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Abstract
When dealing with the discretization of differential equations on
non-rectangular domains, a careful treatment of the boundary is mandatory
and may result in implementation difficulties and in coefficient matrices
without a prescribed structure. Here we examine the numerical solution of
a two-dimensional constant coefficient distributed-order space-fractional dif-
fusion equation with a nonlinear term on a convex domain. To avoid the
aforementioned inconvenience, we resort to the volume-penalization method,
which consists of embedding the domain into a rectangle and in adding a reac-
tion penalization term to the original equation that dominates in the region
outside the original domain and annihilates the solution correspondingly.
Thanks to the volume-penalization, methods designed for problems in rectan-
gular domains are available for those in convex domains and by applying an
implicit finite difference scheme we obtain coefficient matrices with a 2-level
Toeplitz structure plus a diagonal matrix which arises from the penalty term.
As a consequence of the latter, we can describe the asymptotic eigenvalue dis-
tribution as the matrix size diverges as well as estimate the intrinsic asymptotic
ill-conditioning of the involved matrices. On these bases, we discuss the per-
formances of the conjugate gradient with circulant and 𝜏-preconditioners and
of the generalized minimal residual with split circulant and 𝜏-preconditioners
and conduct related numerical experiments.
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1 INTRODUCTION

Fractional diffusion equations (FDEs) have attracted growing attention in the last decades, due to the fact that they
represent a powerful tool for modeling anomalous diffusion that arises in a wide range of applicative fields.1-4 Their
versatility relies on the fractional derivative order, a noninteger parameter that can be calibrated to model enhanced dif-
fusivity, overcoming the limits of classical integer order modeling (see the book by Podlubny4 and references therein).
Particularly effective in portraying anomalous diffusion are the so-called distributed-order operators, where the fractional
derivative is integrated with respect to the order of differentiation, within a given range. They arise when the fractional
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order varies continuously in the interior of the domain. This results in a sum of the contributions over the domain,
leading to an integral over the order parameter.1,2 Applications of the fractional distributed order paradigma in porous
media and groundwater flow can be found in the literature.5,6 Since analytical solutions for FDEs are rarely available, the
investigation of numerical methods for the computation of approximate solutions constitutes an active and promising
field of research.

In the present work, we focus on a semi-linear two-dimensional Riesz distributed-order space-FDE defined on
a convex domain. A linear version of this problem was discretized by means of a finite element method over
unstructured/non-Cartesian meshes.7 The versatility of this method comes at a price as the boundary treatment asks
for some extra care and the resulting coefficient matrices do not have a distinct structure. To avoid these drawbacks,
we adopt a different strategy. Rather than adjusting the discretization, we act on the continuous problem and alter it
in a way that allows us to employ uniform grids and therefore preserve the good structure of the matrices. More pre-
cisely, we resort to the volume-penalization method,8 applied by Huang and Sun to solve a semi-linear Riesz space
FDE.9 Such technique consists in embedding the domain into a rectangle and considering an extended problem with
an additional reaction penalization term, that dominates outside of the original domain and serves the purpose of anni-
hilating the solution correspondingly. The latter purpose is achieved by introducing a penalization parameter that, as
it tends to zero, magnifies the reaction term over the fractional differential operator and forces the solution to be zero
outside of the original domain. The idea of embedding the domain in a rectangle and then using a suitable reformu-
lation of the problem is the common denominator of the large class of immersed methods (see e.g., References 10,11
and references therein), whose starting point is quite old and indeed these methods intersect with those called fictitious
domain methods.12,13

Thus, we obtain a problem on a rectangular domain that can be discretized on uniform grids. In particular, we adopt
a second-order finite difference method for time derivative and a weighted and shifted Grünwald–Letnikov difference
scheme for the fractional derivatives, combined with a quadrature rule for the integral and an approximation for the
nonlinear term derived from Taylor expansions. The overall numerical scheme has a second-order convergence in both
time and space directions. In addition, the presence of uniform gridding results in 2-level Toeplitz matrices, due to the
shift-invariant nature of the operators, plus a diagonal matrix arising from the penalty term. This is crucial for overcoming
the disadvantages of having full coefficient matrices, which in general require(n3) computational costs and(n2) storage
costs, where n is the number of grid points. In fact, the storage requirement for a Toeplitz structure amounts only to(n)
and the complexity of the matrix-vector product is reduced to (n log n) thanks to the use of the fast Fourier transform
(FFT).

