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Abstract
In periodic media gap solitons with frequencies inside a spectral gap but close
to a spectral band can be formally approximated by a slowly varying enve-
lope ansatz. The ansatz is based on the linear Bloch waves at the edge of the
band and on effective coupled mode equations (CMEs) for the envelopes. We
provide a rigorous justification of such CME asymptotics in two-dimensional
photonic crystals described by the Kerr nonlinear Maxwell system. We use a
Lyapunov–Schmidt reduction procedure and a nested fixed point argument in
the Bloch variables. The theorem provides an error estimate in H2(R2) between
the exact solution and the envelope approximation.The results justify the formal
and numerical CME-approximation in Dohnal and Dörfler, [2013 Multiscale
Model. Simul. 11 162–191].
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1. Introduction

Maxwell’s equations in Kerr nonlinear dielectric materials without free charges are described
by

μ0∂tH = −∇× E, ε0∂tD = ∇× H, ∇ · D = ∇ · H = 0, (1.1)

where E = (E1, E2, E3) and H = (H1, H2, H3) are the electric and the magnetic field respec-
tively, D = (D1(E), D2(E), D3(E)) is the electric displacement field and ε0 and μ0 are the
permittivity and the permeability of the free space, respectively. We assume the constitutive
relations

D(x, t) = ε0(ε(x1, x2)E(x, t) + F (E)(x, t)), x ∈ R3, t ∈ R,

where

Fd(E)(x, t) :=
3∑

a,b,c =1

χ (3)
a,b,c,d(x1, x2)(EaEbEc)(x, t), d ∈ {1, 2, 3}. (1.2)

We model a two dimensional photonic crystal and hence assume that the dielectric function
(relative permittivity) ε : R2 → R and the cubic electric susceptibility χ (3) : R2 → R3×3×3×3

are periodic and ε is positive. The periodicity is specified by two linearly independent lattice
vectors a (1), a (2) ∈ R2 defining the Bravais lattice Λ := spanZ{a (1), a (2)} of the crystal. Then
the required periodicity reads

ε(x) = ε(x + R), χ (3)(x) = χ (3)(x + R) for any x ∈ R2 and R ∈ Λ. (1.3)

Since ε = ε(x1, x2) and χ(3) = χ(3)(x1, x2), the material is homogeneous in the x3-direction. In
the following Q ⊂ R2 denotes the Wigner–Seitz periodicity cell, defined as the set of points
in R2 which are closer to 0 than to any other lattice point in Λ. More precisely,

Q := {x ∈ R2 | |x| < |x − Z|, Z ∈ Λ\{0}} ∪ S,

where the connected subset S ⊂ ∂Q is chosen so that
⋃

Z∈Λ(Q+ Z) = R2 and Q∩ (Q+ Z)
= ∅ for all Z ∈ Λ. We often use the term Λ-periodic to mean the periodicity as in (1.3).

We consider monochromatic waves propagating in the homogeneous x3-direction, i.e. out
of the plane of periodicity of the 2D crystal, and use the ansatz

(E, H)(x, t) = ei(κx3−ωt)(u, h)(x1, x2;ω) + c.c. (1.4)

where κ ∈ R and c.c. denotes the complex conjugate. We look for profiles u, h localized in
both x1 and x2 and with ω in a frequency gap. The resulting solutions are called out-of-plane
gap solitons. Inserting such a monochromatic ansatz into the nonlinearity (1.2) and neglecting
the higher harmonics1, one obtains for d ∈ {1, 2, 3}

Fd(E)(x, t) =
3∑

a,b,c=1

χ (3)
a,b,c,d(x1, x2)(uaubuc + uaubuc + uaubuc)(x1, x2)ei(κx3−ωt) + c.c. .

1 Neglecting higher harmonics is a common approach in theoretical studies of weakly nonlinear optical waves [41].
Alternatively, one can use a time averaged model for the nonlinear part of the displacement field, see [43–45], where
no higher harmonics appear.
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We define

Fd(u) :=
3∑

a,b,c=1

χ (3)
a,b,c,d(uaubuc + uaubuc + uaubuc)

=

3∑
a,b,c=1

χ (3)
a,b,c,d

uaubuc, d ∈ {1, 2, 3},

where

χ (3)
a,b,c,d

:=χ (3)
c,b,a,d + χ (3)

a,c,b,d + χ (3)
a,b,c,d.

We rescale the frequency by defining ω̃ = ω
c , where c = (μ0ε0)−1/2, but drop the tilde again

for better readability. Then, with the ansatz in (1.4) Maxwell’s equation (1.1) become{∇′ × u − iμ0cωh = 0,

∇′ × h + iε0cωε(·)u = iε0cωF(u),
(1.5)

where ∇′ := (∂1, ∂2, iκ)T is the restriction of the standard ∇ applied to our 2D-ansatz (1.4).
Notice that, indeed, the divergence equations in (1.1) are automatically satisfied by our ansatz.
Equivalently, we may write (1.5) as a second-order equation for the electric field u,

(L (E) − ω2ε(·))u := ∇′ × ∇′ × u − ω2ε(·)u = ω2F(u), (1.6)

and then, having determined a solution u, the magnetic field can be recovered by

h = − i
μ0cω

(
∇′ × u

)
.

For anyω in a spectral gap of the linear problem (L(E) − ω2ε(·))u = 0 equation (1.6) is expected
to have localized solutions u with u(x1, x2) → 0 as |(x1, x2)| →∞, called gap solitons. This has
been proved variationally for other problems, e.g. the periodic Gross–Pitaevskii equation, see
[33], or equation (1.6) with other (not periodic) coefficients ε and χ(3), see e.g. [4, 31]. From
the physics point of view, gap solitons are phenomenologically interesting as they achieve a
balance between the periodicity induced dispersion and the focusing or defocusing of the non-
linearity. In addition, they exist for frequencies in spectral gaps, i.e. where no linear propagation
is possible. Examples of physics references for gap solitons in two dimensions are [20] or [42,
section 16.6].

In [43] an approximation of gap solitons of (1.6) with periodic coefficients and for ω in
an asymptotic vicinity of a gap edge was formally obtained using a slowly varying enve-
lope approximation. In particular, envelopes of such gap solitons satisfy a system of nonlinear
equations with constant coefficients, so-called couple mode equations (CMEs), posed in a slow
variable. The advantage is that such a system can be numerically solved with less effort than
the original Maxwell system (1.6), which is posed in the ‘fast’ variable x. Then, the solution
of (1.6) for ω near a band edge would be asymptotically approximated by the sum of linear
Bloch waves at the edge modulated by the corresponding envelopes, see ansatz (1.8). The aim
of this paper is to give a rigorous justification of this approximation.
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Let us now describe the approximation in more detail. First, recall that the (first) Brillouin
zone (here denoted by B ⊂ R2) is the Wigner–Seitz periodicity cell for the reciprocal lattice
Λ∗ := spanZ{b (1), b (2)} ⊂ R2. The vectors b(1), b(2) satisfy a(i) · b( j) = 2πδi j for i, j ∈ {1, 2},
with δi j being the Kronecker-delta.

Let now ω∗ be a boundary point of the (real) spectrum of the pencil L(E) − ω2ε, i.e. such
that there is a choice of Ω ∈ {−1,+1} for which ω∗ + τΩ lies outside and ω∗ − τΩ inside the
spectrum for all τ > 0 small enough. We are interested in studying solutions of equation (1.6)
whenω lies in a band gap and is asymptotically close to ω∗. Hence, in our main result (theorem
1.1), we choose a small parameter 0 < ε � 1 and set

ω = ω∗ +Ωε2, (1.7)

where Ω ∈ {−1,+1} is chosen such that ω lies outside the spectrum. We aim to study the
existence of a solution of (1.6) close to the slowly varying envelope ansatz

uans(x) = ε

N∑
j=1

A j(εx)un∗(x, k ( j)). (1.8)

Here (A j)N
j=1 are localized envelopes to be determined below and the function un∗(x, k), for

n∗ ∈ N, is a Bloch wave of L (E) − ω2
∗ε. Writing

∇′
k :=∇′ + ik for k ∈ R2,

a Bloch wave un(·, k) : R2 × R2 → C3 is defined as

un(x, k) := pn(x, k)eik·x , n ∈ N,

where pn(·, k) is a solution of the periodic eigenvalue problem

∇′
k ×∇′

k × pn(x, k) = ωn(k)2ε(x)pn(x, k), for all x ∈ R2,

pn(x + R, k) = pn(x, k) for all x ∈ R2 and all R ∈ Λ,
(1.9)

which is to be solved for the eigenpair (ωn(k), pn(·, k)). Let us choose the normalization∫
Q
ε(x)|pn(x, k)|2 dx = 1, n ∈ N, k ∈ B,

see (2.11) below. Note that for a geometrically simple eigenvalue the eigenfunction pn(·, k) is
unique up to a phase factor eiα,α ∈ R. We call pn(·, k) a Bloch eigenfunction. Clearly, Bloch
waves are quasiperiodic

un(x + R, k) = un(x, k)eik·R for all x ∈ R2 and all R ∈ Λ.

Note that, strictly speaking, a ‘Bloch wave’ is the time dependent function un(x, k)eiωn(k)t but,
for the purpose of this paper, we use this name for the factor un(x, k).

We assume that the band structure k 
→ {ωn(k) : n ∈ N} attains the value ω∗ at finitely many
points, denoted k (1), . . . , k (N) ∈ B, see (1.8). In other words, there exist indices (n j)N

j=1 for
which ωn j(k

( j)) = ω∗ holds, with k 
→ ωn j(k) defined by (1.9). Notice that since at each k ∈ B

the eigenvalues ωn(k) are ordered by magnitude, we necessarily have ωn∗(k ( j)) = ω∗ for some
n∗ ∈ N and all j ∈ {1, . . . , N}. Due to the additional assumption of geometric simpleness at
k ∈ {k(1), . . . , k(N )} at the level ω∗, there is only one Bloch eigenfunction (up to a complex
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phase factor) at k ∈ {k(1), . . . , k(N )} at the level ω∗. We denote this eigenfunction by pn∗(·, k ( j)).
For a precise formulation of the corresponding assumptions see assumption (A3) in section 3.
Also note that the spectrum of the pencil L(E) − ω2ε equals the union of the ranges of the
functions ωn over all n, see sections 2.2 and 2.3.

In figure 1 we plot the material structure, the Brillouin zone, and the band structure for an
example adopted from [43]. Only the band structure along the boundary of an ‘irreducible’
Brillouin zone B0 is plotted, which is standard practice in the physics literature. It was checked
in [43] that the level sets of the first five band edges do not include any points from the interior
of B0. Five spectral edges s1, . . . , s5 are labeled. Note that, for instance, the edge ω∗ = s3 has
N = 1 as the level set includes only the point k(1) = Γ = (0, 0). At ω∗ = s5 we have N = 6
because the minimal point along the line Γ–M is repeated 6 times in the full Brillouin zone B
due to a discrete rotational symmetry of the lattice.

As shown in [43], in order for the residual L(E)uans − ω2εuans − ω2F(uans) to be small, the
functions

(
A j

)N

j=1
in (1.8) have to satisfy the second-order CMEs

ΩA j +
1
2

(
∂2

k1
ωn∗(k ( j))∂2

y1
+ ∂2

k2
ωn∗(k

( j))∂2
y2
+ 2∂k1∂k2ωn∗(k ( j))∂y1∂y2

)
A j +N j = 0

(1.10)

in R2, where y := εx is the slow variable and the nonlinear term N j is given by

N j =
∑

(α,β,γ)∈σ j

I j
α,β,γAαAβAγ. (1.11)

where

σ j := {(α, β, γ) ∈ {1, . . . , N}3 : k (α) + k (β) − k (γ) − k ( j) ∈ Λ∗}. (1.12)

The coefficients I j
α,β,γ are determined by the Bloch wave un∗ at the points k( j), in detail

I j
α,β,γ :=

ω∗
2

3∑
a,b,c,d=1

〈
χ (3)

a,b,c,dun∗,a(·, k (α))un∗,b(·, k (β))un∗,c(·, k (γ)), un∗,d(·, k ( j))
〉
. (1.13)

The formal derivation of the CMEs (1.10) as an effective model for the envelopes A j can be
summarized as follows. First, ansatz (1.8) is inserted into (1.6) and for each j the terms propor-
tional to eik ( j) ·x times a Λ-periodic function are collected. Then, setting the L2(Q)-inner product
of the leading order part of these terms with un∗(·, k ( j)) to zero, produces the jth equation in
(1.10). In the inner product the variable y := εx is considered independent of x.

For several examples with the coefficients∇2ωn∗(k ( j)) and I j
α,β,γ obtained from actual Bloch

waves of the corresponding Maxwell problem, localized solutions were found numerically
in [43]. Figures 2(a) and (b) show an example solution of CMEs (1.10) corresponding to
ω∗ = s5 in figure 1. We also plot the total intensity |uans|2 of the corresponding formal approx-
imation (1.8) at ω = ω∗ − ε2 with ε = 0.1 in figure 2(c). All plots in figure 2 are adopted
from [43].

The main result of this paper is that for ε > 0 small enough the existence of suitable solu-
tions of CMEs (1.10) implies the existence of gap solitons of (1.6) with ω given by (1.7).
These gap solitons are approximated by the ansatz (1.8). The following theorem uses assump-
tions (A1)–(A7) on the band structure and on the functions ε and χ(3), see section 3, the
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Figure 1. (a) Hexagonal periodicity cell Q with a cylindrical material structure and the
lattice vectors a(1), a(2). (b) The corresponding Brillouin zone B (not to scale) with the
reciprocal lattice vectors b(1), b(2) and a shaded irreducible Brillouin zone B0. (c) Band
structure along ∂B0 for r1 = 1.31

4.9 a0, ε(x) = 2.1025 for r1 � |x| � a0/2, and ε(x) = 0
otherwise. The diameter a0 of the cylinder can be chosen arbitrary. Reproduced with
permission from [43]. Copyright © 2013 Society for Industrial and Applied Mathematics.
All rights reserved.

non-degeneracy property, see definition 3.1 as well as the PT (parity-time reversal) symmetry
defined below.

Definition 1.1. A function A ∈ L2(Rn) is called PT -symmetric if A = A(− ·).
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Figure 2. (a) and (b) Components A2 and A3 of CMEs for the case ω∗ = s5 in figure 1,
where N = 6. A solution with the symmetry A1 = A4 = 0, A5 = A2, and A6 = A3 was
chosen. (c) The approximation of the square modulus of a gap soliton at ω = ω∗ − ε2

with ε = 0.1 as given by |uans,1|2 + |uans,2|2 + |uans,3|2, see (1.8). Reproduced with per-
mission from [43]. Copyright © 2013 Society for Industrial and Applied Mathematics.
All rights reserved.

Theorem 1.1. Let κ ∈ R\{0}. Suppose A = (A j)N
j=1 ∈ HsA(R2,CN) is a PT -symmetric

non-degenerate solution of the CMEs (1.10) with sA > 1. Then, under assumptions (A1)–(A7),
see section 3, there are constants c > 0,Ω ∈ {−1, 1}, and ε0 > 0 such that for each ε ∈ (0, ε0)
there exists a PT -symmetric solution u ∈ H2(R2,C) of the reduced Maxwell equation (1.6)
with ω as in (1.7), which satisfies

‖u − uans‖H2(R2) � c ε,

where uans is defined by (1.8).

Before immersing ourselves in the details of the proof, let us make some important remarks.

Remark 1. The assumption κ �= 0 is needed in the Helmholtz decomposition in lemma A.1.

Remark 2. Note that ‖uans‖L2(R2) = O(1) (ε→ 0) since ‖A j(ε·)‖L2(R2) = ε−1‖A j‖L2(R2).
Analogously one has ‖uans‖H2(R2) = O(1). The next correction term in the asymptotics of the

solution u is expected to have the form ε2
∑N

j=1 A (2)
j (εx)r j(x) with suitable (smooth) functions

A (2)
j and r j. It is the correction compensating for the residual at the formal order O(ε3) after

satisfying the coupled mode equations (CMEs), see section 4.7. Hence, the expected correc-
tion term is O(ε) in H2(R2), which implies the error estimate of theorem 1.1 is expected to be
optimal.

Remark 3. Theorem 1.1 can also be considered as a result on the bifurcation of gap solitons
from the zero solution at ω = ω∗. A sufficient condition is the existence of a PT -symmetric
and non-degenerate solution A ∈ HsA (R2,CN) of the effective CME equations.

Remark 4. The CMEs in (1.10) are a system of coupled nonlinear Schrödingerequations and
have the same structure as those for stationary gap solitons of the 2D scalar Gross–Pitaevskii
equation with a periodic potential, see [10, 13]. In [43] several localized solutions of CMEs
(1.10) with coefficients determined by Bloch waves of the Maxwell system were found numer-
ically. The current paper does not discuss the existence of localized nontrivial solutions to
CMEs. Existence results based on bifurcation theory and variational analysis can be found,
e.g., in [28–30].
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Remark 5. The PT -symmetry has been extensively studied by the physics community in
the recent years, mainly with emphasis on localized solutions, as it serves as a model for a bal-
ance between gain and loss in the structure. It has been shown to have a lot of applications, e.g.
in Bose–Einstein condensates [25], non-Hermitian systems [5], quantum mechanics, optics
[37], or surface plasmons polaritons [3, 32]. For a survey on the topic we refer to [19]. Math-
ematically, the restriction of a fixed point argument to a PT -symmetric (or more generally
anti-linearly symmetric) subspace has been used to obtain real nonlinear eigenvalues, see, e.g.,
[9, 11, 12, 36]. In particular, in our justification result, such symmetry, assumed on the func-
tions ε and χ(3) and then reflected in the band structure, is exploited to remove shift and space
invariances in perturbed CMEs. This enables us to invert the linearized operator when working
in the symmetric subspace.

Remark 6. The proof of theorem 1.1 is based on a generalized Lyapunov–Schmidt decom-
position in Bloch variables and on fixed point arguments. The CMEs can be seen as the
effective bifurcation system of the Lyapunov–Schmidt decomposition. This approach has been
used, e.g., for wave packets of the Gross–Pitaevskii equation with periodic coefficients in
[9, 10, 13, 14].

Remark 7. The term ‘CMEs’ in the context of asymptotics of wave packets is often used
also for a different system, namely for time dependent first order envelope equations. These
are derived when the wave packet is built using Bloch waves with nonzero group velocities,
see [16, 21, 23, 39].

The rest of the paper is organized as follows. In section 2, after introducing the suitable
functional setting, we investigate the linear problem L(E)u − ω2εu = 0, its spectrum and the
Bloch waves. Then, using the Bloch transform, we formulate (1.6) in the Bloch variables. In
addition, important regularity estimates on the Bloch eigenfunctions are also established here.
Next, precise formulations of our assumptions are given in section 3. The proof of theorem 1.1
is provided in section 4 and split into several subsections according to our Lyapunov–Schmidt
decomposition of the solution. We trim the solution u by rest terms, which are proved to be
small enough in sections 4.3–4.6, and we finally show that the leading order part is ε-close to
our ansatz in section 4.7. The appendix collects some auxiliary lemmas which are used in our
analysis.

2. Function spaces, spectrum, Bloch transformation and linear estimates

In this section we firstly investigate the eigenvalue problem

∇′ × ∇′ × u = ω2ε(x)u, x ∈ R2 (2.1)

and the corresponding Bloch eigenvalue problem on the periodicity cell

∇′
k ×∇′

k × p = ω2
j (k)ε(x)p, x ∈ Q, (2.2)

where p is Λ-periodic, k ∈ R2 and (with κ ∈ R being a fixed parameter)

∇′
k := (∂1 + ik1, ∂2 + ik2, iκ)T.

Secondly, we prove estimates on a linear inhomogeneous problem on the periodicity cell. This
problem is obtained by applying the Bloch transformation to an inhomogeneous version of
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(2.1), which plays a central role in a Banach fixed point iteration for the nonlinear equation in
section 4.

The Bloch transformation and its properties are reviewed subsequently.

