 3	195 211	4	67 95	0.7% 0.4%	0.34 [0.09, 1.34] 0.68 [0.11, 3.98]		_
Robich M 2019 Nicolini F 2018	908 381	4218 1954 6578	242 26	820 102 1084	88.1% 10.8%	0.73 [0.65, 0.82] 0.76 [0.54, 1.08] 0.73 [0.65, 0.82]		
Total events Heterogeneity: $Tau^2 =$ Test for overall effect:	1296 = 0.00; Chi ² = Z = 5.48 (<i>P</i> <	1.26, df =	274 3 (<i>P</i> = .74); l ²	² = 0%	100.078	0.75 [0.03, 0.02]	•	
5.1.6 HbA1c < 8.0%	vs > 8.0%	- /						
Biskupski A 2014 Nicolini F 2018 Robich M 2019 Subtotal (95% CI)	7 381 1268	283 1954 5595 7832	4 26 242	67 102 820 989	0.8% 10.2% 89.0% 100.0%	0.41 [0.12, 1.37] 0.76 [0.54, 1.08] 0.77 [0.68, 0.86] 0.76 [0.68, 0.85]		
Total events	1656		272					
Heterogeneity: Tau ² = Test for overall effect:	= 0.00; Chi ² = Z = 4.82 (<i>P</i> <	1.01, df = (.00001)	2 (<i>P</i> = .60); l ²	² = 0%				
						0.001	0.1 1	10 1000

Favors lower HbA1c levels Favors higher HbA1c levels

FIGURE 6. Stratified meta-analysis of lower versus higher HbA1c levels for the analysis of AKI. RRs are reported for each study and pooled within the respective subgroup. Remaining information as in legend to Figure 1. *HbA1c*, Glycosylated hemoglobin; *IV*, inverse variance; *CI*, confidence interval.

The highest rate of stroke/TIA and AKI was found in the threshold comparing 7.0% versus more than 7.0% of HbA1c, with 35% and circa 50% rate reduction in patients with lower glycemic level. Those results are in line with the

recommendations of the American Diabetes Association emphasizing the need of achieving HbA1c levels less than 7%, for the reduction of diabetic-specific outcomes. Although the general association between wound infection and diabetes is well established, and confirmed by our report, cerebrovascular outcomes are not specific for diabetic patients in cardiac surgery. Those findings emphasize the need to optimize hypoglycemic treatment for a long period of time before elective cardiac surgery to lower the risk of clinical end points, as well as the hospitalization length, which ultimately would translate to a total reduction in the treatment costs.

Although the association between HbA1c levels and perioperative MI was not statistically significant, a trend toward a higher risk of MI with higher HbA1c levels was observed, which is in accordance with a previous report.^{E2} The results of the current study were consistent with those of current systematic reviews, namely, the preoperative HbA1c level had a statistically significant effect on the incidence of mortality in diabetic patients after cardiac surgery.^{E31} However, a recent meta-analysis showed contrasting results,^{E32} mainly because the authors included the percutaneous coronary intervention studies and the follow-up time for postoperative mortality varied greatly (ranging from before discharge to 7 years after surgery). Moreover, Wang and colleagues^{E32} focused only on elective CABG surgery, ignoring the other cardiac surgical procedures.

The exact mechanisms underlying the correlation between higher HbA1c concentrations and worse clinical outcomes have not been adequately elucidated. Our results can be explained in several ways. First, higher HbA1c levels are commonly associated with metabolic syndrome whose components (obesity, dyslipidemias, hypertension, insulin resistance) increase the risk of worse surgical outcome.^{E31,E33} Second, chronic hyperglycemia contributes to oxidative stress and endothelial damage, which can ultimately lead to organ dysfunction.^{E29}

An increasing number of patients with a history of DM are presenting for valve surgery; thus, the effect of this disease on outcomes becomes important when discussing surgical options. Previous studies have indicated that DM had a negative impact on survival in patients undergoing valve replacement, particularly with regard to bioprosthesis.^{E34,E35} On this basis, stricter glycemic control might be advisable in adults undergoing tissue valve implantation who have an exceedingly high risk of structural valve degeneration, such as diabetic and dialyzed subjects. However, because most reports included in the current review analyzed patients referred to CABG, a general conclusion cannot be drawn from this study. Therefore, whether adequate glucose control improved surgical outcomes in diabetic and nondiabetic adults undergoing valve operation must be demonstrated in dedicated prospective trials.

DM represents a significant toll on health budgets around the world, accounting for 5% to 20% of total healthcare expenditure in many countries.^{E36} Both absolute costs and proportion of overall health budget for DM are set to increase in the future decades as prevalence increases;

therefore, cost-effective treatment and prevention strategies will become increasingly important as resources become stretched.^{E37} Preoperatively identifying an abnormally high HbA1c in patients with DM or prediabetes or not yet diagnosed diabetes helps direct attention to optimize glycemic control in patients with elevated HbA1c levels to minimizing the subsequent incidence of postoperative complications and reducing the costs of health care.^{E38}

In contrast to preoperative impaired glycometabolic status, the impact of postoperative abnormal or appropriate glycemic control is unknown. Few studies have addressed such issues, although persistent hyperglycemic metabolic syndrome is expected to exert substantial influence on several aspects of postoperative surgical results, ranging from revascularization recurrence or tissue valve degeneration, endocarditis, or other adverse events. It is uncertain how a well-compensated or not well-compensated metabolic syndrome may affect patient well-being, implanted device or prosthetic function/integrity, or progression of the underlying disease. These aspects should represent a critical target for future investigation to assess the association between enhanced and optimal DM control versus long-term adverse event rates.