Moreover, putting together the matrices obtained for each discretization step, we obtain a real symmetric structured
matrix-sequence, which can be associated to a function, called (spectral) symbol, and asymptotically representing
the distribution of the eigenvalues as the matrix size increases. We recall that the evaluation of the symbol over an
equispaced grid leads to a reasonable approximation of the eigenvalues, when the size of the matrix is sufficiently
large. Applying the well-known theory of Toeplitz and generalized locally Toeplitz sequences,14 and building on the
information available regarding the one-dimensional case,15 we are able to explicitly compute the symbol of the (properly
scaled) coefficient matrix-sequence and exploit the spectral information in order to design preconditioners that counter-
balance the asymptotic ill-conditioning.

The first preconditioner we investigate consists in a two-level version of the 𝜏-preconditioners described in detail in the
one-dimensional setting.15 As a basis for comparison, we consider a two-level Strang-type circulant preconditioner. Aware
of the negative results regarding the convergence rate of matrix-algebra preconditioning in a multilevel setting,16,17 we
cannot expect either superlinear or mesh independent convergence in general. However, the 𝜏-preconditioner is a prefer-
able option in the real symmetric setting,18 especially because of a substantially better matching of the small eigenvalues
(an application to fractional problems has been investigated19). However, both preconditioners do not include the diago-
nal matrix arising from the penalty term and this could cause poor performances of the preconditioned conjugate gradient
(PCG). Therefore, as a second preconditioner we study an adaptation to the distributed case of a split 𝜏-preconditioner9

proposed for a non-distributed problem. A circulant version of the split preconditioner is also taken into account. These
preconditioners are non-symmetric, therefore the associated linear systems need to be solved via the generalized mini-
mal residual (GMRES) method. Moreover, they require two extra fast transforms if compared with the non-split circulant
and 𝜏-preconditioners. For all the aforementioned preconditioners, we compute the symbol and exploit the spectral infor-
mation to assess which preconditioners should be the preferable choice under different circumstances. The numerical
tests emphasize that both 𝜏-preconditioners need fewer iterations than their circulant versions and this is in line with the
theoretical results. Moreover, if the penalization parameter is small enough, the split preconditioners typically provide
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a lower number of iterations, which balances the higher cost of the GMRES method compared to the PCG and the two
extra fast transforms.

The current paper is organized as follows. Section 2 introduces the continuous problem, its extension with the
volume-penalization method and the discretization, including the basic features of the resulting coefficient matrices.
Section 3 is devoted to the calculation of the symbol and the spectral analysis. Section 4 contains the preconditioning
proposal and the spectral study of the preconditioners, followed in Section 5 by the discussion of several numerical
experiments. Finally, in Section 6 we draw conclusions and propose a few open problems.

2 PROBLEM SETTING AND DISCRETIZATION

Consider the following two-dimensional distributed order space-FDE

⎧
⎪
⎨
⎪
⎩

𝜕u(x,y,t)
𝜕t

= ∫ 2
1

(
𝜕
𝛼u(x,y,t)
𝜕|x|𝛼

+ 𝜕
𝛼u(x,y,t)
𝜕|y|𝛼

)
𝜌(𝛼)d𝛼 + f (u, x, y, t), (x, y, t) ∈ Ω × [0,T],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ R2 ⧵Ω and t ∈ (0,T],

(1)

where

Ω =
{
(x, y) ∈ R

2 ∶ x ∈ (ā, b), y ∈ (c(x), d(x))
}
=

{
(x, y) ∈ R

2 ∶ y ∈ (c, d), x ∈ (a(y), b(y))
}

with

ā ∶= min a(y), b ∶= max b(y), c ∶= min c(x), d ∶= max d(x)

is a convex region, f (u, x, y, t) is the source term, satisfying the Lipschitz condition with respect to u, and 𝜌(𝛼) is the kernel
function satisfying

𝜌(𝛼) ≥ 0, 0 <
∫

2

1
𝜌(𝛼)𝜉(𝛼)d𝛼 < ∞,

where 𝜉(𝛼) = − 1
2 cos( 𝛼𝜋

2
)
> 0. The Riesz space fractional derivatives 𝜕

𝛼u(x,y,t)
𝜕|x|𝛼

and 𝜕
𝛼u(x,y,t)
𝜕|y|𝛼

are defined as

𝜕
𝛼u(x, y, t)
𝜕|x|𝛼

= 𝜉(𝛼)
(

a(y)D𝛼

x u(x, y, t) +x D𝛼

b(y)u(x, y, t)
)
,

𝜕
𝛼u(x, y, t)
𝜕|y|𝛼

= 𝜉(𝛼)
(

c(x)D𝛼

y u(x, y, t) +y D𝛼

d(x)u(x, y, t)
)
.