2.1. Function spaces

We start by defining some function spaces which we use below. Because of the presence of
the curl operator in the Maxwell system (1.1) we will make use of H(curl) spaces with the curl
defined using the above gradient ∇′. Let us first define

L2
#(Q,C3) := {v ∈ L2

loc(R2,C3) : v is Λ− periodic},

Hs
#(Q,C3) := {v ∈ Hs

loc(R2,C3) : v is Λ− periodic}, s > 0.

The notation L2
#(Q,C3), Hs

#(Q,C3) is chosen to make clear that the elements need to be
defined on the periodicity cell Q and periodically extendable in an L2

loc resp. Hs
loc fashion onto

R2. Note that for a vector field u : Q→ C3 we define

‖u‖2
Hs(Q) :=

3∑
j=1

∑
|α|�s

‖Dαu j‖2
L2(Q)

with α ∈ N3
0 being the standard multi-index and s ∈ N0.

Next we define

H#(curl,Q) := {v ∈ L2
#(Q,C3) | ∇′ × v ∈ L2

#(Q,C3)}

and

H#(curl2,Q) := {v ∈ H#(curl,Q) | ∇′ × ∇′ × v ∈ L2
#(Q,C3)}.

We will sometimes use the short notation H#(curl) or H#(curl2).
Note that in the majority of our calculations the gradient ∇′

is replaced by ∇′
k. However,

this makes no difference in the definition of the function spaces. Indeed, because

H#(curl,Q) = {v ∈ L2
#(Q,C3) | ∇′

k × v ∈ L2
#(Q,C3)}

and

H#(curl2,Q) = {v ∈ H#(curl,Q) | ∇′
k ×∇′

k × v ∈ L2
#(Q,C3)}

for any k ∈ R2, we do not need to define new function spaces for problems involving the
gradient ∇′

k.
For later use, we note the identity

∇′
k · ∇′

k × u = 0 for all u ∈ H#(curl,Q),

which can be easily checked.

2.2. Spectral problem for the H-field

We build our linear theory on the results of [8] for the spectral problem for the H-field

∇′ ×
(

1
ε
∇′ × v

)
= ω2v.
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It follows from the Bloch theory (see [18, 27]) that the spectrum of

L (H) : H(curl2ε ) → L2(R2,C3), L (H) :=∇′ ×
(

1
ε
∇′ × ·

)
,

where

H(curl2ε ) :=

{
v ∈ L2(R2,C3) | ∇′ × v ∈ L2(R2,C3),∇′ ×

(
1
ε
∇′ × v

)
∈ L2(R2,C3)

}
,

is obtained as the union (over all k ∈ B) of the spectra of

L (H)
k : H#(curl2ε ) → L2

#(Q,C3), L (H)
k :=∇′

k ×
(

1
ε
∇′

k × ·
)

,

where

H#(curl2ε ) :=

{
v ∈ L2

#(Q,C3) | ∇′
k × v ∈ L2

#(Q,C3),∇′
k ×

(
1
ε
∇′

k × v

)
∈ L2

#(Q,C3)

}
.

We emphasize that L (H)
k acts on periodic functions on the periodicity cell Q.

Let k ∈ B be fixed. With the form domain of L (H)
k being

Vk := {v ∈ L2
#(Q,C3) | ∇′

k × v ∈ L2
#(Q,C3), ∇′

k · v = 0}, (2.3)

the authors of [8] prove that the spectrum is discrete and satisfies

σ(L (H)
k ) = {ω2

1(k),ω2
2(k), . . . } ⊂ [0,∞),

where

ω2
1(k) � ω2

2(k) � . . .

The corresponding eigenfunctions (q j(·, k)) j∈N ⊂ Vk satisfy

ak(q j(·, k),ϕ) = ω2
j (k)〈q j(·, k),ϕ〉 ∀ ϕ ∈ Vk, (2.4)

where

ak(ψ,ϕ) :=
∫
Q

1
ε
∇′

k × ψ · ∇′
k × ϕ dx and

〈ψ,ϕ〉 := (ψ,ϕ)L2(Q) :=
∫
Q
ψ · ϕ dx.

Moreover, they can be chosen L2(Q)-orthonormal, i.e.

〈qi(·, k), q j(·, k)〉 = δi j ∀ i, j ∈ N.

It follows that for λ in the resolvent set, i.e. λ ∈ C\{ω2
1(k),ω2

2(k), . . . }, and g ∈ L2
#(Q,C3)

there is a unique v ∈ Vk such that

ak(v,ϕ) − λ〈v,ϕ〉 = 〈g,ϕ〉 ∀ ϕ ∈ Vk. (2.5)

Moreover, there is a constant c > 0 such that

‖v‖H1(Q) � c ‖g‖L2(Q). (2.6)
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Here the equivalence of the H(curl) and H1-norms on Vk has been used. In fact, the eigenfunc-
tions automatically satisfy the regularity

q j(·, k) ∈ H#(curl2ε ) ∩ Vk. (2.7)

To show this, it suffices to prove that (2.4) holds for allϕ ∈ C∞
c (Q). Then the weak curl∇′

k× of
1
ε∇′

k × q j(·, k) equalsω2
j (k)q j(·, k), which is in L2

#(Q,C3). Due to the Helmholtz decomposition
in lemma A.1 we have

H#(curl,Q) = Vk ⊕∇′
kH1

#(Q),

so, by a density argument, it remains to show that (2.4) holds for all ϕ ∈ ∇′
kC∞

# (Q), where as

usual the subscript # denotes periodicity. Substituting ϕ = ∇′
kψ with ψ ∈ C∞

# (Q), we clearly
have ∇′

k ×∇′
kψ = 0, as well as∫

Q
q j(x, k) · ∇′

kψ(x)dx =

∫
∂Q

q j(x, k)ψ(x) · νdS(x) −
∫
Q
∇′

k · q j(x, k)ψ(x)dx = 0,

where ν := (ν1, ν2, 0)T and (ν1, ν2)T being a.e. defined as the unit outer normal vector of ∂Q.
Indeed, first ∇′

k · q j(·, k) = 0 because qj(·, k) ∈ Vk. Second, as Vk ⊂ H1
loc(R

2), the boundary
term is well-defined and, by periodicity of both q j(·, k) andψ, the contributions of the boundary
integral on opposite sides of the periodicity cell Q cancel out.

Due to the regularity in (2.7) we conclude

∇′
k ×

(
1
ε
∇′

k × q j(·, k)

)
= ω2

j (k)q j(·, k) in L2
#(Q,C3) for each j ∈ N. (2.8)

For the spectrum of the operator L(H ) in L2(R2) one has

σ(L (H)) =
⋃
k∈B

σ(L (H)
k ) =

⋃
k∈B, n∈N

ωn(k),

see [18].

2.3. Spectral problem for the E−field

Let k ∈ B be fixed. As we show now, for each eigenfunction qj of (2.4) the function (for
ω j(k) �= 0)

pj(x, k) :=
i

ε(x)ω j(k)
∇′

k × q j(x, k) (2.9)

is an H#(curl2) eigenfunction of the eigenvalue problem for the E-field. Due to (2.7) we first
have pj(·, k) ∈ H#(curl). Next, (2.8) implies ∇′

k × pj(·, k) = iω j(k)q j(·, k) ∈ H#(curl), hence
pj(·, k) ∈ H#(curl2) and

L (E)
k pj(·, k) :=∇′

k ×∇′
k × pj(·, k) = εω2

j (k)pj(·, k) in L2
#(Q). (2.10)

The sequence (pj(·, k)) j satisfies the orthogonality

〈pi(·, k), pj(·, k)〉ε := 〈pi(·, k), εpj(·, k)〉 = δi j ∀ i, j ∈ N (2.11)
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because

〈pi(·, k), pj(·, k)〉ε =
1

ωi(k)ω j(k)

∫
Q

1
ε
∇′

k × qi(x, k) · ∇′
k × q j(x, k)dx

=
1

ωi(k)ω j(k)
ak(qi(·, k), q j(·, k)) = δi j.

Besides the periodicity in x the functions pn, n ∈ R, are quasiperiodic in k, namely

pn(x, k + K) = pn(x, k)e−iK·x for all x ∈ R2 and K ∈ Λ∗.

Two symmetries of the eigenfunctions pn will be used in the analysis. Firstly, because the
eigenvalue problem is invariant under the complex conjugation combined with replacing k
by −k, one sees that ωn(k) = ωn(−k) for all n ∈ N since they are real. Similarly, one also
deduces that pn(x, k) is an eigenfunction of L (E)

−k if and only if pn(x, k) is an eigenfunction of
L (E)

k . This implies that the eigenfunction pn(x,−k) can be chosen to agree with pn(x, k) for all
k ∈ R2\{0}. Notice that at k = 0 the operator L (E)

0 is real, so a real eigenfunction can always
be chosen. Hence we have

pn(x,−k) = pn(x, k) for all x, k ∈ R2, n ∈ N. (2.12)

Secondly, if ε(x) = ε(−x) and if pn(x, k) is an eigenfunction of L (E)
k , it is easy to show that

pn(−x, k) is an eigenfunction of L (E)
k , too. Therefore, if ωn(k)2 is a geometrically simple eigen-

value of (2.4), there is always a choice of the phase of the normalized eigenfunction pn such
that the PT −symmetry

pn(−x, k) = pn(x, k) for all x ∈ R2 (2.13)

holds.
The map k 
→ ωn(k) with ωn � 0 is called the nth eigenvalue and the map (k, n) 
→ ωn(k) the

band structure. Clearly, since the spectrum (for each k) is given by {ω1(k)2,ω2(k)2, . . .}, there
are also the negative eigenvalues ω−n := − ωn, but they play no role in our analysis. Notice
also that the band structure is the same for both operators L(H ) and L(E).

2.4. Inhomogeneous linear equation for the E−field

Our asymptotic and nonlinear analysis is performed for the E− field and in the fixed point
argument we need to solve the inhomogeneous problem

L (E)
k u − ω2εu = f (2.14)

with ω2 in the resolvent set of ε−1L (E)
k , i.e. of L (H)

k . In our application we have f ∈ H2
#(Q) and

the fixed point argument requires the estimate ‖u‖H2(Q) � c‖ f ‖H2(Q). We prove this estimate
next.

Lemma 2.1. Let k ∈ B, ε ∈ W2,∞(Q), ε−1 ∈ L∞(Q), ω2 ∈ C\{ω2
1(k),ω2

2(k), . . . }, and f ∈
H2

#(Q). Then (2.14) has a unique solution u ∈ H#(curl2) such that

‖u‖H2(Q) � c‖ f ‖H2(Q) (2.15)

holds.

Remark 8. Note that (2.15) is clearly not optimal as an estimate of the solution of (2.14). An
optimal estimate includes just the L2-norm on the right-hand side. However, as our nonlinear
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analysis below employs an estimate of the form ‖u‖H2 � c‖ f ‖H2 , this suboptimality is not of
essence.

Proof. For ω2 ∈ C\{ω2
1(k),ω2

2(k), . . . } we choose ω such that e.g. argω ∈
(
− π

2 , π
2

]
. We

define first

f̃ := − i
ω
∇′

k ×
f
ε

and solve L (H)
k v − ω2v = f̃ in the weak sense, see (2.5). Due to (2.6) we get ‖v‖H1(Q) �

c‖ f̃ ‖L2(Q). Since ε ∈ W1,∞(Q) and ε−1 ∈ L∞(Q), we get

‖v‖H1(Q) � c ‖ f ‖H(curl). (2.16)

Moreover, similarly to (2.7), using the Helmholtz decomposition of lemma A.1, we get
v ∈ H#(curl2ε ) and

L (H)
k v − ω2v = f̃ in L2

#(Q,C3). (2.17)

Next, we set

u :=
i
ωε

∇′
k × v − 1

ω2ε
f . (2.18)

Then ∇′
k × u = iωv and using (2.16) as well as the assumptions on ε, we have

‖u‖H(curl) � c‖ f ‖H(curl). (2.19)

Moreover, since v ∈ H#(curl), we have from ∇′
k × u = iωv also u ∈ H#(curl2) and thus,

applying ∇′
k× to (2.18), we obtain that (2.14) holds as an equation in L2

#(Q).
Next, we derive the desired H2-estimate on u. We start with H1. Because

‖u‖H1(Q) � c
(
‖u‖H(curl) + ‖∇′

k · u‖L2(Q)

)
(2.20)

and because of (2.19) it remains to estimate the divergence. Since ∇′
k · u = 1

ε (∇′
k · (εu) −

(∇′
kε) · u), from (2.18) we infer

∇′
k · u = −1

ε

(
1
ω
∇′

k · f − (∇′
kε) · u

)
. (2.21)

By ε ∈ W1,∞ and ε−1 ∈ L∞, we get then

‖∇′
k · u‖L2(Q) � c (‖ f ‖H1(Q) + ‖u‖L2(Q)) � c ‖ f ‖H1(Q), (2.22)

where the last inequality holds by (2.19). Next,

‖u‖H2(Q) � c
(
‖u‖L2(Q) + ‖∇′

k × u‖H1(Q) + ‖∇′
k · u‖H1(Q)

)
and, using again (2.18) and (2.21), and ε ∈ W2,∞ we obtain

‖u‖H2(Q) � c

(
‖u‖H1(Q) + ‖∇′

k ×
(

1
ε
∇′

k × v

)
‖H1(Q)+ ‖∇′

k × f ‖H1(Q) + ‖∇′
k · f ‖H1(Q)

)
.

The estimate (2.15) is finally deduced by (2.16), (2.17) and (2.19), (2.20), (2.22). �
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2.5. Bloch transformation

To take advantage of the fact that the coefficients of our problem (1.6) are periodic, we will
work in Bloch variables, i.e. we will employ the Bloch transform to change the problem into
a family of problems on the periodicity cell Q, parametrized by the wave vector k ∈ B. The
above discussion (sections 2.2 and 2.3) implies that the resulting equation has (for each k) a
linear operator with a discrete spectrum.

The Bloch transform T : L2(R2) → L2(B, L2
#(Q)) so that v 
→ ṽ and its inverse are formally

defined as

ṽ(x, k) = (T v)(x, k) :=
∑

K∈Λ∗
v̂(k + K)eiK·x ,

v(x) = (T −1ṽ)(x) =
∫
B

ṽ(x, k)eik·x dk

for all x, k ∈ R2, see e.g. [38] or [2, chapter 7]. For the domain and range of T see (2.26). Here
v̂ denotes the Fourier transform of v ∈ L1(R2)

v̂(k) :=
1

(2π)2

∫
R2
v(x)e−ik·x dx,

which is extended to L2(R2) functions as usual. We also define v̂(x) :=
∫
R2v(k)eik·xdk which

can be shown to be the inverse Fourier transform in L2(R2).
The definition of ṽ yields naturally the periodicity in x and the quasi-periodicity in k, i.e.

ṽ(x + R, k) = ṽ(x, k) for all R ∈ Λ, x ∈ R2, k ∈ R2,

ṽ(x, k + K) = e−iK·x ṽ(x, k) for all K ∈ Λ∗, x ∈ R2, k ∈ R2.
(2.23)

Moreover, the product of two functions f , g ∈ L2(R2) for which also f g ∈ L2(R2) is trans-
formed by T into a convolution of the transformed functions:

(T ( f g))(x, k) =
∫
B

f̃ (x, k − l)g̃(x, l) dl = :( f̃ ∗Bg̃)(x, k), (2.24)

where the quasiperiodicity property in (2.23) is used if k − l /∈ B. For the same reason the
convolution in B can be substituted by a convolution on any shifted Brillouin zone, i.e.

( f̃ ∗B g̃)(x, k) =
∫
B+k∗

f̃ (x, k − l)g̃(x, l) dl for all k∗ ∈ C2.

If h ∈ L∞(R2) enjoys periodicity with respect to the same lattice Λ and g ∈ L2(R2), then

(T (hg))(x, k) = h(x)(T g)(x, k) (2.25)

for almost all x ∈ R2 and k ∈ B.
The function spaces for the Bloch transform. Let Hs(Rn) with s > 0 be the stankdard
(possibly fractional) Sobolev space. The Bloch transform

T : Hs(Rn,C) →Xs := L2(B, Hs
#(Q,C)) (2.26)

is an isomorphism for s � 0 [35, 38]. The norm in Xs is defined as

‖ũ‖Xs =

(∫
B

‖ũ(·, k)‖2
Hs(Q)dk

) 1
2

,
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where Q is an arbitrary interval in Rn and B the corresponding reciprocal periodicity cell.
For our application we have n = 2 with Q and B as defined in section 1. For vector-valued
functions u ∈ Hs(Rn,Cm), m ∈ R, the transform T is defined componentwise and the space
Xs is Xs :=L2(B, Hs

#(Q,Cm)) with the norm ‖ f ‖Xs :=max1� j�m‖ f j‖Xs .
Note that due to the quasi-periodicity of ũ in k, the Xs-norm is equivalent to(∫

B+k∗
‖ũ(·, k)‖2

Hs(Q)

) 1
2

for any k∗ ∈ R2. We take advantage of this property in our estimates below.
Because of the polynomial nonlinearity in (1.6) and our approach employing a fixed point

argument we require our function space to have the algebra property with respect to the point-
wise multiplication. We recall that if s > n/2, the Sobolev space Hs(Rn) enjoys this property.
Moreover, it embeds into the space of bounded and continuous functions decaying to 0 at ∞.

In the Bloch variables, where multiplication is transformed into a convolution, we need
the algebra property with respect to the convolution. Combining the algebra property of
Hs(Rn), s > n/2, and (2.24), we get the following algebra property for our working space Xs:

‖ f̃ ∗Bg̃‖Xs � c ‖ f̃ ‖Xs‖g̃‖Xs for any f̃ , g̃ ∈ Xs if s > n/2. (2.27)

We introduce also the weighted spaces L2
s (Rn) defined as

L2
s (Rn) :=

{
f ∈ L2(Rn) | ‖ f ‖2

L2
s (Rn) :=

∫
Rn

(1 + |x|)2s| f (x)|2 dx < ∞
}
. (2.28)

Recall that the Fourier transform is an isomorphism from Hs(Rn) to L2
s (Rn) for s � 0.

3. Assumptions

We start with the following basic assumptions on the coefficients and on the band structure.

(A1) ε : R2 → R and χ (3) : R2 → R3×3×3×3 are Λ-periodic and real-valued and ε > 0;
(A2) The spectrum ∪n∈N,k∈B{ωn(k)} ⊂ R possesses a gap;
(A3) The points k (1), . . . , k (N) ∈ B are distinct and constitute the level set Wω∗ ⊂ B of one of

the gap edges, denoted by ω∗, and the eigenvalues at the level ω∗ are all geometrically
simple, i.e.

ω∗ = ωn(k), n ∈ N, k ∈ B ⇒ k ∈ {k (1), . . . , k (N)},

and
dim ker

(
L (E)

k ( j) − εω2
∗I
)
= 1.

Hence, due to the monotonicity ωn(k) � ωn+1(k), we have

∃n∗ ∈ N : ωn∗(k ( j)) = ω∗ ∀ j ∈ {1, . . . , N}.

(A4) The eigenvalue ωn∗ is twice continuously differentiable at k( j) and ∇2ωn∗(k
( j)), the

Hessian of ωn∗ at k = k( j), is definite for each j ∈ {1, . . . , N}.

The formal asymptotic analysis of gap solitons in [43] used assumptions (A1), (A2), and
(A4). In assumption (A3) multiple eigenvalues were allowed at the points k( j), j = 1, . . . , N.
Here, in order to be able to prove symmetries of the Bloch waves at k( j), j = 1, . . . , N, which
are needed in the restriction of the nonlinear problem to a symmetric subspace, we require
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the geometric simpleness. The unique (up to a phase factor eiα) normalized eigenfunction at
k = k( j) and ω = ω∗ is denoted by pn∗(·, k ( j)).

Note that, according to the mathematical folklore, simple eigenvalues depend smoothly on
the coefficients of the operator. Nevertheless, we are not aware of an existing result applica-
ble to our operator L (H)

k or L (E)
k , hence we assume the C2-regularity in (A4). In addition our

proof requires the Lipschitz continuity throughout B, which we prove in the appendix, see
lemma A.2.

Clearly, ω∗ must be the maximum or minimum of the eigenvalue ωn∗ . Hence, based on
(A4), ∇2ωn∗(k ( j)) is either positive definite for all j or negative definite for all j. Note that
the assumption that ω∗ is attained at the points k = k( j), j = 1, . . . , N by the same eigenvalue
ωn∗ is in accordance with the numbering of the eigenvalues ωn(k) at each k according to the
magnitude.