Study Limitations

Although the results from this meta-analysis raise the possibility that preoperative optimal glycometabolic status may confer some benefit to subjects undergoing cardiac surgery, there are a number of limitations that should be considered in the interpretation of our results. First, most of the included studies have a retrospective nature. Retrospective studies are subject to confounders and bias, possibly affecting the conclusive power of this metaanalysis. Second, critical information, such as type of DM, ejection fraction, coronary artery disease, timing of surgery, and comorbidities, which are potential confounders, was not reported in several studies, and this may limit the effect size of our findings. Third, we acknowledge the important methodological differences between studies: The varying proportion of diabetic and nondiabetic subjects may add to heterogeneity observed within single studies, in particular between less than 6.5% versus more than 6.5% and less than 7.0% versus more than 7.0% of HbA1c levels because these were cutoff values for DM diagnosis in some studies. On the other hand, inclusion by design both diabetic and nondiabetic populations confers the benefit of including patients with newly diagnosed DM in whom the effect of HbA1c lowering may be less pronounced. Last, we lacked information regarding the specific cause of death; therefore, only all-cause mortality was considered and investigated in the present meta-analysis.

CONCLUSIONS

The results of this study indicate that preoperative HbA1c levels may play an important role in the prognosis of

diabetic and nondiabetic patients undergoing cardiac surgery. Our meta-analysis, despite expected diversity for different outcomes likely due to its all-inclusive nature, suggests that HbA1c levels represent a continuous risk, ranging between 5.5% and 7.0%, with some variation in risk profiles at different levels of HbA1c. In particular, lower levels of preoperative HbA1c were associated with a lower risk of early and late mortality, as well as in the incidence of postoperative AKI, neurologic complications, and wound infection, compared with higher levels. Because preoperative HbA1c levels may universally predict possible high glucose-related complications of cardiac surgery, with lower values related to the better outcomes, it seems justified to recommend that all patients should undergo before the operation an HbA1c assay and a periodical control of metabolic compensation after surgery. Specifically, those patients with known diabetes should undergo cardiac surgery only after obtaining normalization or near normalization of HbA1c levels through optimization of their management. Moreover, the finding of not normal (>5.5.%) HbA1c levels in patients without a previous diagnosis of diabetes should prompt a presurgical metabolic workup to put in place adequate measures to obtain its normalization before the operation and during the follow-up.

Conflict of Interest Statement

The authors reported no conflicts of interest.

The *Journal* policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

The authors thank Maria Velasco and Eugenio Massa for their valuable contribution.

References

- World Health Organization. Global report on diabetes. Geneva, Switzerland: WHO; 2016. Working Papers ID 10553.
- American Diabetes Association. Diabetes statistics. Available at: http://www. Diabetes.Org/diabetes-basics/diabetes-statistics/. Accessed April 1, 2020.
- Flaherty JD, Davidson CJ. Diabetes and coronary revascularization. JAMA. 2005; 293:1501-8.
- 4. Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. *Circulation*. 2011;124:e652-735.
- Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. *Eur Heart J*. 2020;41:255-323.
- Lorusso R, Pentiricci S, Raddino R, Scarabelli TM, Zambelli C, Villanacci V, et al. Influence of type 2 diabetes on functional and structural properties of coronary artery bypass conduits. *Diabetes*. 2003;52:2814-20.

- Lorusso R, De Cicco G, Beghi C, Gherli T, Poli E, Corradi D, et al. Functional effects of nitric oxide-releasing aspirin on vein conduits of diabetic patients undergoing CABG. *Int J Cardiol.* 2007;118:164-9.
- Lazar HL, Chipkin SR, Fitzgerald CA, Bao Y, Cabral H, Apstein CS. Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. *Circulation*. 2004; 109:1497-502.
- Ouattara A, Lecomte P, Le Manach Y, Landi M, Jacqueminet S, Platonov I, et al. Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. *Anesthesiology*. 2005;103: 687-94.
- Misra A, Bloomgarden ZT. Discordance between HbA1c and glycemia. J Diabetes. 2018;10:908-10.
- Ascione R, Rogers CA, Rajakaruna C, Angelini GD. Inadequate blood glucose control is associated with in-hospital mortality and morbidity in diabetic and nondiabetic patients undergoing cardiac surgery. *Circulation*. 2008;118:113-23.
- Meijnikman AS, De Block CE, Verrijken A, Mertens I, Corthouts B, Van Gaal LF. Screening for type 2 diabetes mellitus in overweight and obese subjects made easy by the FINDRISC score. J Diabetes Complications. 2016;30:1043-9.
- American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes-2019. *Diabetes Care*. 2019;42(Suppl 1):S61-70.
- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006-12.
- Riley RD, Moons KGM, Snell KIE, Ensor J, Hooft L, Altman DG, et al. A guide to systematic review and meta-analysis of prognostic factor studies. *BMJ*. 2019; 364:k4597.
- Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280-6.
- Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol*. 2014;14:135.
- Sterne JAC, Egger M, Moher D. Addressing reporting biases. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. Chichester, UK: John Wiley & Sons; 2017.
- 19. Alserius T, Anderson RE, Hammar N, Nordqvist T, Ivert T. Elevated glycosylated haemoglobin (HbA1c) is a risk marker in coronary artery bypass surgery. *Scand Cardiovasc J*. 2008;42:392-8.
- 20. Halkos ME, Puskas JD, Lattouf OM, Kilgo P, Kerendi F, Song HK, et al. Elevated preoperative hemoglobin A1c level is predictive of adverse events after coronary artery bypass surgery. *J Thorac Cardiovasc Surg.* 2008;136: 631-40.
- 21. Sato H, Carvalho G, Sato T, Lattermann R, Matsukawa T, Schricker T. The association of preoperative glycemic control, intraoperative insulin sensitivity, and outcomes after cardiac surgery. *J Clin Endocrinol Metab.* 2010;95: 4338-44.
- Knapik P, Cieśla D, Filipiak K, Knapik M, Zembala M. Prevalence and clinical significance of elevated preoperative glycosylated hemoglobin in diabetic patients scheduled for coronary artery surgery. *Eur J Cardiothorac Surg.* 2011; 39:484-9.
- 23. Tsuruta R, Miyauchi K, Yamamoto T, Dohi S, Tambara K, Dohi T, et al. Effect of preoperative hemoglobin A1c levels on long-term outcomes for diabetic patients after off-pump coronary artery bypass grafting. *J Cardiol.* 2011;57: 181-6.
- 24. Engoren M, Schwann TA, Habib RH. Elevated hemoglobin A1c is associated with readmission but not complications. *Asian Cardiovasc Thorac Ann.* 2014; 22:800-6.
- 25. Gumus F, Polat A, Sinikoglu SN, Yektas A, Erkalp K, Alagol A. Use of a lower cut-off value for HbA1c to predict postoperative renal complication risk in patients undergoing coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2013;27:1167-73.