Here the left-sided and right-sided Riemann–Liouville fractional derivative operators with respect to x and y are
defined as

a(y)D𝛼

x u(x, y, t) = 1
Γ(2 − 𝛼)

d2

dx2∫

x

a(y)
(x − s)1−𝛼u(s, y, t)ds,

xD𝛼

b(y)u(x, y, t) =
1

Γ(2 − 𝛼)
d2

dx2∫

b(y)

x
(s − x)1−𝛼u(s, y, t)ds,

c(x)D𝛼

y u(x, y, t) = 1
Γ(2 − 𝛼)

d2

dy2∫

y

c(x)
(y − s)1−𝛼u(x, s, t)ds,

yD𝛼

d(x)u(x, y, t) =
1

Γ(2 − 𝛼)
d2

dy2∫

d(x)

y
(s − y)1−𝛼u(x, s, t)ds,

respectively, with Γ(⋅) being the Euler gamma function.
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In order to seek the numerical solution without resorting to non-Cartesian meshes, we exploit the
volume-penalization method.9 Before discretizing the equations, we extend the domain Ω to a rectangle
̃Ω = [ã, ̃b] × [c̃, ̃d] ⊇ Ω and reformulate the problem as the following one:

⎧
⎪
⎨
⎪
⎩

𝜕u
𝜂
(x,y,t)
𝜕t

= ∫ 2
1

(
𝜕
𝛼u

𝜂
(x,y,t)

𝜕|x|𝛼
+ 𝜕

𝛼u
𝜂
(x,y,t)

𝜕|y|𝛼

)
𝜌(𝛼)d𝛼 − 1−1Ω(x,y)

𝜂

u𝜂(x, y, t) + ̃f (u𝜂, x, y, t), (x, y, t) ∈ ̃Ω × [0,T],

u𝜂(x, y, 0) = ũ0(x, y), (x, y) ∈ ̃Ω,
u𝜂(x, y, t) = 0, (x, y) ∈ R2 ⧵ ̃Ω and t ∈ (0,T],

(2)

where 𝜂 is the penalty parameter, 1Ω is the indicator function defined as

1Ω(x, y) =

{
1, (x, y) ∈ Ω,
0, (x, y) ∈ ̃Ω ⧵Ω,

and ̃f (u𝜂, x, y, t), ũ0(x, y) are zero extensions for f (u, x, y, t) and u0(x, y) respectively, meaning that ̃f (u𝜂, x, y, t) = 0, ũ0(x, y) =
0 when (x, y) ∈ ̃Ω ⧵Ω. It is expected that as 𝜂 → 0+, u𝜂(x, y, t) → u(x, y, t).

Now, as done in the one-dimensional setting,20 we adopt a second-order finite difference method to discretize the
transformed equations (2). Let M, n1, and n2 be positive integers and discretize the domain ̃Ω × [0,T] with

xi = ã + ihx, hx =
̃b − ã

n1 + 1
, i = 0, 1, … ,n1 + 1,

yj = c̃ + jhy, hy =
̃d − c̃

n2 + 1
, j = 0, 1, … ,n2 + 1,

tm = mΔt, Δt = T
M
, m = 0, 1, … ,M.

In order to discretize the left and right Riemann–Liouville fractional derivatives in space, we exploit the weighted and
shifted Grünwald–Letnikov difference scheme,21 that is,

ãD𝛼

x u𝜂(xi, yj, t) =
1

h𝛼x

i∑

q=0
𝜔
(𝛼)
q u𝜂(xi−q+1, yj, tm) + 

(
h2

x
)
,

xD𝛼

̃b
u𝜂(xi, yj, t) =

1
h𝛼x

n1−i+1∑

q=0
𝜔
(𝛼)
q u𝜂(xi+q−1, yj, tm) + 

(
h2

x
)
,

c̃D𝛼

y u𝜂(xi, yj, t) =
1

h𝛼y

j∑

q=0
𝜔
(𝛼)
q u𝜂(xi, yj−q+1, tm) + 

(
h2

y
)
,

yD𝛼

̃d
u𝜂(xi, yj, t) =

1
h𝛼y

n2−j+1∑

q=0
𝜔
(𝛼)
q u𝜂(xi, yj+q−1, tm) + 

(
h2

y
)
, (3)