Remark 9. Assumption (A3) seems relatively restrictive as it does not allow for
{k(1), . . . , k(N )} to be a proper subset of the level set Wω∗ . We need this assumption to estimate
the correction term, which is supported (in the wave-number k) away from small neighbour-
hoods of the points {k(1), . . . , k(N )}, i.e. away from the support of the main contribution of
the solution. The support of the correction term must not intersect Wω∗ because otherwise
(ωn∗(k) − ω∗)−1 blows up on this support. Note that this can be contrasted against the case of
the bifurcation of nonlinear Bloch waves in [15], where {k(1), . . . , k(N )} can be a proper subset
of Wω∗ provided the k-points generated by (iterations of) the nonlinearity, i.e. the points

k ∈ Sn
3({k (1), . . . , k (N)}) for some n ∈ N,

where

S3({k (1), . . . , k (N)}) := {k (α) + k (β) − k (γ) : α, β, γ ∈ {1, . . . , N}},

lie outside the level set. Unlike in [15] the k-support of the leading order term of the gap solitons
contains whole neighbourhoodsof the points {k(1), . . . , k(N )} (and not isolated points) implying
iterations of S3 applied to the union of these neighbourhoods generate all k ∈ B.

It is however possible for some components of the CME-solutions to be zero, i.e.
Am1 = · · · = AmM = 0 for some 1 � m1, . . . , mM � N (with M < N). This can hap-
pen only if the CMEs are consistent with the reduction to the components Ak, k ∈
{1, . . . , N}\{m1, . . . , mM} or equivalently if

S3({k (m1), . . . , k (mM)}) ∩ {k (1), . . . , k (N)} = {k (m1), . . . , k (mM)}.

In that sense assumption (A3) is effectively the same as assuming that {k(1), . . . , k(N )} is a
consistent subset (in the above sense) of the level set Wω∗ and that Wω∗ is finite.

To rigorously justify the formal approximation via (1.8), we need to assume the following
additional conditions:

(A5) the material functions ε and χ(3) satisfy ε ∈ W2,∞(R2), ε−1 ∈ L∞(R2), χ (3) ∈ H2
loc(R2);

(A6) symmetry of the material: ε(x) = ε(−x), χ(3)(x) = χ(3)(−x) for all x ∈ R2;
(A7) the eigenvalue ωn∗(k) is geometrically simple for almost all (w.r.t. the Lebesgue measure)

k ∈ B.

Note that assumption (A7) allows for the touching of eigenvalue graphs (k,ωn∗(k)) and
(k,ωm(k)) with m �= n∗ as long as they touch along a curve; which is the canonical situation.
This curve may include the points k(1), . . . , k(N ), see assumption (A3).
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Under the above assumptions theorem 1.1 justifies the use of the effective amplitude
equation (1.10) to determine the envelopes A j in the ansatz (1.8) and constitutes the main result
of the paper. It uses the following definition.

Definition 3.1. A solution A∗ ∈ L2(R2)N of (1.10), denoted by G(A) = 0, is called non-
degenerate if the kernel of the Jacobian of G evaluated at A∗ is only three dimensional as
generated by the two spatial shift invariances and the complex phase invariance of the CMEs,
i.e.

ker

(
∂ARGR(A∗) ∂AIGR(A∗)
∂ARGI(A∗) ∂AIGI(A∗)

)
= span

{
∂y1

(
A∗,R

A∗,I

)
, ∂y2

(
A∗,R

A∗,I

)
,

(
−A∗,I

A∗,R

)}
,

where A∗,R :=Re(A∗), A∗,I := Im(A∗) and analogously for the other variables and functions.

Assumptions (A.6) and (A.7) are used to remove invariances (and thus eliminate non-trivial
elements of the kernel) in a perturbed CME-problem by restricting to a symmetric subspace.
This perturbed system is obtained in the justification analysis. The symmetric subspace is
defined by the PT -symmetry, see definition 1.1. In this subspace the CMEs no longer possess
the invariances wrt. the spatial shift and the complex phase. Hence, under the non-degeneracy
condition, the linearized operator of the perturbed CME system is invertible. Note that other
symmetric subspaces can be used to eliminate the kernel, see [13].

Moreover, the evenness of ε and χ(3) implies that the coefficients I j
α,β,γ are real as explained

at the end of section 4.6.1.

4. Proof of theorem 1.1

From now on, the bifurcation parameterω is chosen to lie in the spectral gap in a O(ε2)-vicinity
of the edge ω∗, i.e.

ω = ω∗ + ε2Ω, (4.1)

where Ω = ±1, the sign being determined by the condition that ω shall lie in the gap. Hence,
Ω = ±1 if ω∗ is the bottom/top edge of a spectral gap, respectively.

4.1. Lyapunov–Schmidt decomposition

We study the problem in Bloch variables in the space X2. Applying the Bloch transform T to
(1.6), we get

Lkũ(x, k) :=∇′
k ×∇′

k × ũ(x, k) − ω2ε(x)ũ(x, k) = ω2F̃(ũ)(x, k), (4.2)

where

F̃d(ũ) =
3∑

a,b,c=1

χ (3)
a,b,c,d

ũa∗Bũb∗Bũc. (4.3)

Here properties (2.24) and (2.25) have been used. Recall that ω is fixed as in (4.1). Note that
in (4.3) the double convolution equals (ũa∗Bũb)∗Bũc = ũa∗B(ũb∗Bũc).
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Note also that below f ∗Bg is understood componentwise for scalar f and vector valued g.
Theorem 1.1 claims that the solution can be approximated by a modulated sum of the Bloch

eigenfunction pn∗(·, k) at the chosen points k(1), . . . , k(N ). Therefore, we decompose ũ into the
part ṽ corresponding to the eigenfunction pn∗ and the rest w̃. Next, ṽ is once more split into a
first term which incorporates the behaviour in the vicinity of the points k(1), . . . , k(N ) and a rest.
To this end, we first introduce some projections on L2(Q) which take into account the presence
of the potential ε(·).
Projections. Let Pk denote the standard L2(Q)-projection onto the mode pn∗(·, k), i.e. for f ∈
L2(Q)

(Pk f )(·, k) := 〈 f , pn∗(·, k)〉 pn∗(·, k),

and let Qk := I − Pk be its L2-orthogonal projection. As the normalization of the mode pn∗(·, k)
holds in the L2-norm weighted by the periodic potential ε(·) (see (2.11)), we also introduce

(Pε
k f )(·, k) := 〈 f , ε(·)pn∗(·, k)〉 pn∗(·, k) and Qε

k := I − Pε
k

as well as

εPk := ε(·)Pk and εQk := I − εPk = I − ε(·)Pk.

Lemma 4.1. Pε
k, Qε

k, εPk, and εQk are projections in L2(Q) for which the following orthog-
onality conditions hold:

(a) Pε
kL2⊥L2

εQkL2,
(b) εPkL2⊥L2Qε

kL2,
(c) Pε

kL2⊥L2
ε
Qε

kL2,
(d) εPkL2⊥L2

ε−1

εQkL2,

where L2 stands for L2(Q) and L2
w is the weighted L2(Q) by the weight w(·), i.e. f ⊥L2

w
g

means
∫
Q f · gwdx = 0.

Proof. We prove just (a), the proof of the claims (b)–(d) being similar.
Let f ∈ εQkL2(Q), that is f ∈ L2(Q) such that εPkv = 0. Hence 〈 f , pn∗(·, k)〉 = 0. Let

moreover g ∈ Pε
kL2(Q), i.e. g = Pε

kg. Then,

〈 f , g〉 = 〈 f , 〈g, ε(·)pn∗(·, k)〉 pn∗(·, k)〉 = 〈g, ε(·)pn∗(·, k)〉〈 f , pn∗(·, k)〉 = 0.

�
In the sequel the operator Lk in (4.2) needs to be inverted with the inverse bounded inde-

pendently of ε. Recall that for ω = ω∗ the kernel of Lk is non-trivial at k ∈ Wω∗ , i.e. at
k ∈ {k(1), . . . , k(N )}, cf (A3). For ω = ω∗ + ε2Ω the bound on the inverse explodes as ε→ 0.
The Lyapunov–Schmidt reduction based on the projections introduced above decomposes the
problem into a critical and a regular part. In particular, the projections εPk and Pε

k are onto
the set of modes, the eigenfunctions of which attain in B the ‘critical’ value ω∗, cf (A3). This
means, we expect that the complementary projections produce an operator with the inverse
bounded independently of ε. This is what we prove in the following result.

Lemma 4.2. There exists ε0 > 0 such that for all ε ∈ (−ε0, ε0) and Ω = ±1 the linear
operator Lk := εQkLkQε

k : H#(curl2,Q) → εQkL2
#(Q) with ω = ω∗ + ε2Ω is invertible on
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Qε
kH#(curl2,Q) and

‖L−1
k ‖εQkL2

#
→Qε

kH#(curl2) � CL, (4.4)

where the constant CL is independent of ε,Ω, and k.

Remark 10. We point out that the operator Lk depends on ε via the factor ω2 in Lk.

Proof. Step 1. Lk is injective. Due to the linearity of Lk it is equivalent to show that if
v ∈ Qε

kH#(curl2,Q) such that Lkv = 0, then v = 0. Let thus v ∈ H#(curl2,Q) be such that
Qε

kv = v. Lkv = 0 means that

LkQε
kv = Lkv ∈ ker εQk = span{εpn∗(·, k)}.

In addition, the assumption Qε
kv = v implies Pε

kv = 0, i.e. 〈v, εpn∗(·, k)〉 = 0. Hence

Lkv = ε〈Lkv, pn∗(·, k)〉pn∗(·, k) = ε〈v, Lk pn∗(·, k)〉pn∗(·, k)

= ε(ω2
n∗(k) − ω2

∗)〈v, εpn∗(·, k)〉pn∗(·, k) = 0.

This implies v = 0 because ω /∈ σ(L) =
⋃

k∈Bσ(Lk).
Step 2. Lk is surjective. The aim is to show that for any f ∈ εQkL2

#(Q) there exists
u ∈ Qε

kH#(curl2,Q) such that Lku = f .
First, notice that f ∈ εQkL2

#(Q) if and only if f ∈ L2
#(Q) and 〈 f , pn∗(·, k)〉 = 0. By

the closed range theorem the equation Lku = f is solvable in the domain of Lk, i.e. in
H#(curl2,Q), if and only if f ⊥ ker (Lk). Here we are using that the operator Lk is self-adjoint
and we postpone the proof to the subsequent lemma 4.3. Let thus v ∈ ker

(
εQkLkQε

k

)
, i.e.

v = εPkLkQε
kv, then there holds

〈 f , v〉 = 〈εQk f , εPkLkQε
kv〉 = 〈εPkLk

εQk f , Qε
kv〉,

where the symmetry of εPkLk is shown in lemma 4.3. Noticing that by lemma 4.1(b) the spaces
εPkL2 and Qε

kL2 are L2-orthogonal, we deduce 〈 f , v〉 = 0, i.e. f ⊥ ker (Lk). The sought function
is then Qε

ku, with u given by the closed range theorem.
Step 3. The estimate (4.4). Recall first that for a linear self-adjoint operator A acting on a

Hilbert space, the well-known estimate

‖A−1‖ � dist(0,σ(A))−1

holds, where σ(A) denotes its spectrum. The self-adjointness of εQkLkQε
k is shown in lemma

4.3(b), so we need to bound dist(0, σ(εQkLkQε
k))−1.

For a fixed ω the spectrum of Lk is given by ∪ j∈N{ω2
j (k) − ω2} as shown in sections 2.2 and

2.3. The application of the projections εQk and Qε
k yields σ(Lk) =

⋃
j∈N\{n∗}{ω

2
j (k) − ω2}. By

our assumptions on the band structure (A3) we infer that each of the remaining eigenvalues has
some positive distance toω∗, hence for all j �= n∗ we have infk∈B|ω2

j (k) − ω2
∗| =: m j > 0. Since

the map j 
→ ω j(k) is increasing for every k ∈ B fixed, m :=min j�=n1,...,nN m j > 0 is well-defined
and we infer

‖(εQkLkQε
k)−1‖εQkL2

#
→Qε

kH#(curl2)

� dist(0, σ(εQkLkQε
k))−1 � 2

(
min

j�=n1,...,nN
inf
k∈B

|ω2
j (k) − ω2|

)−1

=
2
m

=: CL

for all ε small enough. �
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Remark 11. Notice that without the projections estimate (4.4) does not hold even if
Ω ∈ {−1, 1} is chosen such that ω = ω∗ + ε2Ω lies outside the spectrum. The operator Lk

would be invertible but by (4.1) we would only get dist(0, σ(Lk)) = O(ε2), whence ‖L−1
k ‖would

not be bounded uniformly in ε.

Lemma 4.3.

(a) The operator εPkLk : H#(curl2,Q) → L2
#(Q) is symmetric.

(b) The operator Lk : H#(curl2,Q) → εQkL2
#(Q) is self-adjoint.

Proof. (i) Let v,w ∈ H#(curl2,Q), then

〈εPkLkv,w〉 = 〈PkLkv, εw〉 = 〈Lkv, pn∗(·, k)〉〈pn∗(·, k), εw〉
= 〈v, Lk pn∗(·, k)〉〈εpn∗(·, k),w〉

= 〈v, εpn∗(·, k)〉〈ωn j(k∗)
2εpn∗(·, k),w〉

= 〈v, εpn∗(·, k)〉〈Lk pn∗(·, k),w〉

= 〈v, εpn j(·, k)〉〈pn∗(·, k), Lkw〉

= 〈v, εpn∗(·, k)〉〈Lkw, pn∗ (·, k)〉 = 〈v, εPkLkw〉.

(ii) First we claim that for v ∈ H#(curl2,Q) one can rewrite Lkv as

Lkv = Lkv − (ω2
∗ − ω2)〈v, εpn∗(·, k)〉εpn∗(·, k). (4.5)

Indeed, recalling the expression of the projections εQk and Qε
k, one finds

Lkv = εQkLkQε
kv = LkQε

kv − 〈LkQε
kv, pn∗(·, k)〉εpn∗(·, k)

= Lk

(
v − 〈v, εpn∗(·, k)〉pn∗(·, k)

)
− 〈
(
v − 〈v, εpn∗(·, k)〉pn∗(·, k)

)
, Lk pn∗(·, k)〉εpn∗(·, k)

= Lkv − 〈v, εpn∗(·, k)〉Lk pn∗(·, k) − 〈v, Lk pn∗(·, k)〉εpn∗(·, k)

+ 〈v, εpn∗(·, k)〉〈pn∗(·, k), Lk pn∗(·, k)〉εpn∗(·, k),

having used the symmetry of Lk on H#(curl2,Q). Identity (4.5) is then proven recalling that
pn∗(·, k) are normalized as in (2.11) and Lk pn∗(·, k) = (ω2

∗ − ω2)εpn∗(·, k).
Next, we show that D(L∗

k) ⊂ H#(curl2,Q), where L∗
k denotes the adjoint operator of Lk.

Let φ ∈ D(L∗
k), then there exists η ∈ L2

#(Q) so that 〈Lkv,φ〉 = 〈v, η〉 for all v ∈ D(Lk) =

H#(curl2,Q). Using (4.5) and reorganising the terms, one obtains

〈Lkv,φ〉 = 〈v, η + (ω2
∗ − ω2)〈φ, εpn∗(·, k)〉εpn∗(·, k)〉 =: 〈v, η̃〉 (4.6)

with η̃ ∈ L2
#(Q). This means that φ ∈ D(L∗

k) = D(Lk) = H#(curl2,Q) since Lk is self-adjoint
[8].

Finally, for φ ∈ H#(curl2,Q) one has 〈Lkv,φ〉 = 〈v, Lkφ〉, therefore from (4.5) and (4.6)
one infers

〈Lkv,φ〉 = 〈v, Lkφ〉 − (ω2
∗ − ω2)〈v, εpn∗(·, k)〉〈εpn∗(·, k),φ〉

= 〈v, Lkφ− (ω2
∗ − ω2)〈φ, εpn∗(·, k)〉εpn∗(·, k)〉 = 〈v,Lkφ〉.

5280



Nonlinearity 34 (2021) 5261 T Dohnal and G Romani

This impliesφ ∈ D(L∗
k) and thatLk is symmetric. Having proved that D(L∗

k) = H#(curl2,Q) =
D(Lk) and the symmetry, we conclude that Lk is self-adjoint. �

Decomposition of the solution. We decompose the solution ũ of (4.2) using the above
projections as

ũ(x, k) = ṽ(x, k) + w̃(x, k), (4.7)

where

ṽ(x, k) :=Pε
kũ(x, k) = 〈ũ(·, k), ε(·)pn∗(·, k)〉 pn∗(x, k) =: U(k)pn∗(x, k)

and

w̃(x, k) :=Qε
kũ(x, k),

and where we have defined

U(k) := 〈ũ(·, k), ε(·)pn∗(·, k)〉.

We note that U is Λ-periodic because ũ(x, ·) and pn∗(x, ·) are quasiperiodic.
Now we suitable project equation (4.2) and find an equivalent system of two equations, the

linear part of which is decoupled. On the one hand, applying Pk to (4.2), we find

ω2〈F̃(ũ)(·, k), pn∗(·, k)〉 = 〈ũ(·, k),
(
∇′

k ×∇′
k ×−ω2ε(·)

)
pn∗(·, k)〉

= 〈ũ(·, k),
(
ω2

n∗(k) − ω2
)
ε(·)pn∗(·, k)〉.

By the definition of U we have(
ω2

n∗(k) − ω2
)

U(k) = ω2〈F̃(ũ)(·, k), pn∗(·, k)〉. (4.8)

On the other hand, we get

εQkLkQε
kw̃(x, k) = ω2 εQk f̃ (ũ)(x, k). (4.9)

Indeed, Lkũ(x, k) = Lk (ṽ(x, k) + w̃(x, k)), where w̃(x, k) = Qε
kw̃(x, k) and

εQkLkṽ(x, k)= εQk

(
U(k)

(
ω2

n∗(k) − ω2
)
ε(·)pn∗(·, k)

)
= U(k)

(
ω2

n∗(k) − ω2
)

(I − ε(·)Pk)
(
ε(·)pn∗(·, k)

)
= U(k)

(
ω2

n∗(k) − ω2
) (

ε(·)pn∗(·, k)

− ε(·)〈ε(·)pn∗(·, k), pn∗(·, k)〉pn∗(·, k)
)

= 0

by the normalization (2.11) of the Bloch eigenfunctions.
Next, we decompose w̃ further into

w̃(x, k) = w̃0(x, k) + w̃R(x, k),

where w̃0 and w̃R solve the equations

εQkLkQε
kw̃0(x, k) = ω2 εQkF̃(ṽ)(x, k), (4.10)
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εQkLkQε
kw̃R(x, k) = ω2εQk(F̃(ũ) − F̃(ṽ))(x, k). (4.11)

The system (4.8), (4.10), and (4.11) is an equivalent reformulation of equation (4.2). We
search for a solution ũ (represented by the variables U, w̃0, w̃R) which is close to the Bloch
transformation of the formal ansatz uans. In detail, for the sought solution the components w̃0

and w̃R are small and U is concentrated at the points k( j), j = 1, . . . , N and near the concentra-
tion points k( j) it approximates Â j, where A is a solution of the CMEs. The Bloch transformation
of the formal ansatz is

ũans(x, k) =
1
ε

N∑
j=1

∑
K∈Λ∗

Â j

(
k − k ( j) + K

ε

)
pn∗(x, k ( j))eiK·x (4.12)

using (2.25) and the fact that
(

A(ε·)eik ( j)·
)∧

(k) = ε−2Â(ε−1(k − k ( j))). Since Â j(ε−1(k − k ( j)))

is concentrated near k = k( j), we decompose U on B into N + 1 parts with the first N being
compactly supported in the vicinity of one of the points k( j) and the last one supported away
from all k( j). This is then extended Λ∗-periodically onto R2. We write

U(k) =
N∑

k=1

1
ε

B̂ j

(
k − k ( j)

ε

)
+ Ĉ(k), k ∈ R2,

where

supp

(
B̂ j

(
· − k ( j)

ε

))
∩ B = Bεr (k ( j)) and supp(Ĉ) ∩ B = B\

N⋃
j=1

Bεr (k ( j)) (4.13)

and where Ĉ is Λ∗-periodic and B̂ j is ε−1Λ∗-periodic on R2. That means

Ĉ(k + K) = Ĉ(k), B̂ j(k + ε−1K) = B̂ j(k) for all K ∈ Λ∗ and k ∈ R2.