Key Words: cardiac surgery, coronary artery bypass grafting, diabetes mellitus, glycosylated hemoglobin

E-References

- E1. Biskupski A, Waligórski S, Kowalik B, Żych A, Sielicki P, Mirecki O, et al. Glycated hemoglobin HbA1c–a new risk marker for the outcome of cardiac surgery? *Kardiochir Torakochirurgia Pol.* 2014;11:7-11.
- E2. Faritous Z, Ardeshiri M, Yazdanian F, Jalali A, Totonchi Z, Azarfarin R. Hyperglycemia or high hemoglobin A1C: which one is more associated with morbidity and mortality after coronary artery bypass graft surgery? *Ann Thorac Cardiovasc Surg.* 2014;20:223-8.
- E3. Subramaniam B, Lerner A, Novack V, Khabbaz K, Paryente-Wiesmann M, Hess P, Talmor D. Increased glycemic variability in patients with elevated preoperative HbA1C predicts adverse outcomes following coronary artery bypass grafting surgery. *Anesth Analg.* 2014;118:277-87.
- E4. Nyström T, Holzmann MJ, Eliasson B, Kuhl J, Sartipy U. Glycemic control in type 1 diabetes and long-term risk of cardiovascular events or death after coronary artery bypass grafting. J Am Coll Cardiol. 2015;66:535-43.
- E5. Santos JM, Favaloro RR, Lowenstein D, Sanabria H, Raffaelli H, Hershson A. Medium-term glycemic control in diabetics before coronary bypass surgery. *Medicina (B Aires)*. 2015;75:277-81.
- E6. Kuhl J, Sartipy U, Eliasson B, Nyström T, Holzmann MJ. Relationship between preoperative hemoglobin A1c levels and long-term mortality after coronary artery bypass grafting in patients with type 2 diabetes mellitus. *Int J Cardiol.* 2016;202:291-6.
- E7. Bardia A, Khabbaz K, Mueller A, Mathur P, Novack V, Talmor D, Subramaniam B. The association between preoperative hemoglobin A1C and postoperative glycemic variability on 30-day major adverse outcomes following isolated cardiac valvular surgery. *Anesth Analg.* 2017;124:16-22.
- E8. Finger B, Brase J, He J, Gibson WJ, Wirtz K, Flynn BC. Elevated hemoglobin A1c is associated with lower socioeconomic position and increased postoperative infections and longer hospital stay after cardiac surgical procedures. *Ann Thorac Surg.* 2017;103:145-51.
- **E9.** Narayan P, Kshirsagar SN, Mandal CK, Ghorai PA, Rao YM, Das D, et al. Preoperative glycosylated hemoglobin: a risk factor for patients undergoing coronary artery bypass. *Ann Thorac Surg.* 2017;104:606-12.
- E10. Nicolini F, Santarpino G, Gatti G, Reichart D, Onorati F, Faggian G, et al. Utility of glycated hemoglobin screening in patients undergoing elective coronary artery surgery: prospective, cohort study from the E-CABG registry. *Int J Surg.* 2018;53:354-9.
- E11. Ramadan M, Abdelgawad A, Elshemy A, Sarawy E, Emad A, Mazen M, Abdel Aziz A. Impact of elevated glycosylated hemoglobin on hospital outcome and 1 year survival of primary isolated coronary artery bypass grafting patients. *Egypt Heart J.* 2018;70:113-8.
- E12. Almogati JG, Ahmed EO. Glycated hemoglobin as a predictor of the length of hospital stay in patients following coronary bypass graft surgery in the Saudi population. *Braz J Cardiovasc Surg.* 2019;34:28-32.
- E13. Robich MP, Iribarne A, Leavitt BJ, Malenka DJ, Quinn RD, Olmstead EM, et al. Northern New England Cardiovascular Disease Study Group. Intensity of glycemic control affects long-term survival after coronary artery bypass graft surgery. Ann Thorac Surg. 2019;107:477-84.
- E14. Kim HJ, Shim JK, Youn YN, Song JW, Lee H, Kwak YL. Influence of preoperative hemoglobin A1c on early outcomes in patients with diabetes mellitus undergoing off-pump coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2020;159:568-76.
- E15. Matsuura K, Imamaki M, Ishida A, Shimura H, Niitsuma Y, Miyazaki M. Offpump coronary artery bypass grafting for poorly controlled diabetic patients. *Ann Thorac Cardiovasc Surg.* 2009;15:18-22.
- E16. Göksedef D, Ömeroğlu SN, Yalvaç ESD, Macit Bitargil M, İpek G. Is elevated HbA1c a risk factor for infection after coronary artery bypass grafting surgery? *Turk Gogus Kalp Dama*. 2010;18:252-8.
- E17. Tekumit H, Cenal AR, Polat A, Uzun K, Tataroglu C, Akinci E. Diagnostic value of hemoglobin A1c and fasting plasma glucose levels in coronary artery bypass grafting patients with undiagnosed diabetes mellitus. *Ann Thorac Surg.* 2010;89:1482-7.
- E18. Strahan S, Harvey RM, Campbell-Lloyd A, Beller E, Mundy J, Shah P. Diabetic control and coronary artery bypass: effect on short-term outcomes. *Asian Cardiovasc Thorac Ann.* 2013;21:281-7.