where
𝜔
(𝛼)
0 = 𝛾1(𝛼)g(𝛼)0 , 𝜔

(𝛼)
1 = 𝛾1(𝛼)g(𝛼)1 + 𝛾0(𝛼)g(𝛼)0 ,

𝜔
(𝛼)
k = 𝛾1(𝛼)g(𝛼)k + 𝛾0(𝛼)g(𝛼)k−1 + 𝛾−1(𝛼)g(𝛼)k−2, k ≥ 2,

in which
𝛾1(𝛼) =

𝛼
2 + 3𝛼 + 2

12
, 𝛾0(𝛼) =

4 − 𝛼2

6
, 𝛾−1(𝛼) =

𝛼
2 − 3𝛼 + 2

12
,

g(𝛼)0 = 1, g(𝛼)k+1 =
(

1 − 𝛼 + 1
k + 1

)
g(𝛼)k , k ≥ 0.

Concerning the discretization in time, as done by Fan and Liu,7 we take tm+ 1
2
= tm + Δt

2
and consider the following

second order central difference scheme
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𝜕u𝜂
(

xi, yj, tm+ 1
2

)

𝜕t
=

u𝜂(xi, yj, tm+1) − u𝜂(xi, yj, tm)
Δt

+ 
(
Δt2)

. (4)

In order to approximate the integral in (1), we first decompose it on the subintervals arising from a partition of the inte-
gral interval (1, 2). Specifically, we divide the interval (1, 2) into l uniform subintervals and denote by Δ𝛼 the length of
such subintervals. Then, the mid-point of each subinterval is given by 𝛼k = 1 +

(
k − 1

2

)
Δ𝛼, k = 1, 2, … , l. By using the

mid-point quadrature rule, Equation (1) can be written as

∫

2

1

(
𝜕
𝛼u𝜂(x, y, t)
𝜕|x|𝛼

+
𝜕
𝛼u𝜂(x, y, t)
𝜕|y|𝛼

)

𝜌(𝛼)d𝛼 =
l∑

k=1
∫

1+kΔ𝛼

1+(k−1)Δ𝛼

(
𝜕
𝛼u𝜂(x, y, t)
𝜕|x|𝛼

+
𝜕
𝛼u𝜂(x, y, t)
𝜕|y|𝛼

)

𝜌(𝛼)d𝛼

=
l∑

k=1

[
𝜕
𝛼k u𝜂(x, y, t)
𝜕|x|𝛼k

+
𝜕
𝛼k u𝜂(x, y, t)
𝜕|y|𝛼k

]

𝜌(𝛼k)Δ𝛼 + (Δ𝛼2). (5)

Due to the nature of the nonlinearity, we can avoid employing a two-level iteration with a nonlinear solver and rather
work towards the construction of a two-step implicit scheme. We then we exploit the Lipschitz condition on ̃f (u𝜂, x, y, t)
with respect to u𝜂 and find a constant C such that

|
|
|
|
̃f
(

u𝜂(xi, yj, tm+ 1
2
), xi, yj, tm+ 1

2

)
− ̃f

(3
2

u𝜂(xi, yj, tm) −
1
2

u𝜂(xi, yj, tm−1), xi, yj, tm+ 1
2

)|
|
|
|

≤ C
|
|
|
|
u𝜂(xi, yj, tm+ 1

2
) −

(3
2

u𝜂(xi, yj, tm) −
1
2

u𝜂(xi, yj, tm−1)
)|
|
|
|
.

With the additional hypothesis that the second derivative of u𝜂 remains bounded, from Taylor expansions in tm and tm−1
we get

u𝜂
(

xi, yj, tm+ 1
2

)
= 3

2
u𝜂(xi, yj, tm+ 1

2
) − 1

2
u𝜂(xi, yj, tm+ 1

2
)

= 3
2

(
u𝜂(xi, yj, tm) +

Δt
2

u′
𝜂
(xi, yj, tm) + (Δt2)

)
− 1

2

(
u𝜂(xi, yj, tm−1) +

3Δt
2

u′
𝜂
(xi, yj, tm−1) + (Δt2)

)

= 3
2

u𝜂(xi, yj, tm) −
1
2

u𝜂(xi, yj, tm−1) +
3Δt

4
(

u′
𝜂
(xi, yj, tm) − u′

𝜂
(xi, yj, tm−1) + (Δt2)

)
.