Here r ∈ (0, 1) is a parameter to be specified to suit the nonlinear estimates. Moreover we
define B̂∗

j and Ĉ∗ as the restrictions of such functions to the periodicity cell, i.e.

B̂∗
j :=χε−1BB̂ j and Ĉ∗ :=χBĈ.

We point out that in B̂ j and Ĉ the ·̂ notation does not refer to the Fourier transform of
given functions B j, C; it just stresses out the connection between B̂ j and Â j, the latter of course
being the Fourier transform of A j. With this further decomposition the sought solution has the
components B̂∗

j close to Â j and the component Ĉ∗ small. Note that Â j, j = 1, . . . , N, satisfies
equation (1.10) transformed in Fourier variables, i.e.

ΩÂ j(k′)−
1
2

(
(k′1)2∂2

k1
ωn∗(k

( j))+(k′2)2∂2
k2
ωn∗(k

( j))+2k′1k2∂
2
k1k2

ωn∗(k
( j))

)
Â j(k′)+N̂ j(k′)= 0, k′ ∈R2.

(4.14)

The aim now is to apply a fixed point argument to solve system (4.8), (4.10), and (4.11),
which is of course coupled in the components (B̂ j)N

j=1, Ĉ, w̃0, w̃R. The equations for the compo-
nents w̃0 and w̃R both involve the linear operator εQkLkQε

k, see (4.10) and (4.11). This operator
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is boundedly invertible on its image by lemma 4.2, and the bound on the inverse is independent
of ε. This is thanks to the fact that the projection Qε

k projects the Bloch eigenfunction pn∗ out.
We will also make use of the notation

ṽB(x, k) :=
N∑

j=1

ṽB j(x, k) where ṽB j(x, k) :=
1
ε

B̂ j

(
k − k ( j)

ε

)
pn∗(x, k) (4.15)

and

ṽC(x, k) := Ĉ(k)pn∗(x, k).

We can thus write

ṽ(x, k) = ṽB(x, k) + ṽC(x, k).

Inspired by the strategy of [9, 12, 13], our algorithm to construct a solution ũ ∈ X2 of
problem (4.2) is the following nested fixed point argument.

(a) For any given ṽ bounded, determine the unique small solution w̃0 of the linear problem
(4.10) by means of lemma 4.2;

(b) For any given ṽ bounded and w̃0 from step 1, apply the Banach fixed point theorem to
(4.11) in a neighbourhood of zero to find a small solution w̃R;

(c) For any given N-tuple (B̂ j)N
j=1 with (B̂∗

j)
N
j=1 decaying sufficiently fast, find a small Ĉ with

support as in (4.13) applying the Banach fixed point theorem to (4.8) on this support;
(d) For Ĉ given by step 3 prove the existence of such solutions (B̂∗

j)
N
j=1 to (4.8) which are

close to (Â j)N
j=1 and have the support as in (4.13). It is here where the restriction to a

PT -symmetric subspace is used.

The rest of the section carries this algorithm out.

4.2. Preliminary estimates

We define for convenience L2 := L2(R2) and L2
sB

:=L2
sB

(R2) (the weighted space L2
s (R2) defined

in (2.28)).

Lemma 4.4. The following inequalities hold

‖ṽB‖X2 � c
N∑

j=1

‖B̂ j‖L2(ε−1B), ‖ṽC‖X2 � c ‖Ĉ‖L2(B).

Proof. Using the regularity result in lemma A.3, we have ‖pn∗(·, k)‖H2(Q) uniformly bounded
in k ∈ B. Therefore,

‖ṽC‖X2 � ess supk∈B‖pn∗(·, k)‖H2(Q)‖Ĉ‖L2(B) � c ‖Ĉ‖L2(B),

‖ṽB‖X2 � ess supk∈B‖pn∗(·, k)‖H2(Q)
1
ε

N∑
j=1

∥∥∥∥B̂ j

(
· − k ( j)

ε

)∥∥∥∥
L2(B+k ( j))

� c
N∑

j=1

(∫
ε−1B

|B̂ j(t)|2 dt

) 1
2

= c
N∑

j=1

‖B̂ j‖L2(ε−1B).
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Note that in the first inequality for ‖ṽB‖X2 the k( j)-shift of the k-integral is allowed due to the
periodicity of B̂ j. �

Clearly, the estimate in lemma 4.4 is O(1) in ε. In estimating the residual below, it will be
necessary to show the smallness of the nonlinearity in the X2-norm for ε small. Inspired by
(33) in [14], the next lemma produces this smallness for the components ṽB if sB � 2.

Lemma 4.5. Let sB � 2. For a, b ∈ {1, 2, 3} and ṽB defined in (4.15) there holds

‖ṽB,a∗BṽB,b‖X2 � cε
N∑

i, j=1

‖B̂∗
i ‖L2

sB
‖B̂∗

j‖L2
sB
.

Proof. For a ∈ {1, 2, 3} we define vB,a := T −1ṽB,a. First,

‖ṽB,a∗BṽB,b‖2
X2

= ‖ṽB,avB,b‖2
X2

� c‖vB,avB,b‖2
H2(R2), (4.16)

by the isomorphism (2.26). We now claim that

‖vB,avB,b‖2
H2(R2) � cε4

N∑
i, j=1

‖B∗
i (ε·)B∗

j(ε·)‖2
H2(R2), (4.17)

where B∗
i := (B̂∗

i )∨ for i ∈ {1, . . . , N}. Indeed, for i, j ∈ {1, . . . , N} one has

‖vBi,avB j,b‖2
L2(R2) � cε4ess supk∈B‖pn∗(·, k)‖2

∞

∫
C2

∏
l=i, j

∣∣∣∣∫
ε−1B

B̂l(κ)eiεκ·x dκ

∣∣∣∣2 dx

� cε4‖B∗
i (ε·)B∗

j(ε·)‖2
L2(C2),

‖∇
(
vBi ,avB j,b

)
‖2

L2(R2) � cε4ess supk∈B‖pn∗(·, k)‖2
W1,∞

×
∫
R2

∏
l=i, j

∣∣∣∣∫
ε−1B

(1 + iεκ)B̂l(κ)eiεκ·x dκ

∣∣∣∣2dx

� ε4‖B∗
i (ε·)B∗

j(ε·)‖2
H1(R2)

and analogously one infers

‖∇2
(
vBi ,avB j,b

)
‖2

L2(R2) � ε4‖B∗
i (ε·)B∗

j(ε·)‖2
H2(R2).

Notice that here we used the regularity estimate for the eigenfunctions given by lemma A.4.
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Therefore, combining (4.16) and (4.17) one finds

‖ṽB,a∗BṽB,b‖2
X2

� cε4
N∑

i, j=1

‖B∗
i (ε·)B∗

j(ε·)‖2
H2(R2)

= cε4
N∑

i, j=1

∫
R2

(1 + |k|2)2
∣∣∣(B∗

i (ε·)B∗
j(ε·)

)∧
(k)
∣∣∣2 dk

� cε4
N∑

i, j=1

∫
R2

∣∣∣(B∗
i (ε·)B∗

j(ε·)
)∧

(k)
∣∣∣2 dk + cε4

N∑
i, j=1

∫
R2
|k|4
∣∣∣(B∗

i (ε·)B∗
j(ε·)

)∧
(k)
∣∣∣2 dk

= cε4
N∑

i, j=1

‖B∗
i (ε·)B∗

j(ε·)‖2
L2(R2) + cε4

N∑
i, j=1

∫
R2

∣∣ε−1k
∣∣4∣∣∣(B∗

i B∗
j

)∧ (
ε−1k

)∣∣∣2 dk

� cε2
N∑

i, j=1

‖B∗
i ‖2

L∞‖B∗
j‖2

L2(R2) + cε6
N∑

i, j=1

‖
(
B∗

i B∗
j

)∧‖2
L2

2(R2)

� cε2
N∑

i, j=1

‖B∗
i ‖2

H2(R2)‖B∗
j‖2

H2(R2)

� cε2
N∑

i, j=1

‖B̂∗
i ‖2

L2
2(R2)‖B̂∗

j‖2
L2

2(R2).

Notice that we have used the embedding H2(R2) ↪→ L∞(R2) and, to conclude, the isomorphism
property of the Fourier transform between H2(R2) and L2

2(R2). �

For the analysis of the nonlinearity we need to calculate the double convolutions ṽa∗Bṽb∗Bṽc

(for a, b, c ∈ {1, 2, 3}) appearing in F̃(ṽ). We have

(ṽa∗Bṽb∗Bṽc)(x, k) =
∫
B

(∫
B

ṽa(k − s − t, x)ṽb(t, x)dt

)
ṽc(s, x)ds

=

∫
2B

∫
B

ṽa(k − l, x)ṽb(l − s, x)ṽc(s, x)ds dl (4.18)

using the transformation l = s + t. Also note that the integration domains 2B and B can be
both shifted by an arbitrary k∗ ∈ R2 due to the quasi-periodicity of ṽa, ṽb, and ṽc with respect
to the variable k.

Lemma 4.6. Let B̂ j ∈ L2
sB

(ε−1B) with sB > 1 and Ĉ ∈ L2(B) have the supports as in (4.13).
Then

‖F̃(ṽ)‖X2 � cε2

⎛⎝ N∑
α,β,γ=1

‖B̂∗
α‖L2

sB
‖B̂∗

β‖L2
sB
‖B̂∗

γ‖L2
sB
+

N∑
α,β=1

‖B̂∗
α‖L2

sB
‖B̂∗

β‖L2
sB
‖Ĉ∗‖L2

⎞⎠
+ cε

N∑
α=1

‖B̂∗
α‖L2

sB
‖Ĉ∗‖2

L2 + c ‖Ĉ∗‖3
L2 . (4.19)
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For F̃(ṽB) we have for each d = 1, 2, 3

F̃d(ṽB)(x, k) = ε

3∑
a,b,c=1

χ (3)
a,b,c,d

(x)
N∑

α,β,γ=1

∫
2ε−1B

∫
ε−1B

B̂α

(
k − (k (α) + k (β) − k (γ))

ε
− l

)

· B̂β(l − t) B̂γ(t) pn∗,a(x, k − k (β) + k (γ) − εl)

· pn∗,b(x, k (β) + ε(l − t)) pn∗,c(x,−k (γ) + εt) dt dl (4.20)

and the estimate

‖F̃(ṽB)‖X2 � cε2
N∑

α,β,γ=1

‖B̂∗
α‖L2

sB
‖B̂∗

β‖L2
sB
‖B̂∗

γ‖L2
sB
. (4.21)

Proof. First, notice that

ṽB(x, k) =
1
ε

N∑
j=1

B̂ j

(
k + k ( j)

ε

)
pn∗(x, k).

Indeed,

ṽB(x) =
1
ε

N∑
j=1

∫
B

B̂ j

(
k − k ( j)

ε

)
pn∗(x, k)e−ik·x dk

=
1
ε

N∑
j=1

∫
B

B̂ j

(
−k + k ( j)

ε

)
pn∗(x, k)e−ik·x dk

=
1
ε

N∑
j=1

∫
B

B̂ j

(
k + k ( j)

ε

)
pn∗(x,−k)eik·x dk

and finally we use the symmetry pn∗(x,−k) = pn∗(x, k), see (2.12).
Similarly,

ṽC(x, k) = Ĉ(k)pn∗(x, k).

We start with formula (4.20). Using (4.18), we have

F̃d(ṽB)(x, k) = ε

3∑
a,b,c=1

χ (3)
a,b,c,d

(x)
N∑

α,β,γ=1

∫
2B+k (β)−k (γ)

∫
B−k (γ)

B̂α

(
k − l − k (α)

ε

)

· B̂β

(
l − t − k (β)

ε

)
B̂γ

(
t + k (γ)

ε

)
pn∗,a(x, k − l)pn∗,b(x, l − t)pn∗,c(x, t) dt dl,

where we have used (4.18) and the fact that due to the quasi-periodicity in k the convo-
lution domains can be shifted by arbitrary k∗ ∈ R2. The transformations t′ = ε−1(t + k(γ)),
l′ = ε−1(l − k(β) + k(γ)) produce (4.20).
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The estimates (4.19) and (4.21) are proved next. Let us denote ‖χ (3)‖H2(Q) :=

maxa,b,c,d∈{1,2,3}‖χ (3)
a,b,c,d‖H2(Q). Using the assumption on χ(3) in (A5),

‖F̃(ṽ)‖X2 � c ‖χ (3)‖H2(Q) max
a∈{1,2,3}

‖pn∗,a‖3
L∞(B,H2(Q))

·

⎡⎣ε−6
N∑

α,β,γ=1

∫
B

∣∣∣∣∫
2B

∫
B

B̂α

(
k − l − k (α)

ε

)
B̂β

(
l − t − k (β)

ε

)

× B̂γ

(
t + k (γ)

ε

)
dt dl

∣∣∣∣2 dk + ε−4
N∑

α,β=1

∫
B

∣∣∣∣∫
2B

∫
B

× B̂α

(
k − l − k (α)

ε

)
B̂β

(
l − t − k (β)

ε

)
Ĉ(t)dt dl

∣∣∣∣2 dk

+ ε−2
N∑

α=1

∫
B

∣∣∣∣∫
2B

∫
B

B̂α

(
k − l − k (α)

ε

)
Ĉ(l − t)Ĉ(t)dt dl

∣∣∣∣2 dk

+

∫
B

∣∣∣∣∫
2B

∫
B

Ĉ(k − l)Ĉ(l − t)Ĉ(t)dt dl

∣∣∣∣2 dk

] 1
2

� c

⎡⎣ε4
N∑

α,β,γ=1

‖B̂α∗ε−1BB̂β∗ε−1BB̂γ‖2
L2(ε−1B) + ε4

×
N∑

α,β=1

∫
B

∣∣∣∣∫
2ε−1B

∫
ε−1B

B̂α

(
k − k (α) − k (β)

ε
− l′

)

× B̂β

(
l′ − t′

)
Ĉ(εt′)dt′ dl′

∣∣∣∣∣
2

dk + ε6
N∑

α=1

∫
B

∣∣∣∣∫
2ε−1B

∫
ε−1B

× B̂α

(
k − k (α)

ε
− l′

)
Ĉ(ε(l′ − t′))Ĉ(εt′)dt′ dl′

∣∣∣∣2 dk

+

∫
B

∣∣∣∣∫
2B

∫
B

Ĉ(k − l)Ĉ(l − t)Ĉ(t)dt dl

∣∣∣∣2 dk

] 1
2

,

where we have used again transformations of the type t′ = ε−1(t + k(γ)) and the fact that the
convolution domains can be shifted by arbitrary k∗ ∈ R2.

Next, for j ∈ {1, . . . , N} and m ∈ N we introduce notation for B̂ and Ĉ restricted to m2

periodicity cells. In detail, let

B̂ (m)
j :=χmε−1BB̂ j, Ĉ (m) :=χmBĈ.
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Note that B̂ (1)
j = B̂∗

j and Ĉ (1) = Ĉ∗. With this notation we have

‖F̃(ṽ)‖X2 � c

⎡⎣ε4
N∑

α,β,γ=1

‖B̂ (3)
α ∗ B̂ (2)

β ∗ B̂∗
γ‖2

L2(R2)+ ε6
N∑

α,β=1

‖B̂ (3)
α ∗ B̂ (2)

β ∗ Ĉ∗(ε·)‖2
L2(R2)

+ ε8
N∑

α=1

‖B̂ (3)
α ∗ Ĉ (2)(ε·)∗Ĉ∗(ε·)‖2

L2(R2)+ ‖Ĉ (3) ∗ Ĉ (2) ∗ Ĉ∗‖2
L2(R2)

] 1
2

,

where ∗ denotes the convolution over the full R2. Using Young’s inequality for convolu-
tions and the fact that (due to the periodicity) ‖B̂ (m)

j ‖Lp(C2) � c ‖B̂∗
j‖Lp(C2) and ‖Ĉ (m)‖Lp(C2) �

c ‖Ĉ∗‖Lp(B) for all m ∈ N, p � 1, and j = 1, . . . , N, we estimate

‖B̂ (3)
α ∗ B̂ (2)

β ∗ B̂∗
γ‖L2(R2) � c ‖B̂∗

α‖L2(R2)‖B̂∗
β‖L1(R2)‖B̂∗

γ‖L1(R2),

‖B̂ (3)
α ∗ B̂ (2)

β ∗ Ĉ∗(ε·)‖L2 � c ‖B̂∗
α‖L1(R2)‖B̂∗

β‖L1(R2)‖Ĉ∗(ε·)‖L2(R2),

‖B̂ (3)
α ∗ Ĉ (2)(ε·) ∗ Ĉ∗(ε·)‖L2(R2) � c ‖B̂∗

α‖L1(R2)‖Ĉ∗(ε·)‖L1(R2)‖Ĉ∗(ε·)‖L2(R2),

‖Ĉ (3) ∗ Ĉ (2) ∗ Ĉ∗‖L2(R2) � c ‖Ĉ∗‖L2(B)‖Ĉ∗‖2
L1(B).

Finally, we arrive at (4.19) by using ‖Ĉ∗‖L1(B) � c ‖Ĉ∗‖L2(B),

‖Ĉ∗(ε·)‖L2(R2) = ε−1‖Ĉ‖L2(B), ‖Ĉ∗(ε·)‖L1(R2) = ε−2‖Ĉ‖L1(B),

and

‖B̂∗
j‖L1(R2) � c ‖B̂∗

j‖L2
sB (R2) if sB > 1. (4.22)

The last inequality follows from

‖B̂∗
j‖L1(R2) =

∫
R2

(1 + |t|)−sB (1 + |t|)sB |B̂∗
j(t)|dt

�
(∫

R2
(1 + |t|)−2sB dt

) 1
2
(∫

R2
(1 + |t|)2sB |B̂∗

j(t)|2 dt

) 1
2

,

where the first factor is bounded provided sB > 1.
Estimate (4.21) is clearly the first part of (4.19). �
For the whole analysis of the components w̃0 and w̃R we assume that for all sufficiently

small ε > 0 and some sB > 1 we have

‖Ĉ∗‖L2 = ‖Ĉ‖L2(B) � c0ε
2−2r

and

‖B̂∗
j‖L2

sB
= ‖B̂ j‖L2

sB (ε−1B) � c for all j ∈ {1, . . . , N} (4.23)
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for some constants c0, c > 0. The regularity parameter sB is chosen below in order for the
required estimates to work. Notice that under such an assumption the terms involving Ĉ in the
estimate (4.19) are o(ε2), provided r ∈

(
0, 1

2

]
.

4.3. Component w̃0

Under assumption (4.23) with sB � 2 we solve the (linear) equation (4.10) for w̃0 and derive
an X2-estimate on w̃0.

Lemma 4.7. Let sB � 2 and assume (4.23), where B̂ j and Ĉ have the supports as in (4.13)
with r ∈ (0, 2

3 ]. Then (4.10) has a unique solution w̃0 ∈ X2 with

‖w̃0‖X2 � c1‖F̃(ṽ)‖X2 � c2ε
2, (4.24)

where c1, c2 > 0 and c2 depends polynomially on ‖B̂∗
j‖L2

sB
, ‖Ĉ∗‖L2 for all j ∈ {1, . . . , N}.