- E19. Surer S, Seren M, Saydam O, Bulut A, Kiziltepe U. The relationship between HbA1c & atrial fibrillation after off-pump coronary artery bypass surgery in diabetic patients. *Pak J Med Sci.* 2016;32:59-64.
- E20. Kocogulları CU, Kunt AT, Aksoy R, Duzyol C, Parlar H, Saskın H, et al. Hemoglobin A1c levels predicts acute kidney injury after coronary artery bypass surgery in non-diabetic patients. *Braz J Cardiovasc Surg.* 2017;32:83-9.
- E21. Aydınlı B, Demir A, Özmen H, Vezir Ö, Ünal U, Özdemir M. Can pre-operative HbA1c values in coronary surgery be a predictor of mortality? *Turk J Anaesthesiol Reanim.* 2018;46:184-90.
- E22. Khan MR, Khan H, Wahab A, Chaudhary S, Munir A, Youssef J, et al. Effect of glycemic control on mortality and infections in patients undergoing coronary artery bypass grafting: a Genesee County experience. *J Community Hosp Intern Med Perspect*. 2019;9:74-9.
- E23. Shoghli M, Jain R, Boroumand M, Ziaee S, Rafiee A, Pourgholi L, et al. Association of preoperative hemoglobin A1c with In-hospital mortality following valvular heart surgery. *Braz J Cardiovasc Surg.* 2020;35:654-9.
- E24. Engoren M, Schwann TA, Arslanian-Engoren C, Maile M, Habib RH. U-shape association between hemoglobin A1c and late mortality in patients with heart failure after cardiac surgery. *Am J Cardiol.* 2013;111:1209-13.
- E25. Nomikos I, Kyriazi M, Vamvakopoulou D, Sidiropoulos A, Apostolou A, Kyritsaka A, et al. On the management of hyperglycaemia in critically ill patients undergoing surgery. J Clin Med Res. 2012;4:237-41.
- E26. Kohnert KD, Heinke P, Vogt L, Salzsieder E. Utility of different glycemic control metrics for optimizing management of diabetes. *World J Diabetes*. 2015;6: 17-29.
- E27. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:800-11.
- E28. Kotagal M, Symons RG, Hirsch IB, Umpierrez GE, Dellinger EP, Farrokhi ET, et al; SCOAP-CERTAIN Collaborative. Perioperative hyperglycemia and risk of adverse events among patients with and without diabetes. *Ann Surg.* 2015; 261:97-103.
- E29. Giacco F, Brownlee M. Oxidative stress and diabetic complications. *Circ Res.* 2010;107:1058-70.
- E30. Reichard P, Nilsson BY, Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993;329:304-9.
- **E31.** Zheng J, Cheng J, Wang T, Zhang Q, Xiao X. Does HbA1c level have clinical implications in diabetic patients undergoing coronary artery bypass grafting? A systematic review and meta-analysis. *Int J Endocrinol.* 2017;2017: 1537213.
- E32. Wang J, Luo X, Jin X, Lv M, Li X, Dou J, et al. Effects of preoperative HbA1c levels on the postoperative outcomes of coronary artery disease surgical treatment in patients with diabetes mellitus and nondiabetic patients: a systematic review and meta-analysis. J Diabetes Res. 2020;2020:3547491.
- E33. Gazzaruso C, Solerte SB, De Amici E, Mancini M, Pujia A, Fratino P, et al. Association of the metabolic syndrome and insulin resistance with silent myocardial ischemia in patients with type 2 diabetes mellitus. *Am J Cardiol.* 2006;97: 236-9.
- E34. Lorusso R, Gelsomino S, Lucà F, De Cicco G, Billè G, Carella R, et al. Type 2 diabetes mellitus is associated with faster degeneration of bioprosthetic valve: results from a propensity score-matched Italian multicenter study. *Circulation*. 2012;125:604-14.
- E35. Halkos ME, Kilgo P, Lattouf OM, Puskas JD, Cooper WA, Guyton RA, et al. The effect of diabetes mellitus on in-hospital and long-term outcomes after heart valve operations. *Ann Thorac Surg.* 2010;90:124-30.
- **E36.** International Diabetes Federation. *International Diabetes Federation Diabetes Atlas.* 7th ed. Brussels, Belgium: International Diabetes Federation; 2015.
- E37. Roberts S, Barry E, Craig D, Airoldi M, Bevan G, Greenhalgh T. Preventing type 2 diabetes: systematic review of studies of cost-effectiveness of lifestyle programmes and metformin, with and without screening, for pre-diabetes. *BMJ Open.* 2017;7:e017184.
- **E38.** Gazzaruso C, Coppola A, Luppi C, Giustina A, Solerte SB. Effect of different diabetes mellitus treatments on functional decline and death in elderly adults with diabetes mellitus. *J Am Geriatr Soc.* 2013;61:666-7.

FIGURE E1. Preferred Reporting Items for Systematic Review and Meta-Analysis flow chart describing study selection process along with reasons for study exclusion. *HbA1c*, Glycosylated hemoglobin.

FIGURE E2. Publication bias analysis. Funnel plot. SE, Standard error; RR, risk ratio; HbA1c, glycosylated hemoglobin.