From backward and forward finite differences formulas

u′
𝜂
(xi, yj, tm) =

u𝜂(xi, yj, tm) − u𝜂(xi, yj, tm−1)
Δt

+ (Δt),

u′
𝜂
(xi, yj, tm−1) =

u𝜂(xi, yj, tm) − u𝜂(xi, yj, tm−1)
Δt

+ (Δt),

therefore
u′
𝜂
(xi, yj, tm) − u′

𝜂
(xi, yj, tm−1) = (Δt).

It follows that

u𝜂
(

xi, yj, tm+ 1
2

)
= 3

2
u𝜂(xi, yj, tm) −

1
2

u𝜂(xi, yj, tm−1) + (Δt2),

which, combined with the inequality above, provides the following second-order approximation for the nonlinear term
at each time step

̃f
(

u𝜂(xi, yj, tm+ 1
2
), xi, yj, tm+ 1

2

)
= ̃f

(3
2

u𝜂(xi, yj, tm) −
1
2

u𝜂(xi, yj, tm−1), xi, yj, tm+ 1
2

)
+ (Δt2). (6)

Note that this formula requires the knowledge of u𝜂(xi, yj, tm) and u𝜂(xi, yj, tm−1), which means that we need to calculate
the solution at the first time step in order to start the computation. For this purpose, we will apply one step of the explicit
midpoint method

u𝜂(xi, yj, t1) = u𝜂(xi, yj, t0) + ΔtF
(

u𝜂(xi, yj, t0) +
Δt
2

F(u𝜂(xi, yj, t0), xi, yj, t0), xi, yj, t 1
2

)
,
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where

F
(

u𝜂(x, y, t), x, y, t
)
=
∫

2

1

(
𝜕
𝛼u𝜂(x, y, t)
𝜕|x|𝛼

+
𝜕
𝛼u𝜂(x, y, t)
𝜕|y|𝛼

)

𝜌(𝛼)d𝛼 −
1 − 1Ω(x, y)

𝜂

u𝜂(x, y, t) + ̃f (u𝜂(x, y, t), x, y, t).

Combining (2)–(6), we obtain

u𝜂(xi, yj, tm+1) − u𝜂(xi, yj, tm)
Δt

= Δ𝛼
l∑

k=1

𝜌(𝛼k)𝜉(𝛼k)
h𝛼k

x

( i∑

q=0
𝜔
(𝛼k)
q u𝜂

(
xi−q+1, yj, tm+ 1

2

)
+

n1−i+1∑

q=0
𝜔
(𝛼k)
q u𝜂

(
xi+q−1, yj, tm+ 1

2

)
)

+ Δ𝛼
l∑

k=1

𝜌(𝛼k)𝜉(𝛼k)
h𝛼k

y

( j∑

q=0
𝜔
(𝛼k)
q u𝜂

(
xi, yj−q+1, tm+ 1

2

)
+

n2−j+1∑

q=0
𝜔
(𝛼k)
q u𝜂

(
xi, yj+q−1, tm+ 1

2

)
)

−
1 − 1Ω(xi, yj)

𝜂

u𝜂
(

xi, yj, tm+ 1
2

)
+ ̃f

(3
2

u𝜂(xi, yj, tm) −
1
2

u𝜂(xi, yj, tm−1), xi, yj, tm+ 1
2

)
+ Rm

i,j,

(7)

where Rm
i,j = 

(
h2

x + h2
y + (Δ𝛼)2 + (Δt)2

)
, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ m ≤ M.

We define the penalization coefficients as

di,j =

{
0, (xi, yj) ∈ Ω,
Δt
2𝜂
, (xi, yj) ∈ ̃Ω ⧵Ω,

and denote ũm
i,j ≈ u𝜂(xi, yj, tm) and ̃f m

i,j = ̃f
(

3
2

u𝜂(xi, yj, tm) − 1
2

u𝜂(xi, yj, tm−1), xi, yj, tm+ 1
2

)
. By omitting the small terms Rm

i,j in
(7), we arrive at the following finite difference scheme for solving (2)

ũm+1
i,j = ũm

i,j +
ΔtΔ𝛼

2

l∑

k=1

𝜌(𝛼k)𝜉(𝛼k)
h𝛼k

x

( i∑

q=0
𝜔
(𝛼k)
q

(
ũm+1

i−q+1,j + ũm
i−q+1,j

)
+

n1−i+1∑

q=0
𝜔
(𝛼k)
q

(
ũm+1

i+q−1,j + ũm
i+q−1,j

)
)