Proof. By lemma 4.6 and assumption (4.23), we get for the right-hand side of (4.10)

‖ εQkF̃(ṽ)‖X2 � c ‖F̃(ṽ)‖X2 � c̃ε2

if 5 − 4r � 2 and 6 − 6r � 2, which hold for r ∈ (0, 2
3 ]. Here the constant c̃ depends poly-

nomially on ‖B̂∗
j‖L2

sB
, j ∈ {1, . . . , N}, and ‖Ĉ∗‖L2 . Lemma 4.2 produces a solution w̃0(·, k) ∈

Qε
kH#(curl2,Q) with

‖w̃0‖L2(B,H#(curl2,Q)) � c ‖F̃(ṽ)‖L2(B,L2(Q)) � c ‖F̃(ṽ)‖X2 . (4.25)

For an X1-estimate we need to control also the divergence ∇′
k · w̃0. First note that

εQk (εw̃0) (·, k) = εw̃0(·, k) − 〈εw̃0(·, k), pn∗(·, k)〉εpn∗(·, k).

Taking the divergence ∇′
k· of equation (4.10) produces

∇′
k · w̃0 =

1
ε

(
−∇′

k · εQkF̃(ṽ) −∇′
kε · w̃0 −

〈
1
ω2

∇′
k ×∇′

k × w̃0(·, k)

− εw̃0(·, k), pn∗(·, k)

〉
∇′

k ·
(
εpn∗(·, k)

))
.

Due to (A5) and the regularity pn∗(·, k) ∈ H2(Q) for all k ∈ B given by lemma A.3, we have

∇′
k · w̃0(·, k) ∈ L2(Q) and hence w̃0(·, k) ∈ H1(Q).
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This allows us to estimate the X1-norm

‖w̃0‖X1 � c
(
‖w̃0‖L2(B,H#(curl,Q)) + ‖∇′

k · w̃0‖X0

)
� c

(
‖F̃(ṽ)‖X2 + ‖∇′

k · εQkF̃(ṽ)‖X0 +

∥∥∥∥〈 1
ω2

∇′
k ×∇′

k × w̃0(·, k)

− εw̃0(·, k), pn∗(·, k)

〉∥∥∥∥
L2(B)

+ ‖w̃0‖X0

)

� c
(
‖F̃(ṽ)‖X2 + ‖∇′

k · F̃(ṽ)‖X0 + ‖F̃(ṽ)‖X0

+ ‖w̃0‖L2(B,H#(curl2,Q)) + ‖w̃0‖X0

)
� c ‖F̃(ṽ)‖X2 ,

where in the second and the last step we used (4.25). The X2-estimate is analogous:

‖w̃0‖X2 � c
(
‖w̃0‖X1 + ‖∇′

k × w̃0‖X1 + ‖∇′
k · w̃0‖X1

)
� c

(
‖F̃(ṽ)‖X2 + ‖∇′

k × w̃0‖L2(B,L2(Q))

+ ‖∇′
k ×∇′

k × w̃0‖L2(B,L2(Q)) + ‖∇′
k · w̃0‖X1

)
� c ‖F̃(ṽ)‖X2 .

Note that in the second inequality the divergence ∇′
k· of ∇′

k × w̃0 vanishes and in the last
inequality the estimate of ‖∇′

k · w̃0‖X1 is analogous to the X1 estimate above. �

4.4. Component w̃R

Next, we keep assumption (4.23) and solve equation (4.11) for w̃R via a Banach fixed point
argument with ṽ satisfying (4.8) and w̃0 as just obtained in section 4.3. We show that for
r ∈

(
0, 1

2

]
a solution of order O(ε3) (in the X2-norm) exists. We write

w̃R =
(
εQkLkQε

k

)−1
ω2 εQk

(
F̃(ṽ + w̃0 + w̃R) − F̃(ṽ)

)
=: G(w̃R) (4.26)

and we aim to show the contraction property of the map G in the ball

BX2
Kεη := { f ∈ X2 | ‖ f ‖X2 < Kεη}

for suitable values of K, η > 0. Applying the algebra property (2.27) of X2, we get

‖G(w̃R)‖X2 � c

⎡⎣ ∑
a,b∈{1,2,3}

(
‖ṽa∗Bṽb‖X2 + ‖ṽa∗Bṽb‖X2

)
× (‖w̃0‖X2 + ‖w̃R‖X2) + ‖w̃0‖2

X2
(‖ṽ‖X2 + ‖w̃R‖X2)

+ ‖w̃R‖2
X2

(‖ṽ‖X2 + ‖w̃0‖X2) + ‖ṽ‖X2‖w̃0‖X2‖w̃R‖X2+ ‖w̃0‖3
X2

+ ‖w̃R‖3
X2

⎤⎦ .
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Recalling lemmas 4.4 and 4.5 we first have for any a, b = 1, 2, 3

‖ṽa∗Bṽb‖X2 � ‖ṽB,a∗BṽB,b‖X2 + ‖ṽB,a‖X2‖ṽC,b‖X2 + ‖ṽC,a‖X2‖ṽB,b‖X2 + ‖ṽC,a‖X2‖ṽC,b‖X2

� cε
N∑

i, j=1

‖B̂∗
i ‖L2

sB
‖B̂∗

j‖L2
sB
+ c

N∑
i=1

‖B̂∗
i ‖L2

sB
‖Ĉ‖L2(B) + c‖Ĉ‖2

L2(B)

� c
(
ε+ ε2−2r + ε4−4r

)
.

Therefore, recalling (4.24), we obtain for w̃R ∈ BX2
Kεη

‖G(w̃R)‖X2 � c̃
[
(ε+ ε2−2r + ε4−4r)(ε2 + Kεη) + ε4(1 + Kεη)

+K2ε2η(1 + ε2) + Kε2+η + ε6 + K3ε3η
]

� (c̃ + 1)
(
ε3 + Kε1+η + K2ε2η

)
,

where the second inequality holds for all r ∈
(
0, 1

2

]
and c̃ is a constant depending just on the

norms ‖B̂∗
j‖L2

sB
, j ∈ {1, . . . , N}, and c0. Choosing η = 3 and K = c̃ + 2, then G : BX2

Kεη →BX2
Kεη ,

i.e.

‖G(w̃R)‖X2 � Kε3. (4.27)

Next, we address the contraction property. For ũ ( j) := ṽ + w̃0 + w̃ ( j)
R , j ∈ {1, 2} we have

‖G(w̃ (1)
R ) − G(w̃ (2)

R )‖X2

� c

[
max

a,b∈{1,2,3}

(
‖ṽa∗Bṽb‖X2 + ‖ṽa∗Bṽb‖X2

)
+ ‖w0‖2

X2
+ ‖w̃ (1)

R ‖2
X2

+ ‖w̃ (2)
R ‖2

X2
+ ‖ṽ‖X2‖w̃

(1)
R ‖X2 + ‖ṽ‖X2‖w̃

(2)
R ‖X2

]
‖w̃ (1)

R − w̃ (2)
R ‖X2

� cε‖w̃ (1)
R − w̃ (1)

R ‖X2 . (4.28)

The contraction thus follows provided ε is small enough. By the Banach fixed point theorem
there exists a unique solution to equation (4.26) for w̃R which satisfies the estimate

‖w̃R‖X2 � Kε3. (4.29)

For later use, we need also to show the Lipschitz dependence of w̃ on ṽB and ṽC.

Lemma 4.8. The map BX2
ρ (0) × BX2

ρε2−2r (0) � (ṽB, ṽC) 
→ w̃(ṽB, ṽC) ∈ BX2
ρε2(0) is Lipschitz-

continuous for any ρ > 0 and ε > 0 small enough. The Lipschitz constant CL satisfies
CL = O(ε) as ε→ 0.

Proof. Let ṽ (1) = (ṽ (1)
B , ṽ (1)

C ), ṽ (2) = (ṽ (2)
B , ṽ (2)

C ) ∈ BX2
ρ (0) × BX2

ρε2−2r (0) and for i ∈ {1, 2}
define w̃ (i)

0 = w̃0(ṽ (i)) as solutions of (4.10) and w̃ (i)
R = w̃R(ṽ (i)) as solutions of (4.11) with

w̃0 replaced by w̃ (i)
0 . Such functions are well-defined since ṽ (i) ∈ BX2

ρ (0) × BX2
ρε2−2r (0) implies

that the respective coefficients B̂ (i)
j , Ĉ (i) fulfill assumption (4.23). Since ‖w̃ (1)

0 − w̃ (2)
0 ‖X2 �

c1‖F̃(ṽ (1)) − F̃(ṽ (2))‖X2 , we obtain similarly to (4.28)

‖w̃ (1)
0 − w̃ (2)

0 ‖X2 � cε‖ṽ (1) − ṽ (2)‖X2 .
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For w̃ (i)
R we have

εQkLkQε
kw̃

(i)
R = ω2 εQk

(
F̃(ṽ (i) + w̃ (i)

0 + w̃ (i)
R ) − F̃(ṽ (i))

)
and again with analogous computations as in (4.28) we then get

‖w̃ (1)
R − w̃ (2)

R ‖X2 � cε
(
‖ṽ (1) − ṽ (2)‖X2 + ‖w̃ (1)

R − w̃ (2)
R ‖X2

)
,

which leads to the desired estimate. �

4.5. Component Ĉ

So far, we have completed the first two steps of the initial program: under assumption (4.23) we
inferred the existence of a small solution w̃ of (4.9). Now we have to deal with the component
ṽ, i.e. the projection of ũ onto the mode pn∗ . Recall that our aim is to find solutions ṽ with B̂∗

j

close to the coefficients Â j from the ansatz (4.12) and with Ĉ small.
In this section we assume r ∈

(
0, 1

2

]
, choose an arbitrary (B̂ j)N

j=1 with ‖B̂∗
j‖L2

sB (R2) � c for all

j ∈ {1, . . . , N}, and seek a small Ĉ. Recall that ũ = ṽ + w̃ = ṽB + ṽC + w̃, where ṽB is now
fixed and w̃ is determined by sections 4.3 and 4.4. Hence, we write w̃ = w̃(ṽC) suppressing
the dependence on ṽB.

Since the support of Ĉ∗ within the Brillouin zone B is in B\∪N
j=1Bεr (k ( j)), we introduce the

characteristic function

χC(k) := 1 −
N∑

j=1

χBεr (k ( j))(k).

The equation for Ĉ then reads

Ĉ(k) = (ωn∗(k)2 − ω2)−1ω2χC(k)〈F̃(ṽB)(·, k), pn∗(·, k)〉

+ (ωn∗(k)2 − ω2)−1ω2χC(k)

×
〈(

F̃(ṽB + ṽC + w̃(ṽC)) − F̃(ṽB)
)

(·, k), pn∗(·, k)
〉

=: T1(k) + T2(k). (4.30)

In order to enjoy the algebra property of Xs, s > 1, we multiply both sides of (4.30) by pn∗(·, k)
and apply a fixed point approach to the resulting equation for ṽC in a small ball in X2.

ṽC(x, k) = T1(k)pn∗(x, k) + T2(k)pn∗(x, k) =: H(ṽC)(x, k), (4.31)

which we aim to solve in the ball

BX2
Kε2−2r := { f ∈ X2 | ‖ f ‖X2 � Kε2−2r}

for some K > 0 and all ε > 0 small enough.
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We have isolated the leading order part F̃(ṽB) of the nonlinearity in the term T1. Note that
F̃(ṽB) is concentrated only near a finite number of k-points, namely

supp(F̃(ṽB)(x, ·)) ∩ B ⊂ B3εr (S),

where

S :=
{

k ∈ B : k = k (α) + k (β) − k (γ) + K with α, β, γ ∈ {1, . . . , N}, K ∈ Λ∗} .
We write

S = Sc ∪ Snc, where Sc := {k (1), . . . , k (N)}.

Sc is the critical set as it lies in the level set Wω∗ . Note that χC(k) = 0 for each k ∈ Bεr (Sc). We
split T1 accordingly

T1 = T1,c + T1,nc, where supp(T1,c) ⊂ B3εr (Sc)\Bεr(Sc) and supp(T1,nc) ⊂ B3εr (Snc).

We estimate these components separately.
First, we estimate the factor (ω2 − ωn∗(k)2)−1. Due to assumption (A3) we have

|(ω2 − ωn∗(k)2)−1| � c for k ∈ supp(T1,nc). (4.32)

On supp(T1,c) we use the locally quadratic nature of ωn∗(k) near k = k( j), j = 1, . . . , N. Indeed,
as ωn∗ has an extremum at each k( j), we have

∇
(
ωn∗(k)2

)
|k=k ( j) = 2ω∗∇ωn∗(k ( j)) = 0.

Moreover,

∇2
(
ωn∗(k)2

)
|k=k ( j) = 2ω∗∇2ωn∗(k

( j)) +K(ωn∗)(k
( j)),

where

K(ωn∗) :=

( (
∂1ωn∗

)2 (
∂1ωn∗

) (
∂2ωn∗

)(
∂1ωn∗

) (
∂2ωn∗

) (
∂2ωn∗

)2

)
,

the determinant of which evidently vanishes. Using (A4), we deduce then that the Hessian of
k 
→

(
ωn∗(k)

)2
is definite at k( j). This in turns implies that

|ωn∗(k)2 − ω2|−1 � cε−2r for k ∈ supp(T1,c) (4.33)

for ε small enough. It is mainly here where assumption (A3) is used. If {k(1), . . . , k(N )} was a
proper subset of the level set Wω∗ , then supp(T1,c) would intersect Wω∗ and |ωn∗(k)2 − ω2|−1

would blow up on supp(T1,c).
The estimate of T1,nc follows directly from (4.32) and (4.21). We get

‖T1,nc pn∗‖X2 � cε2
N∑

α,β,γ=1

‖B̂∗
α‖L2

sB
‖B̂∗

β‖L2
sB
‖B̂∗

γ‖L2
sB

� cε2 (4.34)

using (4.23).
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For T1,c the estimate (4.33) causes loss of powers of ε but we gain some powers by assuming

a fast decay of B̂ j. In detail, define the weight h j(k) :=
(

1 + |k−k ( j) |
ε

)sB
. Then analogously to

the proof of (4.21) in lemma 4.6 we have, due to (4.33),

‖T1,c pn∗‖X2 � cε2−2r
N∑

j=1

N∑
α,β,γ=1

sup
k∈Bεr (k ( j))

h j(k)−1‖h j(k
( j) + ε·)B̂∗

α ∗ B̂∗
β ∗ B̂∗

γ‖L2

� cε2−2r+(1−r)sB

N∑
α,β,γ=1

‖B̂∗
α‖L2

sB
‖B̂∗

β‖L2
sB
‖B̂∗

γ‖L2
sB

� cε2−2r+(1−r)sB. (4.35)

The estimate of the term T2 is more delicate as T2 is nonlinear in ṽC. Since ‖ṽB‖X2 � c

by assumption, we get w̃ ∈ BX2
Kε2 as a solution of (4.9) with K dependent on

(
‖B̂∗

j‖L2
sB

)N

j=1
,

provided ‖ṽC‖X2 � Kε2−2r. We show now that such ṽC exists. First, similarly to the map G in
section 4.4 and taking into account (4.33),

‖T2 pn∗‖X2 � cε−2r‖F̃(ũ) − F̃(ṽB)‖X2 � cε−2r

⎡⎢⎣‖ṽB‖X2‖ṽC‖X2‖w̃‖X2

+ ‖w̃‖3
X2

+ ‖w̃‖2
X2

(‖ṽB‖X2 + ‖ṽC‖X2 ) + ‖ṽC‖2
X2
‖w̃‖X2

+
∑

a,b∈{1,2,3}

(
‖ṽB,a∗BṽB,b‖X2 + ‖ṽB,a∗BṽB,b‖X2

)
‖w̃‖X2

+
∑

a,b,c ∈{1,2,3}

∑
μ1,μ2,μ3∈{B,C}
(μ1,μ2,μ3)�=(B,B,B)

‖ṽμ1,a∗Bṽμ2,b∗Bṽμ3,c‖X2

⎤⎥⎥⎦ . (4.36)

We may apply the algebra property of X2 and lemma 4.5 to treat the convolution terms. For
ṽC ∈ BX2

Kε2−2r we obtain

‖ṽBi,a∗BṽB j,b∗BṽCm,c‖X2 � ‖ṽBi ,a∗BṽB j,b‖X2‖ṽCm,c‖X2 � cε3−2r,

‖ṽBi,a∗BṽC j,b∗BṽCm ,c‖X2 � ‖ṽBi,a‖X2‖ṽC j,b‖X2‖ṽCm ,c‖X2 � cε4−4r,

‖ṽCi,a∗BṽC j,b∗BṽCm ,c‖X2 � ‖ṽCi,a‖X2‖ṽC j,b‖X2‖ṽCm,c‖X2 � cε6−6r.

Analogous estimates hold when the complex conjugation is moved onto another term. From
(4.36) we then get

‖T2 pn∗‖X2 � cε−2r
(
ε4−2r + ε6 + ε4(1 + ε2−2r)

+ ε6−4r + ε3 + ε3−2r + ε4−4r + ε6−6r
)

� cε3−4r, (4.37)

since r ∈
(
0, 1

2

]
.
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Combining then (4.34), (4.35), and (4.37), we obtain

‖H(ṽC)‖X2 � c
(
ε2 + ε (1−r)sB+2−2r + ε3−4r

)
.

Since for r ∈
(
0, 1

2

]
all exponents are greater than or equal to 2 − 2r, we get

H : BX2
Kε2−2r →BX2

Kε2−2r

with some K = K
(
‖B̂∗

1‖L2
sB

, . . . , ‖B̂∗
N‖L2

sB

)
.

We address now the contraction property of the map H. Take ṽ (1)
C , ṽ (2)

C ∈ BX2
Kε2−2r and

consider w̃ (i) := w̃(ṽ (i)
C ) for i ∈ {1, 2} as given by sections 4.3 and 4.4. We aim to estimate

‖H(ṽ (1)
C ) −H(ṽ (2)

C )‖X2 . Clearly, T1 is independent of ṽC and similarly to (4.36) we infer

‖
(

T2(ṽ (1)
C ) − T2(ṽ (2)

C )
)

pn∗‖X2

� cε−2r
[
‖ṽB‖X2‖w̃ (1)∗Bṽ (1)

C − w̃ (2)∗Bṽ (2)
C ‖X2

+ ‖w̃ (1)∗Bw̃ (1)∗Bṽ (1)
C − w̃ (2)∗Bw̃ (2)∗Bṽ (2)

C ‖X2

+ ‖w̃ (1)∗Bṽ (1)
C ∗Bṽ (1)

C − w̃ (2)∗Bṽ (2)
C ∗Bṽ (2)

C ‖X2

+
∑

a,b∈{1,2,3}

(
‖ṽB,a∗BṽB,b‖X2 + ‖ṽB,a∗BṽB,b‖X2

)
‖ṽ (1)

C − ṽ (2)
C ‖X2

+ ‖ṽB‖X2‖ṽ
(1)
C ∗Bṽ (1)

C − ṽ (2)
C ∗Bṽ (2)

C ‖X2

+ ‖ṽ (1)
C ∗Bṽ (1)

C ∗Bṽ (1)
C − ṽ (2)

C ∗Bṽ (2)
C ∗Bṽ (2)

C ‖X2

]
.

All the terms are then estimated in a similar way, e.g.

‖w̃ (1)∗Bṽ (1)
C − w̃ (2)∗Bṽ (2)

C ‖X2

� ‖w̃ (1)‖X2‖ṽ
(1)
C − ṽ (2)

C ‖X2 + ‖ṽ (2)
C ‖X2‖w̃ (1) − w̃ (2)‖X2

� cε2‖ṽ (1)
C − ṽ (2)

C ‖X2 + Kε2−2r‖w̃ (1) − w̃ (2)‖X2

� c
(
ε2 + ε3−2r

)
‖ṽ (1)

C − ṽ (2)
C ‖X2 ,

where we applied lemma 4.8 in the last step. Hence

‖H(ṽ (1)
C ) −H(ṽ (2)

C )‖X2 � c(ε2−2r + ε3−4r)‖ṽ (1)
C − ṽ (2)

C ‖X2 ,

i.e. a contraction for ε > 0 small enough due to r ∈ (0, 1
2 ].

As a result, we obtain a solution ṽC ∈ BX2
Kε2−2r of (4.31), where K =

K
(
‖B̂1‖L2

sB
, . . . , ‖B̂N‖L2

sB

)
, and in turn the estimates

‖ṽC‖X2 � cε2−2r (4.38)

and

‖Ĉ‖L2(B) � cε2−2r. (4.39)
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Indeed, (4.39) follows from (4.38):

‖Ĉ‖L2(B) �
(

min
k∈B

‖pn∗(·, k)‖H2(Q)

)−1(∫
B

∣∣∣Ĉ(k)
∣∣∣2‖pn∗(·, k)‖2

H2(Q)dk

) 1
2

� c‖ṽC‖X2 � cε2−2r.