ADULT

Study or Subgroup	Lower HbA Events	1c levels Total	Higher Hi Events	A1c lev Total	els Weight	Risk Ratio IV, Random, 95% CI	Risk IV, Rando	Ratio n, 95% Cl	
6.1.2 HbA1c < 6.0% v	s > 6.0%								
Engoren M 2014 Gumus F 2013* Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: $\overline{2}$	17 11 28 0.47; Chi ² = 3 2 = 0.48 (<i>P</i> =	300 217 517 3.88, df = 1 .63)	41 6 47 (<i>P</i> = .05); I	580 293 873 ² = 74%	56.7% 43.3% 100.0%	0.80 [0.46, 1.39] 2.48 [0.93, 6.59] 1.31 [0.44, 3.90]	-		
6.1.3 HbA1c < 6.5% v	s > 6.5%								
Tsuruta R 2011 Bardia A 2017 Engoren M 2014 Subtanaiam B 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0 Test for overall effect: 2	0 1 17 5 23 0.00; Chi ² = $-$ 2 = 0.44 (<i>P</i> =	115 654 300 1003 2072 1.56, df = 2 .66)	0 19 0 2 (<i>P</i> = .46); I	$191 \\ 109 \\ 275 \\ 458 \\ 1033$ $^{2} = 0\%$	3.6% 92.0% 4.4% 100.0%	Not estimable 0.50 [0.02, 12.29] 0.82 [0.44, 1.55] 5.03 [0.28, 90.75] 0.87 [0.48, 1.60]		-	_
6.1.4 HbA1c < 7.0% v	s > 7.0%								
Knapik P 2011 Santos J 2015 Biskupski A 2014 Halkos M 2008 Ramadan M 2018 Faritous Z 2014 Engoren M 2014 Strahan S 2012 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z	6 1 2 7 2 3 3 9 4 64 0.08; Chi ² = 8 2 = 1.38 (<i>P</i> =	453 38 195 2275 40 165 605 265 4036 3.36, df = 7 .17)	12 4 3 4 1 19 1 47 7 (P = .30); I	282 58 155 814 40 51 275 447 2122 ² = 16%	19.0% 4.8% 6.8% 13.1% 4.4% 40.0% 4.7% 100.0%	0.31 [0.12, 0.82] 0.38 [0.04, 3.28] 0.53 [0.09, 3.13] 0.63 [0.18, 2.13] 0.67 [0.12, 3.78] 0.93 [0.10, 8.72] 0.93 [0.55, 1.58] 6.75 [0.76, 60.05] 0.71 [0.44, 1.15]	+ • •	 	-
6.1.5 HbA1c < 7.5% v	s > 7.5%		_						
Biskupski A 2011 Biskupski A 2014 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 2	0 2 2 blicable 2 = 0.31 (P =	211 195 406 .76)	0 1 1	95 67 162	100.0% 100.0%	Not estimable 0.69 [0.06, 7.46] 0.69 [0.06, 7.46]			
6.1.6 HbA1c < 8.0% v	s > 8.0%	- /							
Biskupski A 2014 Subtotal (95% Cl) Total events Heterogeneity: Not app Test for overall effect: 2	4 4 2 = 0.05 (<i>P</i> =	283 283 .96)	1	67 67	100.0% 100.0%	0.95 [0.11, 8.34] 0.95 [0.11, 8.34]			
						0.001	0.1 1	10	1000
						Favors	lower HbA1c levels	Favors higher	HbA1c levels

FIGURE E3. Meta-analysis of MI. *Size of a square* corresponds to statistical weight of a study; *black diamonds* are indicative of effect estimate. *HbA1c*, Glycosylated hemoglobin; *IV*, inverse variance; *CI*, confidence interval.

Study or Subgroup	Lower Mean	HbA1 SD	c levels Total	Higher Mean	HbA1 SD	c levels Total	Weight	Mean Differen IV, Random, 959	ce % Cl	Mean Difference IV, Random, 95% Cl
7.1.1 HbA1c < 5.5% Alserius T 2008 Subtotal (95% CI) Heterogeneity: Not a Test for overall effect	vs > 5.5 7.5 upplicable t: Z = 0.4	5% 6 2 (<i>P</i> =	339 339 .67)	7.8	7	122 122	100.0% 100.0%	–0.30 [–1.70, 1 –0.30 [–1.70, 1	.10] . 10]	
7.1.2 HbA1c < 6.0% Alserius T 2008 Engoren M 2013 Gumus F 2013* Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect	• vs > 6.0 7.7 7.7 = 0.00; C	0% 6.7 5.7 Chi ² = - 6 (<i>P</i> =	483 300 217 1000 1.60, df = .05)	7.8 8 8 = 2 (<i>P</i> = .	7 8 6.3 .45); I ²	122 580 217 919 = 0%	19.8% 50.7% 29.5% 100.0%	-0.10 [-1.48, 1 -1.00 [-1.86, -0 -0.30 [-1.43, 0 - 0.61 [-1.23, -0	.28] 0.14] 0.83] 0 .00]	
7.1.3 HbA1c < 6.5% Alserius T 2008 Engoren M 2014 Matsuura K 2009 Sato H 2010 Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect	vs > 6.5 7.7 7 22.1 10 = 0.00; C :: Z = 2.3	6.7 5 9.5 6.1 Chi ² = 2 4 (<i>P</i> =	483 300 47 61 891 2.38, df = .02)	7.9 8 21.7 12 = 3 (<i>P</i> = .	6.6 7 9.1 5.3 .50); I ²	68 275 54 69 466 = 0%	21.1% 59.2% 4.5% 15.2% 100.0%	-0.20 [-1.88, 1 -1.00 [-2.00, 0 0.40 [-3.24, 4 -2.00 [-3.98, -0 -0.92 [-1.69, -0	.48] 0.00] 4.04] 0.02] —— 0.15]	
7.1.4 HbA1c < 7.0% Alserius T 2008 Aydınlı B 2018 Finger B 2017 Göksedef D 2010 Halkos M 2008 Kim J 2020 Knapik P 2011 Ramadan M 2018 Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect	vs > 7.0 7.5 8.14 8.69 6.5 5.9 9 7.4 6.73 = 0.03; C t: Z = 5.3	6.8 4.49 6.12 6.4 4.47 3 4.4 1.94 2 2 2 2 2 2 2 2	537 160 474 93 2275 287 453 40 4319 3.12, df = .00001)	7.9 8.64 9.68 6.8 6.8 9.7 7.7 8.58 = 7 (<i>P</i> = .	6.6 5.15 5.43 6.6 5.91 3 5.4 5.15 32); I ²	68 194 57 57 814 416 282 194 2082 = 14%	3.1% 8.2% 3.8% 1.9% 30.3% 29.8% 13.7% 9.2% 100.0%	-0.40 [-2.07, 1 -0.50 [-1.50, 0 -0.99 [-2.50, 0 -0.30 [-2.45, 1 -0.98 [-1.43, -0 -0.70 [-1.15, -0 -0.30 [-1.05, 0 -1.85 [-2.79, -0 -0.81 [-1.11, -0	.27] .50] .52] .85] 0.25] 0.45] 0.45] 0.91]	
Test for subgroup dif	ferences	: Chi²	= 0.90, c	df = 3 (<i>P</i>	= .82),	l ² = 0%			-4 Favors	-2 0 2 4 s lower HbA1c levels Favors higher HbA1c levels