+ ΔtΔ𝛼
2

l∑

k=1

𝜌(𝛼k)𝜉(𝛼k)
h𝛼k

y

( j∑

q=0
𝜔
(𝛼k)
q

(
ũm+1

i,j−q+1 + ũm
i,j−q+1

)
+

n2−j+1∑

q=0
𝜔
(𝛼k)
q

(
ũm+1

i,j+q−1 + ũm
i,j+q−1

)
)

− di,j

(
ũm+1

i,j + ũm
i,j

)
+ Δt̃f m

i,j, (8)

with the initial condition ũ0
i,j = ũ0(xi, yj), for i = 0, 1, … ,n1 + 1, j = 0, 1, … ,n2 + 1 and the boundary conditions

ũm
i,0 = ũm

0,j = ũm
n1+1,j = ũm

i,n2+1 = 0 for m = 0, 1, … ,M.

Now, let N = n1n2, let IN be the identity of size N, and define

ũm =
[

ũm
1,1, … , ũm

n1,1
, ũm

1,2, … , ũm
n1,2
, … , ũm

1,n2
, … , ũm

n1,n2

]T
,

̃f m =
[
̃f m

1,1, … ,
̃f m

n1,1,
̃f m

1,2, … ,
̃f m

n1,2, … ,
̃f m

1,n2
, … ,

̃f m
n1,n2

]T
,

DN = diag
(

d1,1, … , dn1,1, d1,2, … , dn1,2, … , d1,n2 , … , dn1,n2

)
.

Thus the above numerical scheme (8) can be written in the following matrix form

(
IN − Ax

N − Ay
N + DN

)
ũm+1 =

(
IN + Ax

N + Ay
N − DN

)
ũm + Δt̃f m

, (9)

with

Ax
N = In2 ⊗

(
ΔtΔ𝛼

2

l∑

k=1

𝜌(𝛼k)𝜉(𝛼k)
h𝛼k

x
An1(𝛼k)

)

=∶ In2 ⊗ Bx
n1
, (10)
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MAZZA et al. 7 of 23

and

Ay
N =

(
ΔtΔ𝛼

2

l∑

k=1

𝜌(𝛼k)𝜉(𝛼k)
h𝛼k

y
An2(𝛼k)

)

⊗ In1 =∶ By
n2
⊗ In1 , (11)

where ⊗ denotes the usual Kronecker product and

An(𝛼k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2𝜔(𝛼k)
1 𝜔

(𝛼k)
0 + 𝜔(𝛼k)

2 𝜔
(𝛼k)
3 · · · 𝜔

(𝛼k)
n−1 𝜔

(𝛼k)
n

𝜔
(𝛼k)
0 + 𝜔(𝛼k)

2 2𝜔(𝛼k)
1 𝜔

(𝛼k)
0 + 𝜔(𝛼k)

2 𝜔
(𝛼k)
3 · · · 𝜔

(𝛼k)
n−1

⋮ 𝜔
(𝛼k)
0 + 𝜔(𝛼k)

2 2𝜔(𝛼k)
1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ 𝜔
(𝛼k)
3

𝜔
(𝛼k)
n−1 ⋱ ⋱ ⋱ 2𝜔(𝛼k)

1 𝜔
(𝛼k)
0 + 𝜔(𝛼k)

2

𝜔
(𝛼k)
n 𝜔

(𝛼k)
n−1 · · · · · · 𝜔

(𝛼k)
0 + 𝜔(𝛼k)

2 2𝜔(𝛼k)
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can also write An(𝛼k) = A𝛼k ,n + AT
𝛼k ,n, where

A𝛼k ,n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜔
(𝛼k)
1 𝜔

(𝛼k)
0 0 · · · 0 0

𝜔
(𝛼k)
2 𝜔

(𝛼k)
1 𝜔

(𝛼k)
0 ⋱ ⋱ 0

⋮ 𝜔
(𝛼k)
2 𝜔

(𝛼k)
1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝜔
(𝛼k)
n−1 ⋱ ⋱ ⋱ 𝜔

(𝛼k)
1 𝜔

(𝛼k)
0

𝜔
(𝛼k)
n 𝜔

(𝛼k)
n−1 · · · · · · 𝜔

(𝛼k)
2 𝜔

(𝛼k)
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For convenience, we rewrite the linear system in (9) as

MN ũm+1 = bm
, (12)

where

MN = LN + DN , LN = IN − Ax
N − Ay

N , bm =
(

IN + Ax
N + Ay

N − DN
)

ũm + Δt̃f m
.