4.6. Components B̂j

We finally address the component ṽB of the solution ũ and with w̃ and ṽC found above we

solve for such ṽB, for which
(

B̂ j

)N

j=1
is close to the solutions

(
Â j

)N

j=1
of the CMEs (4.14). As

a result the component ṽB is the dominant part of the solution ũ.
Equation (4.8) on the compact support of B̂∗

j can be rewritten as

(ω2
n∗(k) − ω2)

1
ε

B̂∗
j

(
k − k ( j)

ε

)
= ω2〈F̃(ũ)(·, k), pn∗(·, k)〉, k ∈ Bεr (k ( j))

or equivalently

ω2
n∗(k) − ω2

ε
B̂∗

j

(
k − k ( j)

ε

)
= ω2χε,r(k − k ( j))〈F̃(ũ)(·, k), pn∗(·, k)〉, k ∈ C2, (4.40)

where we define χε,r :=χBεr (0).
Expanding the eigenvalue ωn∗ near k( j) by assumptions (A3) and (A4) as

ωn∗(k) = ω∗ +
1
2

(k − k ( j))T∇2ωn∗(k ( j))(k − k ( j)) + ωr(k),

where |ωr(k)| � C|k − k( j)|3, and then recalling (4.1), we obtain

ω2
n∗(k) − ω2 = ε2ω∗

((
k − k ( j)

ε

)T

∇2ωn∗(k
( j))

(
k − k ( j)

ε

)
− 2Ω

)
− ε4Ω2 + ωR(k)

with

|ωR(k)| � C|k − k ( j)|3. (4.41)

Inserting this into equation (4.40) and defining k′ := k−k ( j)

ε
, we obtain for k′ ∈ Bεr−1(0)

ω∗
(
(k′)T∇2ωn∗(k ( j))k′ − 2Ω

)
B̂∗

j(k
′)

=
ω2

ε
χε,r−1(k′)〈F̃(ṽ)(·, k ( j) + εk′), pn∗(·, k ( j) + εk′)〉

+
ω2

ε
χε,r−1(k′)〈

(
F̃(ũ) − F̃(ṽ)

)
(·, k ( j) + εk′), pn∗(·, k ( j) + εk′)〉

− 1
ε

(
ωR(k ( j) + εk′) − ε4Ω2

)
B̂∗

j(k
′). (4.42)
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Now we estimate separately the terms on the right. We will see that the second and third terms
are small, while the first one recovers the right-hand side of the CMEs (4.14), so that (4.42)
may be interpreted as a perturbed CME system.

First we deal with the third term of (4.42). By (4.41),

∥∥∥∥ωR(k ( j) + ε·)
ε

B̂ j

∥∥∥∥
L2(ε−1B)

=
1
ε

(∫
ε−1B

|ωR(k ( j) + εk′)|2|B̂ j(k′)|2 dk′
) 1

2

� cε2

(∫
B
εr−1 (0)

|k′|6
(1 + |k′|)2sB

(1 + |k′|)2sB |B̂ j(k′)|2 dk′
) 1

2

� cε2 sup
|k′ |<εr−1

|k′|3
(1 + |k′|)sB

‖B̂∗
j‖L2

sB

� cε2−max{0,(1−r)(3−sB)}‖B̂∗
j‖L2

sB
. (4.43)

To make this term o(1), we need that 2 > max{0, (1− r)(3 − sB)}. This is ensured for all r ∈(
0, 1

2

]
as long as we take sB > 1.

The second term in (4.42) is estimated similarly as in section 4.4. Indeed,

∥∥∥∥ω2

ε
, 〈
(

F̃(ũ) − F̃(ṽ)
)

(·, k ( j) + εk′), pn∗(·, k ( j) + εk′)〉
∥∥∥∥

L2(ε−1B)

� ω2ε−1ess supk∈B‖pn∗(·, k)‖L2(Q)

×
(∫

ε−1B

‖
(

F̃(ũ) − F̃(ṽ)
)

(·, k ( j) + εk′)‖2
L2(Q)dk′

) 1
2

� cε−1

(∫
B+k ( j)

‖
(

F̃(ũ) − F̃(ṽ)
)

(·, k)‖2
H2(Q)ε

−2 dk

) 1
2

= cε−2‖F̃(ũ) − F̃(ṽ)‖X2 � cε, (4.44)

where the constant c depends just on
(
‖B̂∗

j‖L2
sB

)N

j=1
. The last inequality is given by (4.27).

Let us now address the first term in (4.42) on its support k′ ∈ Bεr−1 (0). Equivalently we
consider k ∈ Bεr (k ( j)) and split the term as follows:

〈F̃(ṽ)(·, k), pn∗ (·, k)〉

= 〈(F̃(ṽ) − F̃(ṽB))(·, k), pn∗(·, k)〉

+ ε−3
N∑

α,β,γ=1

∫
2B

∫
B

B̂α

(
k − l − k (α)

ε

)
B̂β

(
l − t − k (β)

ε

)
B̂γ

(
t + k (γ)

ε

)

·
3∑

a,b,c,d=1

(
Б

a,b,c,d(k, k − l, l − t, t) −Θa,b,c,d
α,β,γ, j

)
dt dl
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+ ε−3
3∑

a,b,c,d=1

N∑
α,β,γ=1

Θa,b,c,d
α,β,γ, j

∫
2B

∫
B

B̂α

(
k − l − k (α)

ε

)
B̂β

(
l − t − k (β)

ε

)
B̂γ

(
t + k (γ)

ε

)
dt dl

:=W1(k) + W2(k) + W3(k), (4.45)

where

Б
a,b,c,d(k, k − l, l − t, t)

:= 〈χ (3)
a,b,c,d

pn∗,a(·, k − l)pn∗,b(·, l − t)pn∗,c(·,−t), pn∗,d(·, k)〉

and

Θa,b,c,d
α,β,γ, j :=

〈
χ (3)

a,b,c,d
un∗,a(·, k (α))un∗,b(·, k (β))× un∗,c(·, k (γ)), un∗,d(·, k ( j))

〉
=
〈
χ (3)

a,b,c,d
pn∗,a(·, k (α))pn∗,b(·, k (β))× pn∗,c(·, k (γ))eiKα,β,γ, j ·, pn∗,d(·, k ( j))

〉
= Б

a,b,c,d
α,β,γ, j(k

( j), k (α) − Kα,β,γ, j, k (β),−k (γ)) (4.46)

with Kα,β,γ, j := k(α) + k(β) − k(γ) − k( j).
The aim is to show that ε−1W1 and ε−1W2 are small and that ε−1 ω∗

2 χε,r(· − k ( j))W3 is the
Fourier transform of the nonlinear term N j in the CMEs applied to (B̂∗

1, . . . , B̂∗
N) and evaluated

at ε−1(· − k( j)).
First, W1 is estimated analogously to the term T2 in section 4.5 producing

‖W1‖L2(B) � cε3−2r. (4.47)

For W2 we take advantage of the Lipschitz continuity of Б and of the asymptotically small
support of the double convolution of the B̂’s. We rewrite

W2(k ( j)+ εk′) = ε
3∑

a,b,c,d=1

N∑
α,β,γ=1

∫
ε−1(2B+k (γ)−k (β))

∫
ε−1(B+k (γ))

× B̂α(k′ − l′)B̂β(l′ − t′)B̂γ(t′) ·
(
Б

a,b,c,d
(
k ( j) + εk′, k (α)

− Kα,β,γ, j+ ε(k′ − l′), k (β)+ ε(l′ − t′),−k (γ)+ εt′
)

−Б
a,b,c,d(k ( j), k (α) − Kα,β,γ, j, k (β),−k (γ))

)
dt′ dl′

using the obvious changes of variables and the ε−1Λ∗-periodicity of B̂α,α ∈ {1, . . . , N}. Next,
we exploit the fact that the map (k1, k2, k3, k4) 
→ Б

a,b,c,d(k1, k2, k3, k4) is Lipschitz continuous
with respect to all variables, i.e. there is CБ > 0 such that for all k′, l′, t′ ∈ ε−1B *∣∣Б(k ( j)+ εk′, k (α)− Kα,β,γ, j+ ε(k′ − l′), k (β)+ ε(l′ − t′),−k (γ)+ εt′)

−Б(k ( j), k (α)− Kα,β,γ, j, k (β),−k (γ))
∣∣

� CБε
(
|k′|+ |k′ − l′|+ |l′ − t′|+ |t′|

)
� 2CБε

(
|k′ − l′|+ |l′ − t′|+ |t′|

)
,
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where we have omitted the indices of Б for brevity. Therefore

‖W2(k ( j)+ ε·)‖L2(ε−1B)

� cε2
N∑

α,β,γ=1

(
2‖|τ B̂∗

α| ∗ |B̂∗
β | ∗ |B̂∗

γ |‖L2 + ‖|B̂∗
α| ∗ |B̂∗

β | ∗ |τ B̂∗
γ |‖L2

)

� cε2
N∑

α,β,γ=1

‖B̂∗
α‖L2

1
‖B̂∗

β‖L1‖B̂∗
γ‖L1

� cε2
N∑

α,β,γ=1

‖B̂∗
α‖L2

s
‖B̂∗

β‖L2
s
‖B̂∗

γ‖L2
s

(4.48)

for any s > 1, where τ (k) := k. Because ‖W2‖L2(B) = ε‖W2(k ( j) + ε·)‖L2(ε−1B), we get from
(4.47) and (4.48)

ε−1‖W1 + W2‖L2(B) � c(ε2−2r + ε) � cε (4.49)

as r ∈
(
0, 1

2

]
.

4.6.1. Perturbed CMEs. We return to equation (4.42). By (4.43)–(4.45) and (4.49) we get for
each j ∈ {1, . . . , N} and k′ ∈ Bεr−1 (0)

ω∗
(
(k′)T∇2ωn∗(k ( j))k′ − 2Ω

)
B̂∗

j(k
′)

=
ω2

ε
χε,r−1(k′)

3∑
a,b,c,d=1

N∑
α,β,γ=1

Θa,b,c,d
α,β,γ, j

· 1
ε3

(
B̂α

(
· − k (α)

ε

)
∗BB̂β

(
· − k (β)

ε

)
∗BB̂γ

(
· − k (γ)

ε

))
(k ( j) + εk′)

+ Ж j(k
( j) + εk′), (4.50)

where Ж j collects all the perturbations. Since r ∈
(
0, 1

2

]
, it is

‖Ж j(k ( j) + ε·)‖L2(ε−1B) � c
(
ε2−max{0,(1−r)(3−sB)} + ε+ ε2−2r

)
� c

(
ε2−max{0,(1−r)(3−sB)} + 2ε

)
. (4.51)

Prescribing now

sB � 3 − 1
1 − r

, (4.52)

we see that the first exponent in (4.51) is greater than or equal to 1. Therefore, under condition
(4.52) we get

‖Ж j(k ( j) + ε·)‖L2(ε−1B) � cε. (4.53)

Note that (4.52) is satisfied e.g. by sB = 2 since r > 0.
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Next, a direct calculation shows that

χε,r−1(k′)
1
ε3

(
B̂α

(
· − k (α)

ε

)
∗BB̂β

(
· − k (β)

ε

)
∗BB̂γ

(
· − k (γ)

ε

))
(k)

=

⎧⎪⎨⎪⎩
ε(B̂∗

α∗B
εr−1 (0)B̂

∗
β∗B

εr−1 (0)B̂
∗
γ)(k′) = ε(B̂∗

α ∗ B̂∗
β ∗ B̂∗

γ)(k′) if (α, β, γ) ∈ σ j

0 if (α, β, γ) /∈ σ j.

(4.54)

In detail: due to the periodicity of B̂α the convolution ∗B can be replaced by ∗B+k∗ for k∗ ∈ R2

arbitrary. This implies by the obvious change of variables that the left-hand side equals

1
ε3

∫
B−k (γ)

(
B̂α

(
· − k (α)

ε

)
∗
B+k (β) B̂β

(
· − k (β)

ε

))
(k − l) B̂γ

(
l + k (γ)

ε

)
dl

= ε−1
∫

B
εr−1 (0)

∫
B+k (β)

B̂α

(
k − εl′ − k (α) + k (γ) − s

ε

)
B̂β

(
s − k (β)

ε

)
B̂γ(l′)ds dl′

= ε

∫
B
εr−1 (0)

∫
B
εr−1 (0)

B̂α

(
k − (k (α) + k (β) − k (γ))

ε
− l′ − s′

)
B̂β(s′)B̂γ(l′)ds′ dl′.

With the further transformation l′ + s′ =: t′ ∈ B2εr−1(0), we infer

= ε

∫
B

2εr−1 (0)

∫
B
εr−1 (0)

B̂α

(
k − k ( j) − Kα,β,γ, j

ε
− t′

)
B̂∗
β

(
t′ − l′

)
B̂∗
γ

(
l′
)

dl′ dt′.

Now recall that k ∈ Bεr (k ( j)) and that supp(B̂∗
α) ⊂ Bεr−1(0). Due to t′ ∈ B2εr−1(0) and the

ε−1Λ∗-periodicity of B̂α, the function B̂α

(
k−k ( j)−Kα,β,γ, j

ε − t′
)

is nonzero if and only if Kα,β,γ, j ∈
Λ∗, i.e. if (α, β, γ) ∈ σ j, with σ j defined in (1.12). The periodicity allows then for dropping
the shift ε−1Kα,β,γ, j in the argument of B̂α. Moreover, for k ∈ Bεr (k ( j)) and t′ ∈ B2εr−1(0) it is

B̂α

(
k−k ( j)

ε − t′
)
= B̂∗

α

(
k−k ( j)

ε − t′
)

. We get

χε,r−1(k′)
1
ε3

(
B̂α

(
· − k (α)

ε

)
∗BB̂β

(
· − k (β)

ε

)
∗BB̂γ

(
· − k (γ)

ε

))
(k ( j) + εk′)

=

⎧⎨⎩εχε,r−1(k′)
∫

B2εr−1 (0)

∫
B
εr−1 (0)

B̂α

(
k′ − t′

)
B̂∗
β

(
t′ − l′

)
B̂∗
γ

(
l′
)

dl′ dt′ if (α, β, γ) ∈ σ j

0 if (α, β, γ) /∈ σ j,

from which (4.54) follows.

Hence, by (4.50), (4.53), and (4.54) we deduce that
(

B̂∗
j

)N

j=1
satisfy the perturbed CMEs

G j(B̂∗)(k′) :=

(
1
2

(k′)T∇2ωn∗(k ( j))k′ − Ω

)
B̂∗

j(k
′) − N̂ j(B̂∗)(k′) = R̂ j(B̂∗)(k′),

(4.55)
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for j ∈ {1, . . . , N} and k′ ∈ Bεr−1(0), where we recall that (cf (1.11) and (4.46))

N̂ j(B̂∗)(k′) =
ω∗
2

3∑
a,b,c,d=1

N∑
α,β,γ=1

Θa,b,c,d
α,β,γ, j ×

(
B̂∗
α∗B

εr−1 (0)B̂
∗
β∗B

εr−1 (0)B̂
∗
γ

)
(k′)

=
ω∗
2

∑
(α,β,γ)∈σ j

I j
α,β,γ

(
B̂∗
α ∗ B̂∗

β ∗ B̂∗
γ

)
(k′),

the coefficients I j
α,β,γ being defined in (1.13). The remainder term R̂ j(B̂∗) = R̂ j

(
B̂∗

1, . . . , B̂∗
N

)
is defined via

R̂ j(B̂
∗)(k′) :=

1
2ω∗

Ж j(k
( j) + εk′), k′ ∈ Bεr−1(0) (4.56)

and satisfies

‖R̂ j(B̂∗)‖L2(ε−1B) < cε. (4.57)

Notice that (4.55) is therefore an ε-perturbation of the CMEs in Fourier variables on the com-

pact support k′ ∈ Bεr−1(0). In what follows, we prove the existence of solutions B̂∗ :=
(

B̂∗
j

)N

j=1

of (4.55) close to χε,r−1Â, where Â :=
(

Â j

)N

j=1
is the Fourier transform of the solution of the

CMEs (1.10). We follow the approach of [9, 17].
To this aim, for j ∈ {1, . . . , N} we define Âε

j :=χε,r−1Â j and write

B̂∗
j = Âε

j + b̂ j

with supp(b̂ j) ⊂ Bεr−1(0). In order to expand G = (G1, . . . ,GN) around the vector Âε and use
the Jacobian of the CMEs, we write G j in the real variables. Indices R and I denote hereafter
the real and the imaginary part respectively, e.g. A j = Aj,R + iA j,I . We define (cf (1.10))

φ j(A) := − 1
2
∇T(∇2ωn∗(k

( j))∇A j) − ΩA j −N j(A), j ∈ {1, . . . , N}

so that (φ(A))∧ = G(Â), which in real variables becomes

Φ j(AR, AI) :=

(
Re(φ j(AR + iAI))
Im(φ j(AR + iAI))

)
, j ∈ {1, . . . , N}.

We denote its 2N × 2N Jacobian by DΦ(AR, AI), its Fourier counterpart by

D
̂AG(Â) := (DΦ(AR, AI))∧,

as well as its Fourier-truncation

χε,r−1D
̂AG(Âε) = χε,r−1

(
DΦ(Aε

R, Aε
I )
)∧

,

with Aε
R := (Âε

R)∨ and Aε
I := (Âε

I )∨. Thus here D
̂AG j(Â) is just a symbolic notation. Recalling the

definition of N j in (1.11), we have

Re(N j(A)) =
∑

(α,β,γ)∈σ j

I j
α,β,γ

(
Aα,RAβ,RAγ,R + Aα,RAβ,IAγ,I+Aα,IAβ,RAγ,I − Aα,IAβ,IAγ,R

)
,
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Im(N j(A)) =
∑

(α,β,γ)∈σ j

I j
α,β,γ

(
Aα,RAβ,IAγ,R − Aα,RAβ,RAγ,I + Aα,IAβ,RAγ,R + Aα,IAβ,IAγ,I

)
.

Therefore, for m ∈ {1, . . . , N}

∂Am,R Re(N j(A)) =
N∑

α,β=1

ν11,R
αβ jmAα,RAβ,R +

N∑
α,β=1

ν11,I
αβ jmAα,IAβ,I ,

∂Am,I Re(N j(A)) = ∂Am,R Im(N j(A)) =
N∑

α,β=1

ν12
αβ jmAα,RAβ,I ,

∂Am,I Im(N j(A)) =
N∑

α,β=1

ν22,R
αβ jmAα,RAβ,R +

N∑
α,β=1

ν22,I
αβ jmAα,IAβ,I ,

where the coefficients ν11,R
αβ jm, . . . , ν22,I

αβ jm are linear combinations of I j
α,β,m for all α, β ∈

{1, . . . , N}. Hence we may write

DΦ(AR, AI) = L − DAN (A),

where

L := − 1
2

⎛⎜⎝∇T (∇2ωn∗(k (1))∇
)

Id2×2

. . .
∇T (∇2ωn∗(k (N))∇

)
Id2×2

⎞⎟⎠
− ΩId2N×2N

and DAN (A) is a block matrix with the ( j, k)-th block ( j, k ∈ {1, . . . , N}) being

MN (A) j,m :=

(
∂Am,R Re(N j(A)) ∂Am,I Re(N j(A))
∂Am,R Im(N j(A)) ∂Am,I Im(N j(A))

)

=

⎛⎜⎜⎜⎜⎝
N∑

α,β=1

(
ν11,R
αβ jm Aα,RAβ,R + ν11,I

αβ jm Aα,IAβ,I

) N∑
α,β=1

ν12
αβ jm Aα,RAβ,I

N∑
α,β=1

ν21
αβ jm Aα,RAβ,I

N∑
α,β=1

(
ν22,R
αβ jm Aα,RAβ,R + ν22,I

αβ jm Aα,IAβ,I

)
⎞⎟⎟⎟⎟⎠ .