FIGURE E4. Meta-analysis of hospital length of stay. Size of a square corresponds to statistical weight of a study; black diamonds are indicative of effect estimate. *HbA1c*, Glycosylated hemoglobin; *SD*, standard deviation; *IV*, inverse variance; *CI*, confidence interval.

FABLE E1. Patients	' baseline	characteristics
--------------------	------------	-----------------

Author	Year of	Patients	Mean				Guidelines	Type of cardiac
(Ker)	publication	(n)	age (y)	Male (n)		HDA1c thresholds	used, year	operations (n)
Alserius T	2008	605	65	478 (79%)	161 (26.6%)	<5% vs $5%$ < $6%$ vs 6% < 7% vs $\ge7\%$	Author choice	CABG = 605 (100%)
Halkos M	2008	3089	62.6	2243 (72.6%)	1240 (40.1%)	<7% vs ≥7%	ADA, 2005*	CABG = 3089 (100%)
Matsuura K	2009	101	65.5	80 (79.2%)	101 (100%)	<6.5% vs ≥6.5%	Author choice	CABG = 101 (100%)
Göksedef D	2010	150	61.7	106 (70.7%)	53 (35.3%)	<7% vs ≥7%	ADA, 2005*	CABG = 150 (100%)
Sato H	2010	130	66.9	91 (70%)	130 (100%)	<6.5% vs ≥6.5%	IEC report, 2009†	CABG = 78 (60%); valve = 24 (18.5%); CABG + valve = 28 (21.5%)
Tekumit H	2010	166	60.8	104 (62.6%)	54 (32.5%)	<6.1% vs ≥6.1%	Author choice	CABG = 166 (100%)
Knapik P	2011	735	64.7	487 (66.2%)	735 (100%)	$\leq 7\% \text{ vs} > 7\%$	ADA, 2005*	CABG = 735 (100%)
Tsuruta R	2011	306	59.8	242 (79.1%)	306 (100%)	<6.5% vs 6.5% < 7.5% vs ≥7.5%	Author choice	CABG = 306 (100%)
Strahan S	2012	712	NA	NA	712 (100%)	<7% vs ≥7%	UK PDS‡	CABG = 712 (100%)
Gumus F	2013	510	60.6	382 (74.9%)	205 (40.2%)	$\leq 5.9\%$ vs > 5.9%	Author choice C	CABG = 491 (96.3%); ABG + valve = 19 (3.7%)
Biskupski A	2014	350	65.6	239 (68.3%)	350 (100%)	<7% vs 7% <8% vs > 8%	Author choice	CABG = 267 (76.3%); valve = 19 (5.4%); CABG + valve = 64 (18.3%)
Engoren M	2014	880	64.7	640 (72.7%)	415 (47.1%)	<6% vs 6% < 6.9% vs ≥7%	Author choice	CABG = 880 (100%)
Faritous Z	2014	216	64	138 (63.9%)	76 (35.2%)	$\leq 7\% \text{ vs} > 7\%$	Author choice	CABG = 216 (100%)
Subramaniam B	2014	1461	68	1,093 (74.8%)	562 (38.5%)	<6.5% vs ≥6.5%	Author choice	CABG = 1083 (74.1%); CABG + valve = 378 (25.9%)
Nyström T	2015	764	57	425 (55.6%)	764 (100%)	≤7% vs 7.1% < 8% vs 8.1% < 9% vs 9.1% <10% vs > 10%	Author choice	CABG = 764 (100%)
Santos J	2015	96	63.6	79 (82.3%)	96 (100%)	$\leq 7\% v_{S} > 7\%$	ADA, 2001§	CABG = 96 (100%)
Kuhl J	2016	6313	68.4	4834 (76.6%)	6313 (100%)	≤7% vs 7.1% < 8% vs 8.1% < 9% vs 9.1% <10% vs > 10%	Author choice	CABG = 6313 (100%)
Surer S	2016	72	63.2	40 (55.5%)	72 (100%)	<5.5% vs 5.5% <8% vs >8%	Author choice	CABG = 72 (100%)
Bardia A	2017	763	67	418 (54.8%)	145 (19%)	<6.5% vs ≥6.5%	Author choice	Valve = 763 (100%)
Finger B	2017	531	62.6	385 (72.5%)	182 (34.3%)	$\leq 7\%$ vs > 7%	ADA, 2015	CABG = 269 (50.6%); valve = 121 (22.8%); CABG + valve = 52 (9.8%); other = 89 (16.8%)
Kocogullari C	2017	202	61.6	162 (80.2%)	0 (0%)	<5.6% vs ≥5.6%	Author choice	CABG = 202 (100%)
Narayan P	2017	4678	58.8	4254 (90.9%)	3045 (65.1%)	<6.5% vs ≥6.5%	Author choice	CABG = 4678 (100%)
Aydinli B	2018	354	60.8	223 (63%)	354 (100%)	<7% vs ≥7%	Author choice	CABG = 354 (100%)
Nicolini F	2018	2606	67.5	2241 (86%)	942 (36.1%)	<7% vs 7% <9% vs > 9%	Author choice	CABG = 2606 (100%)
Ramadan M	2018	80	57.4	61 (76.2%)	80 (100%)	$\leq 7\%$ vs > 7%	ADA, 2006	CABG = 80 (100%)
Almogati JG	2019	305	59.1	250 (82%)	249 (81.6%)	<7% vs ≥7%	ADA, 2017	CABG = 305 (100%)