We stress that as An(𝛼k) is a symmetric Toeplitz matrix, the matrices Ax
N and Ay

N possess a symmetric Block-Toeplitz with
Toeplitz-Blocks (BTTB) structure or, in a more precise terminology (see Definition 1), they are 2-level Toeplitz matrices.
Since the matrices Ax

N and Ay
N are negative definite,22 MN is symmetric positive definite.

3 SPECTRAL ANALYSIS OF THE COEFFICIENT MATRICES

In this section, we first introduce some basic definitions and results (Section 3.1) and then perform a spectral analysis of
the (properly scaled) coefficient matrix-sequence {MN}N (Section 3.2).

3.1 Preliminaries

Definition 1. Let f ∈ L1([−𝜋, 𝜋]d) and let {fk}k∈Zd be the sequence of its Fourier coefficients defined as

fk ∶=
1

(2𝜋)d ∫[−𝜋,𝜋]d
f (𝜃)e−i<k,𝜃> d𝜃,
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8 of 23 MAZZA et al.

where < k, 𝜃 >=
∑d

t=1kt𝜃t. Then the d-level Toeplitz matrix of partial orders (n1,n2, … ,nd) associated
with f is

T(d)N ∶=
[

· · ·
[[

fi1−j1 , fi2−j2 , … , fid−jd

]nd
id,jd=1

]nd−1

id−1,jd−1=1
· · ·

]n1

i1,j1=1
,

where N = Πd
i=1ni is the order of the matrix. The function f is called generating function of the

matrix-sequence {T(d)N (f )}N .

To clarify the notation for the case d = 2 of interest, the BTTB matrix of order N associated with f is

T(2)N (f ) =
[[

fi1−j1 , fi2−j2

]n1
i1,j1=1

]n2

i2,j2=1
,

or equivalently,

T(2)N (f ) =
∑

|j1|≤n1

∑

|j2|≤n2

fj1,j2 J⌈j1⌉
n1

⊗ J⌈j2⌉
n2
,

where J⌈ji⌉
ni

∈ Rni×ni , i = 1, 2, are matrices whose entry (s, t)th equal 1 if s − t = ji and is 0 elsewhere.
When d = 1, that is, for Toeplitz matrices, we simplify the notation using TN(f ) ∶= T(1)N (f ).

Definition 2. The Wiener class is the set of functions f (𝜃) =
∑

k∈Zd fkei<k,𝜃> such that
∑

k∈Zd |fk| <∞. The
Wiener class forms a sub-algebra of the continuous 2𝜋-periodic functions defined on [−𝜋, 𝜋]d.

We continue giving the definition of the spectral distribution in the sense of the eigenvalues.

Definition 3. Let f ∶ G → C be a Lebesgue measurable function, defined on G ⊂ Rk with k ≥ 1, 0 < mk(G) <
∞, mk(⋅) being the Lebesgue measure over Rk. Let 0(C) be the set of continuous functions with compact
support over C and let {N}N be a sequence of matrices of size N with eigenvalues 𝜆j(N), j = 1, … ,N. We
say that {N}N is distributed as the pair (f ,G) in the sense of the eigenvalues, and we write

{N}N ∼𝜆 (f ,G),

if the following limit relation holds for all F ∈ 0(C):

lim
N→∞

1
N

N∑

j=1
F(𝜆j(N)) =

1
mk(G) ∫G

F(f (t))dt.

The function f is referred to as the (spectral) symbol.
When {N}N is such that {∗

NN}N ∼𝜆 (0,G) for a given G of positive and finite Lebesgue measure, we
say that {N}N is a zero-distributed matrix-sequence.

For Hermitian d-level Toeplitz matrix-sequences, the following theorem due to Szegő, Tyrtyshnikov, Tilli, Zama-
rashkin holds.23,24

Theorem 1. Let f ∈ L1([−𝜋, 𝜋]d) be a real-valued function, then
{

T(d)N (f )
}

N
∼𝜆 (f , [−𝜋, 𝜋]d).