In Fourier variables this rewrites as

D
̂AG(Â) = L̂ − D

̂AN̂ (Â), (4.58)

where L̂ is a block-diagonal matrix with N blocks of size 2 × 2, where the jth block is
( 1

2 (k′)T∇2ωn∗(k
( j))k′ − Ω)Id2×2 and D

̂AN̂ (Â) is a block matrix with the ( j, m)-th block ( j, m ∈
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{1, . . . , N}) being

M̂N (Â) j,m =

⎛
⎜⎜⎜⎜⎝

N∑
α,β=1

(
ν11,R
αβ jm Âα,R ∗ Âβ,R + ν11,I

αβ jm Âα,I ∗ Âβ,I

) N∑
α,β=1

ν12
αβ jm Âα,R ∗ Âβ,I

N∑
α,β=1

ν21
αβ jm Âα,R ∗ Âβ,I

N∑
α,β=1

(
ν22,R
αβ jm Âα,R ∗ Âβ,R + ν22,I

αβ jm Âα,I ∗ Âβ,I

)

⎞
⎟⎟⎟⎟⎠ .

The action of L̂ is multiplicative but M̂N (Â) acts as a convolution operator, e.g.
(Âα,R∗Âβ,R)(b̂α,R) = Âα,R∗Âβ,R∗b̂α,R. If Â ∈ L2

sA
(R2) with sA > 1, then

D
̂AG(Â) : L2

2(R2) → L2(R2).

For L̂ this follows from the second order property of L. For M̂N (Â) we have, e.g.

‖Âα,R ∗ Âβ,R ∗ b̂α,R‖L2 � ‖Âα,R‖L1‖Âβ,R‖L1‖b̂α,R‖L2

� ‖Âα,R‖L2
sA
‖Âβ,R‖L2

sA
‖b̂α,R‖L2

2

using Young’s inequality for convolutions and (4.22).
From (4.55) and using a Taylor expansion of G(Âε + b̂), we deduce then the following

system of equations for the error term b̂,

χε,r−1D
̂AG(Â) b̂ = χε,r−1R̂(Âε + b̂) − χε,r−1

(
G(Âε + b̂) − D

̂AG(Â) b̂
)

= χε,r−1R̂(Âε + b̂) − χε,r−1

×
(
G(Âε) +

(
D

̂AG(Âε) − D
̂AG(Â)

)
b̂ + g(b̂)

)
=: W(b̂), (4.59)

where g is quadratic in b̂. Once more, we want to apply a fixed point argument to (4.59) on a
small ball around the origin in

(
L2

sB
(R2)

)N
. Hence we need to estimate the terms in W . First,

using the assumption that
(

Â j

)N

j=1
solves the CMEs (4.14), for k′ ∈ Bεr−1(0) we have

G j(Âε)(k′) =

(
1
2

(k′)T∇2ωn∗(k
( j))k′ − Ω

)
Â j(k′) − N̂ j(Âε)(k′)

= N̂ j(Â)(k′) − N̂ j(Âε)(k′)

=
ω∗
2

∑
(α,β,γ)∈σ j

I j
α,β,γ

(
Âα ∗ Âβ ∗ Âγ − Âε

α ∗ Âε
β ∗ Âε

γ

)
(k′).

Notice that the right-hand side includes terms which are double convolutions between Âε
j and

âεj := Â j − Âε
j =

(
1 − χε,r−1

)
Â j with at least one occurrence of âεj. Since for k′ ∈ R2\Bεr−1(0)

there holds

|âε
j(k

′)| � (1 + |k′|)sA |âε
j(k

′)| sup
|k′ |>εr−1

(1 + |k′|)−sA

� cεsA(1−r)(1 + |k′|)sA |Â j(k
′)|,
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we have by Young’s inequality for convolutions and (4.22)

‖âε
α ∗ Âε

β ∗ Âε
γ‖L2(R2) � ‖âε

α‖L2(R2)‖Âε
β‖L1(R2)‖Âε

γ‖L1(R2)

� cεsA(1−r)‖Âα‖L2
sA

(R2)‖Âβ‖L2
sA

(R2)‖Âγ‖L2
sA

(R2)

for sA > 1, and similarly one may handle all other terms, because again by (4.22) one has
‖âε

j‖L1 � ‖âε
j‖L2

sA
� ‖Â j‖L2

sA
. Hence

‖G j(Âε)‖L2(R2)

� c
N∑

α,β,γ=1

εsA(1−r)‖Âα‖L2
sA

(R2)‖Âβ‖L2
sA

(R2)‖Âγ‖L2
sA

(R2). (4.60)

Next, we estimate the difference of the Jacobians in (4.59). Since the linear part of them
(cf(4.58)) is the same for Âε and Â, we get

‖χε,r−1

(
D

̂AG(Âε) − D
̂AG(Â)

)
b̂‖L2(R2)

�
N∑

j,m=1

‖χε,r−1

(
(M̂N (Âε)) j,m − (M̂N (Â)) j,m

)
b̂m‖L2(R2)

�
N∑

α,β, j,m=1

[
‖ν11,R

αβ jm

(
Âε
α,R ∗ Âε

β,R − Âα,R ∗ Âβ,R

)
∗ b̂m,R‖2

+ ‖ν11,I
αβ jm

(
Âε
α,I ∗ Âε

β,I − Âα,I ∗ Âβ,I

)
∗ b̂m,R‖2

+ ‖ν12
αβ jm

(
Âε
α,R ∗ Âε

β,I − Âα,R ∗ Âβ,I

)
∗ b̂m,I‖2

+ ‖ν12
αβ jm

(
Âε
α,R ∗ Âε

β,I − Âα,R ∗ Âβ,I

)
∗ b̂m,R‖2

+ ‖ν22,R
αβ jm

(
Âε
α,R ∗ Âε

β,R − Âα,R ∗ Âβ,R

)
∗ b̂m,I‖2

+ ‖ν22,I
αβ jm

(
Âε
α,I ∗ Âε

β,I − Âα,I ∗ Âβ,I

)
∗ b̂m,I‖2

]
.

We see that all terms are of the same kind and, moreover, are linear in b̂ and either linear or
quadratic in âε := Âε − Â. Applying then estimates analogous to the ones used to deduce (4.60),
we infer

‖χε,r−1

(
D

̂AG(Âε) − D
̂AG(Â)

)
b̂‖L2(R2)

� cεsA(1−r)
N∑

α,β,γ=1

‖Âα‖L2
sA

(R2)‖Âβ‖L2
sA

(R2)‖b̂‖L2
sB

(R2) (4.61)

if sA > 1. Combining (4.57) (note that the dependence of c on ‖B̂‖L2
sB

—and in turn on

‖b̂‖L2
sB

—is polynomial), (4.60), and (4.61), we can thus conclude from (4.59) that

‖W(b̂)‖L2(R2) � cA

(
ε+ εsA(1−r) + (ε+ εsA(1−r))‖b̂‖L2

sB
+ ‖b̂‖2

L2
sB
+ ‖b̂‖3

L2
sB

)
. (4.62)

5304



Nonlinearity 34 (2021) 5261 T Dohnal and G Romani

In order to solve (4.59) for b̂ by a fixed point argument, we would need the invert-
ibility of the Jacobian D

̂AG(Â) : L2
2(R2) → L2(R2). Indeed, from this it would follow that

χε,r−1D
̂AG(Â)χε,r−1 : L2

2(R2) → L2(R2) is uniformly invertible, see [21, theorem IV.3.17].
However, this is not the case, because of the presence of the three zero eigenvalues of
DΦ(AR, AI) produced by the two spacial shift invariances and the complex phase invariance
of the CMEs (1.10). To eliminate the zero eigenvalues, we assume the non-degeneracy of A,
see definition 3.1, and work (in Fourier variables) in a subspace of L2

2(R2) in which the invari-
ances do not hold. A natural subspace is the one generated by the PT -symmetry, i.e. we work
with Â and b̂ such that

A(−x) = A(x), and b(−x) = b(x)

or equivalently,

Â : R2 → RN , b̂ : R2 → RN .

Under the non-degeneracy condition, the Jacobian D
̂AG(Â) is invertible in such a subspace

and we can apply a fixed point argument to equation (4.59). In detail, assuming Â : R2 → RN ,
we look for a solution of

b̂ =
(
χε,r−1D

̂AG(Â)
)−1

W(b̂) (4.63)

in the space

L2
2,sym :=

{
b̂ ∈ L2

2(R2)N | supp(b̂) ⊂ Bεr−1 , b̂(·) is real
}
.

However, we need to make sure that the PT -symmetry is preserved by the maps W and(
χε,r−1D

̂AG(Â)
)−1

. This is proved at the end of the section. Now we address the application

of the fixed point argument to (4.63) in the ball

B2,sym
cερ :=

{
b̂ ∈ L2

2,sym | ‖b̂‖L2
2
� cερ

}
,

where c, ρ > 0 have to be found. For b̂ ∈ B2,sym
cερ we deduce from (4.62) that

‖W(b̂)‖L2(R2) � cA

(
(ε+ εsA(1−r))(1 + cερ) + c2ε2ρ + c3ε3ρ

)
.

Choosing

ρ = min{1, sA(1 − r)} and c = 2cA, (4.64)

we infer W(b̂) ∈ B2,sym
cερ . Moreover, the map b̂ 
→ W(b̂) is contractive in such a ball. Indeed,

for b̂1, b̂2 ∈ B2,sym
cερ ,

‖W(b̂ (1)) −W(b̂ (2))‖L2(R2)

� ‖g(b̂ (1)) − g(b̂ (2))‖2 + ‖χε,r−1

(
R̂(Âε + b̂ (1)) − R̂(Âε + b̂ (2))

)
‖2

+
∥∥∥χε,r−1

(
D

̂AG(Âε) − D
̂AG(Â)

)
(b̂ (1) − b̂ (2))

∥∥∥
2

� c(ε+ εsA(1−r))‖b̂ (1) − b̂ (2)‖2,
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because of (4.57), (4.61), and of the quadratic nature of g. Since χε,r−1D
̂AG(Â) : L2

2,sym →
L2(R2) is boundedly invertible, the existence of a PT -symmetric solution b̂ ∈ L2

2,sym of
equation (4.59) so that

‖b̂‖L2
2
� 2cAε

min{1,sA(1−r)} (4.65)

follows from the Banach fixed point theorem. Notice that the optimal estimate ‖b̂‖L2
2
� 2cAε

can be obtained for any sA > 1 as r ∈
(
0, 1

2

]
can be chosen arbitrarily small.

To conclude the argument, it remains to be proved that the PT -symmetry is preserved by

the maps W and
(
χε,r−1D

̂AG(Â)
)−1

, i.e. that they map real valued functions b̂ to real valued

functions. First, note that u is PT -symmetric if and only if ũ(·, k) is so for almost all k ∈ B.
Hence, we can check the inheritance of the property in the Bloch setting. We now need to make
sure that all the components in which we decomposed our solution, and which now depend just
on b̂, inherit the PT -symmetry. If so, then the residual term R̂ in (4.56) is real. To complete
this step, analyzing the equations that w̃0, w̃R, and Ĉ have to fulfill, namely (4.10), (4.11),
and (4.30), we see that we just need that our operator Lk, the projections εQk and Qε

k, and the
nonlinear map F̃ commute with PT . In detail:

• Lk is PT -symmetric since it involves only derivatives of order 2 and 0 and by assumption
(A6).

• By the simpleness assumption (A7), the Bloch eigenfunctions pn∗(·, k) are PT -symmetric
for almost all k ∈ B, see (2.13). This, together with (A6), implies that the projections
εPk, εQk, Pε

k, Qε
k commute with PT . E.g.,

Pε
k

(
PT (ũ)

)
(x, k)

=

N∑
j=1

〈PT (ũ)(·, k), εpn∗(·, k)〉pn∗(x, k)

=

N∑
j=1

〈PT (ũ)(·, k), εPT (pn∗)(·, k)〉PT (pn∗)(x, k)

= PT

⎛⎝ N∑
j=1

〈PT (ũ)(·, k), εPT (pn∗)(·, k)〉 pn∗(x, k)

⎞⎠
= PT

⎛⎝ N∑
j=1

〈ũ(·, k), εpn∗(·, k)〉pn∗(x, k)

⎞⎠ = PT (Pε
kũ)(x, k),

since ∫
R2

ũ(−x, k) · ε(x)pn∗(−x, k)dx =

∫
R2

ũ(y, k) · ε(−y)pn∗(y, k)dy

= ∫
R2

ũ(y, k) · ε(y)pn∗(y, k)dy

= 〈ũ(·, k), εpn∗(·, k)〉.
• F̃ only involves convolutions in B (cf (4.3)), hence thePT -symmetry is trivially preserved

using the evenness of χ(3), see assumption (A6).
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Consequently, if we start with a PT -symmetric solution Â of the CMEs (1.10) and consider
b̂ ∈ B2,sym

cερ , then all components B̂, Ĉ, w̃R, w̃0 inherit the same symmetry. This implies that the
term R̂(B̂) is real. Moreover, exploiting the PT -symmetry of the mode pn∗(·, k), see (2.13), it
is easy to show that the coefficients Θa,b,c,d

α,β,γ, j defined in (4.46) (or equivalently the coefficients

I j
α,β,γ defined in (1.13)) are real. Hence also G(B̂) and D

̂AG(Â) are real. We are able to conclude

that
(
χε,r−1D

̂AG(Â)
)−1

W : B2,sym
cερ →B2,sym

cερ with the former choices of ρ and c in (4.64), and

therefore we find a real solution b̂ to (4.63) satisfying (4.65).
This shows that the function ũ in (4.7) constructed in sections 4.3–4.6 is a PT -symmetric

H2 solution of (4.2).

4.7. Approximation error of uans

In order to complete the proof of theorem 1.1 we need to show that the initial ansatz uans defined
in (1.8) is actually a good approximation of the solution u of (1.6) which we constructed in
sections 4.3–4.6. Recalling that

ũ(x, k) = ṽ(x, k) + w̃(x, k) = ṽB(x, k) + ṽC(x, k) + w̃0(x, k) + w̃R(x, k),

and in virtue of the estimates (4.24), (4.29), and (4.38), we have

‖ũans − ũ‖X2 � ‖ũans − ṽB‖X2 + cA(ε2−2r + ε2 + ε3) � ‖ũans − ṽB‖X2 + cε2−2r. (4.66)

We split now the first term as follows (cf (4.12)):

ũans(x, k) − ṽB(x, k)

=
1
ε

N∑
j=1

{∑
K∈Λ∗

Â j

(
k − k ( j) + K

ε

)
pn∗(x, k ( j))eiK·x− B̂ j

(
k − k ( j)

ε

)
pn∗(x, k)

}

=
1
ε

N∑
j=1

{
− b̂ j

(
k − k ( j)

ε

)
pn∗(x, k) + (χε,r−1Â j)

(
k − k ( j)

ε

)
·
(

pn∗(x, k ( j)) − pn∗(x, k)
)
+ (
(
1 − χε,r−1

)
Â j)

(
k − k ( j)

ε

)
· pn∗(x, k ( j)) +

∑
0 �=K∈Λ∗

Â j

(
k − k ( j) + K

ε

)
pn∗(x, k ( j))eiK·x

⎫⎬⎭
and we estimate term by term. First, by (4.65) one gets∥∥∥∥b̂ j

(
· − k ( j)

ε

)
pn∗

∥∥∥∥2

X2

� c
∫
B

∣∣∣∣b̂ j

(
k − k ( j)

ε

)∣∣∣∣2 dk = cε2‖b̂ j‖2
L2(ε−1B)

� cε2(1+min{1,sA(1−r)}). (4.67)

Second, using the Lipschitz continuity of the map k 
→ pn∗(·, k) ∈ H2(Q) for k in a vicinity of
k( j) given by lemma A.7, we get
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∫
B

∣∣∣∣(χε,r−1Â j)

(
k − k ( j)

ε

)∣∣∣∣2‖pn∗(·, k) − pn∗(·, k ( j))‖2
H2(Q) dk

� cε2
∫

Bεr (k ( j))

∣∣∣∣Â j

(
k − k ( j)

ε

)∣∣∣∣2∣∣∣∣k − k ( j)

ε

∣∣∣∣2 dk

� cε4
∫

B
εr−1 (0)

|z|2|Â j(z)|2 dz = cε4‖Â j‖2
L2

1
� cε4‖Â j‖2

L2
sA
. (4.68)

Next,

∫
B

∣∣∣∣(1 − χε,r−1Â j)

(
k − k ( j)

ε

)∣∣∣∣2‖pn∗(·, k ( j))‖2
H2(Q) dk

� cε2 sup
z/∈B

εr−1 (0)
(1 + |z|)−2sA

∫
R2\B

εr−1 (0)
(1 + |z|)2sA |Â j(z)|2 dz

� cε2(1 + εr−1)−2sA‖Â j‖2
L2

sA
� cε2(1+sA(1−r))‖Â j‖2

L2
sA
. (4.69)

Finally we consider the term involving the translated Brillouin zones:

∑
0 �=K∈Λ∗

∫
B

∣∣∣∣Â j

(
k − k ( j) + K

ε

)∣∣∣∣2‖pn∗(·, k ( j))eiK·‖2
H2(Q) dk

� cε2 sup
0 �=K̃∈Λ∗

sup
z∈ε−1(B−k ( j)+K̃)

(1 + |z|)−2sA
∑

0 �=K∈Λ∗

∫
ε−1(B−k ( j)+K)

(1 + |z|)2sA |Â j(z)|2 dz

� cε2(1 + ε−1)−2sA

∫
R2\ε−1(B−k ( j))

(1 + |z|)2sA |Â j(z)|2 dz

� cε2(1+sA)‖Â j‖2
L2

sA
. (4.70)

By combining estimates (4.66)–(4.70) we arrive at

‖ũans − ũ‖X2 � c
ε

(
ε1+min{1,sA(1−r)}(ε2 + ε1+sA(1−r) + ε1+sA

)
‖Â j‖L2

sA
+ ε3−2r

)
� cεmin{1,sA(1−r)}

since r ∈ {(0, 1
2 ]. Because sA > 1, if we take r ∈

(
0, 1 − 1

sA

]
then sA(1 − r) � 1 and hence

‖ũans − ũ‖X2 � cε.

The proof is thus complete recalling that the Bloch transform is an isomorphism between X2

and H2(R2), see (2.26).
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Appendix A

In this last section we collect some auxiliary results needed throughout the paper. First, retrac-
ing the strategy of its standard proof (see e.g. [40, theorem 23.17]), we prove a Helmholtz
decomposition adapted to our ‘shifted’ operator ∇′

k. This is employed in section 2.2 for the
well-posedness of the eigenvalue problem in L2

#(Q). Second, we address the regularity of the
eigenfunctions pj(·, k) and the Lipschitz continuity of the maps k 
→ ω j(k), k 
→ q j(·, k), and
k 
→ pj(·, k), i.e. of the eigenvalue and eigenfunctions of the Bloch eigenvalue problems (2.8)
and (2.10). The Lipschitz continuity is exploited in the nonlinear estimates of section 4.7.

A.1. Helmholtz decomposition

We note first that H1(Ω,C) = { f ∈ L2(Ω,C) | ∇′
k f ∈ L2(Ω,C3)} for any k ∈ R2 and any

measurable Ω ⊂ R2. We also define

H(curl,Ω) := {v ∈ L2(Ω,C3) : ∇′ × v ∈ L2(Ω,C3)}.

Lemma A.1. Let Ω ⊂ R2 be a bounded domain, κ ∈ R\{0} and k ∈ R2. Then

H(curl,Ω) = Wk ⊕ Zk,

where

Wk :=

{
w ∈ H(curl,Ω)

∣∣∣∣ ∫
Ω

w · ∇′
k f = 0, ∀ f ∈ H1(Ω,C)

}
and

Zk := {g ∈ L2(Ω,C3) | ∃ψ ∈ H1(Ω,C) : g = ∇′
kψ}

are closed subspaces.

Proof. Notice that Wk and Zk are by definition orthogonal in L2(Ω,C3) and Zk ⊂ H(curl,Ω)
since ∇′

k × (∇′
kψ) = 0 for all ψ ∈ H1(Ω,C).

Step 1: Wk and Zk are closed.
Let (w j) j ⊂ Wk, i.e.