(Continued)

Author (Ref)	Year of publication	Patients (n)	Mean age (y)	Male (n)	DM (n)	HbA1c thresholds	Guidelines used, year	Type of cardiac operations (n)
Khan M	2019	1133	65	780 (68.8%)	545 (48.1%)	$\leq 7\%$ vs > 7%	Author choice	CABG = 1133 (100%)
Robich M	2019	6415	65.6	4965 (77.4%)	2674 (41.7%)	<5.7% vs 5.7% < 6.4% vs 6.5% <8% vs > 8%	ADA categories	CABG = 6415 (100%)
Shoghli M	2019	224	59.1	71 (31.7%)	224 (100%)	$<7\%$ vs $\ge7\%$	ADA, 2014¶	Valve = $224 (100\%)$
Kim J	2020	703	65.8	499 (71%)	703 (100%)	$<7\%$ vs $\ge7\%$	ADA, 2018#	CABG = 703 (100%)
Total		34,650	63.2 ± 3.2	26,010 (76.6%)	21,488 (62%)			CABG = 32,869; valve = 1151; CABG + valve = 541; other = 89

TABLE E1. Continued

Data are shown as number (%) or mean value ± standard deviation. *DM*, Diabetes mellitus; *HbA1c*, glycosylated hemoglobin; *CABG*, coronary artery bypass grafting; *ADA*, American Diabetes Association; *IEC*, International Expert Committee; *NA*, not available; *UK PDS*, United Kingdom Prospective Diabetes Study. *American Diabetes Association. Standards of medical care in diabetes. *Diabetes Care*. 2005;28(Suppl 1):4-36. †American Diabetes Association. Standards of medical care for patients with diabetes mellitus: Clinical practice recommendations 2001. *Diabetes Care*. 2001;24:(Suppl 1):S33-43. ‡The ACE/ADA Task Force on Inpatient Diabetes. American College of Endocrinology and American Diabetes Association Consensus Statement on inpatient diabetes and glycemic control. *Diabetes Care*. 2006;29:1955-62. [§]American Diabetes Association. Standards of medical care in diabetes. *Diabetes Care*. 2014;37(Suppl 1):S14-80. ||American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes. *Diabetes Care*. 32:1327-34. #UKPDS: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. *Lancet*. 1998;352:837-53.

TABLE E2. Postoperative complications and outcomes

Author (Ref)	Early mortality (n)	Mean follow-up (y)*	Late mortality (n)	Sternal wound	Stroke/TIA (n)	AKI (n)	MI (n)	Length of hospital stay (d)
Alserius T	10 (1.6%)	3.5	33 (5.4%)	59 (9 7%)	NA	NA	86 (14.2%)	7 7
Halkos M	31 (1%)	NA	NA	29 (0.9%)	53 (1.7%)	80 (2.6%)	11 (0.4%)	6.2
Matsuura K	0	2.4	0	2 (2%)	1 (1%)	3 (3%)	NA	21.9
Göksedef D	6 (4%)	NA	NA	2(270)	NA	NA	NA	6.6
Sato H	6 (4 6%)	NA	NA	16 (12 3%)	3 (2 3%)	4 (3%)	NA	9.6
Tekumit H	2 (1.2%)	NA	NA	NA	NA	+ (570) NA	NA	NA
Knanik P	15(2%)	NA	NA	6 (0.8%)	15 (2%)	7 (0.9%)	18 (2.4%)	7.5
Teuruta R	0	36	19 (6 2%)	2(0.6%)	2(0.6%)	5 (1.6%)	0	NA
Strahan S	4 (0.6%)	NA	NA	2 (0.070) NA	5(0.7%)	12 (1.7%)	5 (0.7%)	NA
Gumus F	+ (0.070)	NA	NA	6(1.2%)	26 (5.1%)	39(7.6%)	17 (3 3)	80
Biskupski A	7(2%)	NA	NA	10(2.8%)	17 (4.8%)	11 (3.1%)	5(1.4%)	NA
Engoren M	10(21%)	2.2+	$122 \pm (12.4\%)$	10(2.076)	17(4.370)	26(2.7%)	58 (6%)	77
Englien W	6(2.8%)	NA	122 (12.470) NA	(0.470)	14 (1.570) NA	9(4.2%)	Jo (070)	NA
Subramaniam B	(2.870)	NA	NA	12(3.376)	10 (1.3%)	3(4.270)	4(1.070)	NA
Nyström T	42(2.970)	47	170 (23 4%)	15 (170) NA	19 (1.570) NA	44 (370) NA	5 (0.570) NA	NA
Santos I	5(5.2%)	4.7 NA	NA	3 (3 1%)	0	6 (6 2%)	5 (5 2%)	NA
Samos J	3(3.270)	5.5	1620 (25 8%)	5 (5.170) NA	NA	0 (0.270)	J (J.270)	IN/A NA
Kulli J	120(276)	J.J	1030 (23.876)	NA	NA	NA	NA	N/A N/A
Dandia A	3 (4.2%)	NA	NA	NA	NA 22 (20()	NA 25 (2,20/)	INA 1 (0 10/)	INA
Bardia A	11(1.4%)	NA	NA	9(1.2%)	23(3%)	25(3.5%)	I (0.1%)	NA
	15 (2.8%)	NA	NA	/(1.5%)	0 (1.1%)	12 (13.5%)	NA	8.8 NA
Kocogullari C	8 (4%)	NA	NA	NA	NA	19 (9.4%)	NA	NA
Narayan P	169 (3.6%)	NA	NA	106 (2.3%)	117 (2.5%)	169 (3.6%)	NA	NA
Aydınlı B	28 (7.9%)	NA	NA	NA	NA	NA	NA	8.4
Nicolini F	17 (0.6%)	NA	NA	177 (6.8%)	25 (1%)	549 (21%)	NA	NA
Ramadan M	4 (5%)	1	5 (6.2%)	17 (21.2%)	2 (2.5%)	4 (5%)	5 (6.2%)	7.6
Almogati JG	15 (4.9%)	NA	NA	12 (3.9%)	6 (2%)	17 (5.6%)	NA	NA
Khan M	28 (2.5%)	NA	NA	12 (1.1%)	NA	NA	NA	NA
Robich M	15 (0.2%)	2.6	946 (14.7%)	12 (0.2%)	6 (0.1%)	16 (0.3%)	NA	NA
Shoghli M	13 (5.8%)	NA	NA	NA	NA	NA	NA	13.4
Kim J	10 (1.4%)	NA	NA	33 (4.7%)	8 (1.1%)	29 (4.1%)	NA	9
Total	656 (1.9%)	3.9 ± 1.4	2934 (18.8%)	551(2.1%)	348(1.4%)	1146 (4.6%)	220(2.2%)	9.5 ± 4.1

Data are shown as number (%) or mean value \pm standard deviation. *TIA*, Transient ischemic attack; *AKI*, acute kidney injury; *MI*, myocardial infarction; *NA*, not available. *Weighted mean follow-up. †Engoren M, Schwann TA, Arslanian-Engoren C, Maile M, Habib RH. U-shape association between hemoglobin A1c and late mortality in patients with heart failure after cardiac surgery. *Am J Cardiol*. 2013;111:1209-13.

TABLE E3.	Quality scori	ing for include	ed papers us	ing the Qua	lity In Prognosi	is Studies tool
-----------	---------------	-----------------	--------------	-------------	------------------	-----------------

Author	Study participation	Study attrition	Prognostic factor measurement	Outcome measurement	Study confounding	Statistical analysis and reporting
Alserius T	low	low	low	low	moderate	low
Biskupski A	low	low	low	low	moderate	moderate
Faritous Z	low	low	low	low	moderate	low
Finger B	low	low	low	low	moderate	low
Gumus F	low	low	low	low	low	low
Halkos M	moderate	low	low	moderate	low	low
Kim J	low	low	low	low	moderate	low
Knapik P	low	low	low	low	moderate	low
Kuhl J	moderate	low	low	low	moderate	low
Narayan P	moderate	low	low	low	moderate	low
Nicolini F	low	low	low	low	moderate	low
Nyström T	low	low	low	low	moderate	low
Ramadan M	moderate	low	low	low	high	moderate
Robich MP	low	low	moderate	moderate	moderate	low
Santos J	moderate	low	low	low	moderate	low
Sato H	low	low	moderate	moderate	moderate	low
Subramaniam B	moderate	low	low	low	high	moderate
Bardia A	low	moderate	low	low	low	low
Tsuruta R	moderate	low	low	moderate	low	low
Engoren M	lode	low	low	low	moderate	moderate
Almogati JG	low	moderate	low	low	high	moderate
Matsuura K	low	low	low	low	low	low
Göksedef D	moderate	low	moderate	moderate	moderate	moderate
Tekumit H	moderate	low	low	low	low	low
Strahan S	low	low	low	moderate	high	low
Surer S	low	low	low	moderate	low	low
Kocogullari C	low	low	low	low	low	low
Aydinli B	low	low	low	low	low	low
Khan M	low	low	low	low	low	low
Shoghli M	moderate	moderate	moderate	moderate	moderate	low

Review authors' judgments about each risk of bias item for each included study.

ADULT

TABLE E4. Meta-regression of primary end point against baseline variables

	Age (mean)		Male (%)		DM (%)	
	β -coefficient	Р	β -coefficient	P	β -coefficient	Р
Early mortality						
HbA1c <5.5% vs >5.5%	0.105	.724	-3.657	.610	1.459	.388
HbA1c <6.0% vs >6.0%	-0.117	.558	-4.317	.351	-1.134	.638
HbA1c <6.5% vs >6.5%	0.032	.473	-1.685	.243	-1.112	.136
HbA1c <7.0% vs >7.0%	0.016	.745	0.537	.708	-0.421	.434
HbA1c <7.5% vs >7.5%	-0.129	.074	-3.191	.340	-0.173	.914
HbA1c <8.0% vs >8.0%	-0.040	.563	0.714	.814	-0.495	.677

DM, Diabetes mellitus; HbA1c, glycosylated hemoglobin.