∫
Ωw j · ∇′

k f = 0 for any j ∈ N, and assumew j → w in H(curl,Ω). Then∣∣∣∣∫
Ω

w j · ∇′
k f −

∫
Ω

w · ∇′
k f

∣∣∣∣ �
∫
Ω

|w j − w‖∇′
k f | � ‖w j − w‖2‖∇′

k f ‖2 → 0,

therefore w ∈ Wk.
Let now (g j) j ⊂ Zk be such that gj → g in H(curl,Ω). Then g j = ∇′

kψ j with ψ j ∈ H1(Ω,C)
for any j ∈ N and the sequence (∇′

kψ j) j is Cauchy in the L2-norm. Noticing that

‖∇′
kψ j‖2

2 = ‖∂1ψ j + ik1ψ j‖2
2 + ‖∂2ψ j + ik2ψ j‖2

2 + |κ|2‖ψ j‖2
2,
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one immediately infers that also (ψ j) j is Cauchy in L2(Ω,C) and since ‖ψ j‖2
H1 � ‖∇′

kψ j‖2
L2 +

c(k,κ)‖ψ j‖2
L2 , the sequence (ψ j) j is Cauchy also in H1(Ω,C). Hence there exists ψ ∈ H1(Ω,C)

and thus ψ j → ψ in H1(Ω,C), such that g j = ∇′
kψ j →∇′

kψ in L2(Ω,C3). By the uniqueness
of the limit we deduce g = ∇′

kψ, hence g ∈ Zk.
Step 2: decomposition.
Let v ∈ H(curl,Ω) and introduce μv ∈ (H1(Ω,C))′ via

μv(ϕ) :=
∫
Ω

v · ∇′
kϕ for all ϕ ∈ H1(Ω,C),

as well as the sesquilinear form Sk : H1(Ω,C) × H1(Ω,C) → C via

Sk(ψ,ϕ) :=
∫
Ω

∇′
kψ · ∇′

kϕ

=

∫
Ω

∇ψ · ∇ϕ+ (κ2 + k2
1 + k2

2)
∫
Ω

ψϕ− i
∫
Ω

∇ψ · kϕ+ i
∫
Ω

∇ϕ · kψ,

which is clearly continuous in H1(Ω,C). We now prove that Sk is also coercive in H1(Ω,C):

Sk(ψ,ψ) =
∫
Ω

|∇ψ|2 + (κ2 + k2
1 + k2

2)
∫
Ω

|ψ|2 + 2 Im

[∫
Ω

∇ψ · kψ

]
� (1 − δ)

∫
Ω

|∇ψ|2 +
(
κ2 + (1 − 1

δ
)(k2

1 + k2
2)

)∫
Ω

|ψ|2. (A.1)

If we choose δ ∈
(

|k|2
|κ|2+|k|2 , 1

)
, which is nonempty since κ �= 0, both constants in (A.1) are

positive and the sesquilinear form is coercive in H1(Ω,C). By the theorem of Lax-Milgram we
then find ψ ∈ H1(Ω,C) such that∫

Ω

∇′
kψ · ∇′

kϕ =

∫
Ω

v · ∇′
kϕ for all ϕ ∈ H1(Ω,C).

This means that ∇′
kψ =: g ∈ L2(Ω,C3) and, being a gradient field, also g ∈ H(curl,Ω). Hence,

w := v − g ∈ Wk since w ∈ L2(Ω,C3) and∫
Ω

w · ∇′
k f =

∫
Ω

v · ∇′
k f −

∫
Ω

g · ∇′
k f =

∫
Ω

v · ∇′
k f −

∫
Ω

∇′
kψ · ∇′

k f = 0.

�

A.2. Regularity of pj(·, k) and of the maps k 
→ ω2
j (k) and k 
→ pj(·, k)

We prove here some regularity results for the Bloch eigenvalues (ω2
j (k)) j, k ∈ B, and eigen-

functions (q j(·, k)) j and (pj(·, k)) j (for problems (2.4) and (2.10), respectively) described in
sections 2.2 and 2.3. In particular, we show that the choice of our potential by (A1) and (A6),
i.e. 0 < ε ∈ W2,∞(Q), Λ-periodic and with ε−1 ∈ L∞(Q), is sufficient to have for each j ∈ N

(a) supk∈B‖pj(·, k)‖H2(Q) < ∞ and supk∈B‖pj(·, k)‖W2,∞(Q) < ∞;
(b) The map K � k 
→ pj(·, k) ∈ H2

#(Q) is Lipschitz continuous, provided ω j(k) is simple for
all k ∈ K ⊂ B.
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To this aim, several lemmas will be needed. In the whole section, in addition to the notation
introduced in section 2, we denote ‖ · ‖L2

#
(Q) by ‖ · ‖2. Our method of proof is inspired by that

in [7].

Lemma A.2. The map B � k 
→ ω2
j (k) ∈ [0,∞) is Lipschitz continuous.

Proof. Recall that the sesquilinear form ak(·, ·) of the H-eigenvalue problem is defined as
ak(ϕ,ψ) :=

∫
Q

1
ε
∇′

k × ϕ · ∇′
k × ψ dx for ϕ,ψ ∈ Vk. Since for a fixed k0 ∈ B it is ∇′

k = ∇′ +

ik = ∇′
k0 + i(k − k0), one has

ak(v, v) = ak0 (v, v) + R(v, k, k0),

with

|R(v, k, k0)| � ‖ε−1‖∞
(
‖v‖2

2|k − k0|2 + 2‖∇′
k0 × v‖2‖v‖2|k − k0|

)
� c |k − k0|

(
‖v‖2

2(|k|+ |k0|) + ‖v‖2

(
‖∇′ × v‖2 + |k0|‖v‖2

))
� c |k − k0|

(
‖∇′ × v‖2

2 + ‖v‖2
2

)
.

Using the variational characterization of the eigenvalues

ω2
j (k) = min

dim S= j
max
v∈S

ak(v, v)
‖v‖2

2

,

where S is an arbitrary subspace of Vk, we infer

ω2
j (k) − ω2

j (k
0) � min

dim S= j
max
v∈S

R(v, k, k0)
‖v‖2

2

� c|k − k0| min
dim S= j

max
v∈S

(
‖∇′ × v‖2

2

‖v‖2
2

+ 1

)
= c |k − k0|(ω2

j (0) + 1).

Interchanging k and k0, we finally get

|ω2
j (k) − ω2

j (k
0)| � c |k − k0|.

�

Notice that lemma A.2 evidently implies

sup
k∈B

|ω2
j (k)| � C (A.2)

for all j ∈ N.

Lemma A.3. For all j ∈ N and pj defined in (2.9) one has

sup
k∈B

‖pj(·, k)‖H2(Q) < ∞. (A.3)
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Proof. First, by the choice of the normalization of the Bloch eigenfunctions in (2.11), one
has

‖pj(·, k)‖2
2 � ‖ε−1‖∞

∫
Q
ε(x)|pj(x, k)|2 dx = ‖ε−1‖∞.

Next, applying the divergence operator ∇′
k· to (2.10), one finds

∇′
k · pj(x, k) = −ε−1(x)∇′

kε(x) · pj(x, k). (A.4)

Noticing that

‖∇′
kε‖∞ � ‖∇ε‖∞ + max

k∈B
(|k|+ |κ|)‖ε‖∞ � c ‖ε‖W1,∞ ,

one infers

sup
k∈B

‖∇′
k · pj(·, k)‖L2(Q) � c ‖ε‖W1,∞ . (A.5)

To have a bound on the H1-norm, we need to estimate also ∇′
k × pj(·, k). We exploit the

definition (2.9) and equation (2.8) that q j(·, k) satisfies in the L2-sense to get

∇′
k × pj(·, k) = i∇′

k ×
(

1
ε
∇′

k × q j(·, k)

)
= iω2

j (k)q j(·, k).

Therefore, from (A.2) and the normalization of the eigenfunctions qj(·, k) we deduce

sup
k∈B

‖∇′
k × pj(·, k)‖2 � sup

k∈B
|ω2

j (k)|‖q j(·, k)‖2 � c. (A.6)

We can thus conclude by (A.5) and (A.6) that the same bound holds also in H1
#(Q), i.e.

sup
k∈B

‖pj(·, k)‖H1(Q) � c. (A.7)

The H2-norm is estimated similarly since

‖pj(·, k)‖H2(Q) � c
(
‖pj(·, k)‖L2(Q) + ‖∇′

k · pj(·, k)‖H1(Q)

+ ‖∇′
k × pj(·, k)‖H1(Q)

)
. (A.8)

First, by (2.10) and (A.2),

‖∇′
k × pj(·, k)‖H1(Q) � c

(
‖∇′

k × pj(·, k)‖2 + ‖∇′
k ×∇′

k × pj(·, k)‖2
)

� c + ‖ε‖∞|ω2
j (k)|‖pj(·, k)‖2 � c. (A.9)

Next, from (A.4) we deduce

∇′
k

(
∇′

k · pj(·, k)
)
= J′

k

(
∇′

kε

ε

)
pj(·, k) + J′

k(pj(·, k))
∇′

kε

ε
,

where J′k(V) stands for the Jacobian of the vector field V : R2 → R2 with the derivatives ∂m

replaced by the ‘shifted’ derivatives ∂m + ikm for m ∈ {1, 2}. Hence from (A.7) we have
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‖∇′
k

(
∇′

k · pj(·, k)
)
‖L2(Q)

�
∥∥∥∥J′

k

(
∇′

kε

ε

)∥∥∥∥
∞
‖pj(·, k)‖2 + ‖J′

k(pj(·, k))‖2

∥∥∥∥∇′
kε

ε

∥∥∥∥
∞

� c
(
‖ε‖W2,∞ , ‖ε−1‖∞

)
‖pj(·, k)‖H1(Q) � c, (A.10)

for all k ∈ B. Combining (A.8) with (A.9) and (A.10), one infers (A.3) and the proof is
concluded. �

Lemma A.4. For all j ∈ N and pj defined in (2.9) one has

sup
k∈B

‖pj(·, k)‖W2,∞(Q) < ∞.

Proof. By lemma A.3 and the embedding H2(Q) ↪→ L∞(Q) we infer supk∈B
‖pj(·, k)‖∞ < ∞. The upgrade to W2,∞-regularity is then accomplished by following
the same steps as in the proof of lemma A.3. �

Next, we aim to prove (b). Let K be a connected and contractible subset of B such that
ω j(k) is simple for all k ∈ K. Notice that we meet such a condition if K = Bδ(k (i)) with j = n∗,
k(i) ∈ {k(1), . . . , k(N )} and 0 < δ � 1 by assumption (A3). Indeed, the geometric simpleness
of ωn∗(k (i)) can be extended to ωn∗(k) for k in a whole neighbourhood of k(i), see [26, theorem
IV.3.16].

As a first step, we prove the following.

Lemma A.5. The map K � k 
→ q j(·, k) ∈ L2
#(Q) is of class C2.

In fact, Lipschitz continuity of the map in lemma A.5 will be enough for our purposes in
section 4.7.

Proof. Define the operator A0(k) :=∇′
k ×

(
1
ε∇′

k×
)
+ a0I = L (H)

k + a0I, where a0 is a pos-
itive constant. Since the spectrum of L (H)

k is contained in the non-negative half-line (see
section 2.2), the operator A0(k) is invertible, so in particular A0(k)−1 : L2

#(Q) → Vk, the latter

space being the form domain of L (H)
k defined in (2.3). Hence

S j(k) :=A0(k)−1E − ν j(k)I, k ∈ K,

where ν j(k) :=
(
a0 + ω2

j (k)
)−1

and E : H1
#(Q) → L2

#(Q) is the identical embedding, is a well-

defined Fredholm operator on L2
#(Q) which depends on k in a C2 fashion. Indeed, E is a

compact embedding (see e.g. [1, theorems 3.5, 3.7]) and so S j(k) is a compact perturbation
of (a multiple of) the identity. The C2-regularity is a consequence of the same property that the
map k 
→ ω j(k) enjoys, see assumption (A4). Moreover, it is easy to see that ker S j(k) coincides
with the jth eigenspace of L (H)

k and so, by the geometric simpleness of ω j(k), it is of dimension
one for all k ∈ K. This yields the structure of a vector bundle to ker S j :=

⋃
k∈K ker S j(k) over

K, see [6, p 62]. Moreover, we claim that the map k 
→ ker S j(k) is C2.
To this aim let k0 ∈ K. Since S j(k) is a self-adjoint Fredholm operator with a nontrivial

kernel for all k ∈ K, there exists an interval [−δ, δ] ⊂ R, such that σ(S j(k)) ∩ [−δ, δ] = {0}.2

2 If A is a self-adjoint operator on a Hilbert space and λ ∈ C, then A − λ is Fredholm if and only if λ is a discrete
eigenvalue of finite multiplicity or lies in the resolvent of A. See also [22, chapter XVII theorem 2.1].
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Since k 
→ S j(k) is continuous, by spectral continuity [22, chapter II, theorem 4.2], such δ can
be chosen independent of k for all k ∈ Br(k0). Consider therefore the map

S j(k) 
→ P(k) :=
1

2πi

∮
Γ

(
S j(k) − λ

)−1
dλ,

where Γ is a closed curve in C that isolates {0} from the rest of the spectrum. Then P(k) is a
projection onto the eigenspace of the 0 eigenvalue for all k ∈ K, i.e. P(k) = Πker(S j(k)), see [26,
section 6.4] or [34, theorems XII.5–6]. It is clear then that k 
→ P(k) is C2 relying on the same
property of k 
→ S j(k). Therefore the map k 
→ Im P(k) = ker(Sj(k)) shares the same regularity
too, and the claim is proved.

K being contractible, the vector bundle ker S j is C2-diffeomorphic to the trivial bundle K×
C, see e.g. [24, example 2 chapter 4.1], which clearly has a constant section s̃ j : K→K× C

such that s̃ j(k) = (k, 1). Then, calling such diffeomorphismϕ j, the map s j : K→ ker S j defined
as s j :=ϕ−1

j ◦ s̃ j is a C2 section over ker S j. This means that, up to a multiplication by a unitary
complex function, it is possible to redefine the jth eigenfunction qj(·, k) normalized as in (2.11)
and such that the map K � k 
→ q j(·, k) ∈ L2

#(Q) is C2. �
Before transferring such a property to the eigenfunctions pj(·, k), we need a stronger result

on qj(·, k).

Lemma A.6. The map K � k 
→ q j(·, k) ∈ H1
#(Q) is Lipschitz continuous.

Proof. In other words, we aim to prove that for an arbitrary k0 ∈ K there exists a suitable
constant c(k0) > 0 such that

‖q j(·, k) − q j(·, k0)‖H1(Q) � c |k − k0|, for all k ∈ K. (A.11)

Noticing that the Helmholtz decomposition of H1
#(Q) in lemma A.1 holds with the operators

∇′× and ∇′·, as the particular case when k = 0, we estimate separately ‖∇′ · qj(·, k) −∇′ ·
qj(·, k0)‖2 and ‖∇′ × qj(·, k) −∇′ × qj(·, k0)‖2. Since ∇′

k · q j(·, k) = 0 for all k ∈ B, one has

‖∇′ · q j(·, k) −∇′ · q j(·, k0)‖2 = ‖k · q j(·, k) − k0 · q j(·, k0)‖2

� |k|‖q j(·, k) − q j(·, k0)‖2 − |k − k0|‖q j(·, k0)‖2

� c |k − k0|, (A.12)

due to lemma A.5. The estimate for the difference of the curls’ is more involved and is based
on equation (2.4) which the eigenfunctions satisfy. First,

‖∇′ × q j(·, k) −∇′ × q j(·, k0)‖2

= ‖∇′
k × q j(·, k) −∇′

k0 × q j(·, k0)‖2 + ‖k × q j(·, k) − k0 × q j(·, k0)‖2, (A.13)

where the second term is estimated like above. Noticing that ∇′
k = ∇′

k0 + i(k − k0), we write
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‖∇′
k × q j(·, k) −∇′

k0 × q j(·, k0)‖2
2

=

∫
Q
∇′

k × q j(·, k) ·
(
∇′

k × q j(·, k) −
(
∇′

k − i(k − k0)
)
× q j(·, k0)

)
−
∫
Q
∇′

k0 × q j(·, k0) ·
((
∇′

k0 + i(k − k0)
)
× q j(·, k) −∇′

k0 × q j(·, k0)
)

= M1 − iM2, (A.14)

where

M1 :=
∫
Q
∇′

k × q j(·, k) · ∇′
k × (q j(·, k) − q j(·, k0))

−
∫
Q
∇′

k0 × q j(·, k0) · ∇′
k0 × (q j(·, k) − q j(·, k0)) (A.15)

and

M2 :=
∫
Q
∇′

k × q j(·, k) · (k − k0) × q j(·, k0) −
∫
Q
∇′

k0 × q j(·, k0) · (k − k0) × q j(·, k).

(A.16)

We estimate M1 and M2 separately. First, using (2.4),

M1 � ‖ε−1‖∞
∣∣∣∣∫

Q

1
ε
∇′

k × q j(·, k) · ∇′
k × (q j(·, k) − q j(·, k0))

−
∫
Q

1
ε
∇′

k0 × q j(·, k0) · ∇′
k0 × (q j(·, k) − q j(·, k0))

∣∣∣∣
� c

∣∣∣∣ω2
j (k)
∫
Q

q j(·, k) · (q j(·, k) − q j(·, k0)) − ω2
j (k

0)
∫
Q

q j(·, k0) · (q j(·, k) − q j(·, k0))

∣∣∣∣
� c |ω2

j (k) − ω2
j (k

0)|‖q j(·, k0)‖2‖q j(·, k) − q j(·, k0)‖2 + csup
k∈B

|ω2
j (k)|‖q j(·, k) − q j(·, k0)‖2

2

� c |k − k0|2, (A.17)

where in the last inequality we make use of (A.2) and lemmas A.2 and A.5. Similarly, we also
get

M2 � ‖∇′
k × q j(·, k)‖2|k − k0|‖q j(·, k) − q j(·, k0)‖2

+ ‖∇′
k × q j(·, k) −∇′

k0 × q j(·, k0)‖2|k − k0|‖q j(·, k0)‖2

� csup
k∈B

‖∇′
k × q j(·, k)‖2|k − k0|2 + δ‖∇′

k × q j(·, k) −∇′
k0 × q j(·, k0)‖2

2 +
|k − k0|2

4δ

(A.18)

for a small δ > 0. Therefore, combining equations (A.12)–(A.18), we finally infer (A.11). �
We are now in the position to prove (b).

Lemma A.7. The map K � k 
→ pj(·, k) ∈ H2
#(Q) is Lipschitz continuous.
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Proof. Notice that lemmas A.2 and A.6 and the definition pj(x, k) = i
ε(x)ω j(k)∇′

k × q j(x, k)

already imply that the above map with values in L2
#(Q) is Lipschitz continuous.

First we show that K � k 
→ pj(·, k) ∈ H1
#(Q) is Lipschitz continuous. Once again we con-

sider the ∇′-Helmholtz decomposition and estimate separately ‖∇′ · pj(·, k) −∇′ · pj(·, k0)‖2

and ‖∇′ × pj(·, k) −∇′ × pj(·, k0)‖2. Similarly to (A.13) we may confine ourselves to estimate
‖∇′

k · pj(·, k) −∇′
k0 · pj(·, k0)‖2 and ‖∇′

k × pj(·, k) −∇′
k0 × pj(·, k0)‖2.

First, by (A.4) we have

‖∇′
k · pj(·, k) −∇′

k0 · pj(·, k0)‖2 � ‖ε−1‖∞‖∇′
kε · pj(·, k) −∇′

k0ε · pj(·, k0)‖2

� c|k − k0|,

applying the triangular inequality and lemmas A.2 and A.6. Next, noticing that ∇′
k × pj(·, k) =

iω j(k)q j(·, k) by (2.8), we may similarly infer the estimate ‖∇′
k × pj(·, k) −∇′

k0 × pj(·, k0)‖2 �
c|k − k0| and, in turn, the Lipschitz continuity in the H1-norm.

The upgrade to the H2-norm can be deduced analogously, combining the estimates above
with (A.8)–(A.10). �
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