In case of diagonal matrices generated by the characteristic function of a Lebesgue measurable set the following
proposition can be proved.25

Proposition 1. Given a Lebesgue measurable set Θ ⊂ [0, 1]2 such that the Lebesgue measure of the boundary is
0 and defined the matrix N(1Θ) ∶= diagi=1,… ,n1,j=1,… ,n2

(
1Θ

(
i

n1+1
,

j
n2+1

))
, it holds

{N(1Θ)}N ∼𝜆 1Θ.
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MAZZA et al. 9 of 23

With reference to the previous result, notice that a Lebesgue measurable set Θ ⊂ [0, 1]2, whose boundary Lebesgue
measure is 0, is a Peano-Jordan measurable set and vice-versa, so that 1Θ is a Riemann integrable function. The
specification is needed since the two different characterizations and terminologies are used in the literature.25,26

We concisely recall that Toeplitz sequences with L1 symbols, diagonal sampling matrices with Riemann integrable
symbols, zero-distributed matrix-sequences (see Definition 3) belong to the generalized locally Toeplitz (GLT) class, which
represents a ∗-algebra of matrix-sequences equipped with a symbol that is closed under linear combinations, product,
(pseudo) inversion when the symbol is nonzero almost everywhere. The GLT symbol is the spectral symbol in the sense
of Definition 3 whenever the considered matrix-sequence is Hermitian or asymptotically Hermitian, where with the term
“asymptotically Hermitian” we mean a sequence {Xn}n such that

Xn = ℜ(Xn) + iℑ(Xn), ℜ(Xn) =
Xn + XH

n

2
, ℑ(Xn) =

Xn − XH
n

2
,

and it exists p ∈ [0,∞] such that

lim
n→∞

||ℑ(Xn)||S,p

n
1
p

= 0,

with || ⋅ ||S,p the Schatten p norm. Without digging deeper into the theory14 and the general setting,27 here we only mention
that an example of asymptotically Hermitian character is reported in the assumptions of Theorem 2.

We end this introductory part by recalling a property of the spectral norm of d-level Toeplitz matrices and stating a
relevant theorem.27

Given a square matrix X of order N, we denote its spectral norm by ||X|| that is its maximal singular value (||X|| =
maxi=1,… ,N 𝜎i(X)), which coincides with the spectral radius in the case of a normal matrix and we recall that every
Hermitian matrix is also normal. Given a d-level Toeplitz sequence {T(d)N (f )}N generated by f , it holds that28:

f ∈ L∞(−𝜋, 𝜋 ]d ⇒ ||T(d)N (f )|| ≤ ||f ||∞, ∀N ∈ N. (13)

Theorem 2 (Corollary 2.827). Let {N}N be a matrix-sequence withN = BN + CN and BN Hermitian ∀N ∈
N. Assume that

• {BN}N ∼𝜆 (f ,G),
• ||CN || = o(1).

Then {N}N ∼𝜆 (f ,G).

3.2 Spectral analysis

We are now ready to determine the symbol of our coefficient matrix-sequence. In this view, we start reporting the symbol
associated to {A𝛼k ,n}n and to {An(𝛼k)}n.15

Proposition 2 (Proposition 3.815). Let 𝛼 ∈ (1, 2). The symbol associated to the matrix-sequence {A𝛼,n}n
belongs to the Wiener class and its formal expression is given by

f𝛼(𝜃) =
∞∑

k=−1
𝜔
(𝛼)
k+1eik𝜃 =

[
8 − 2𝛼2 + (𝛼2 + 3𝛼 + 2)e−i𝜃 + (𝛼2 − 3𝛼 + 2)ei𝜃

12

]
(
1 + ei(𝜃+𝜋))𝛼

. (14)

Corollary 1 (Corollary 3.915). Let 𝛼 ∈ (1, 2). The symbol associated to the matrix-sequence
{An(𝛼) = A𝛼,n + AT

𝛼,n}n belongs to the Wiener class and its formal expression is given by

g𝛼(𝜃) = f𝛼(𝜃) + f𝛼(−𝜃),

where f𝛼 is defined as in (14).

Remark 1. Note that g𝛼(𝜃) is a nonpositive function with a single zero at 0 of order 𝛼.
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10 of 23 MAZZA et al.

Proposition 3 (Corollary 3.1115). Let ts ∶=
h𝛼l

s
ΔtΔ𝛼

and assume that hΔ𝛼s = o(1) with s = x, y. Then,
{

txBx
n1

}
n1
∼𝜆

(
cl g𝛼l(𝜃1), [0, 𝜋]

)
,

{
tyBy

n2

}
n2
∼𝜆

(
cl g𝛼l(𝜃2), [0, 𝜋]

)
,

where cl =
𝜌(𝛼l)𝜉(𝛼l)

2
.

By exploiting the previous tools and results, we are in position to discuss the eigenvalue distribution of the (properly
scaled) coefficient matrix-sequence {MN}N .

Theorem 3. Let us assume that tx
ty
= h𝛼l

x

h𝛼l
y
= (1), hΔ𝛼x = o(1), h𝛼l

x = o(ΔtΔ𝛼), and 𝜂 = 
(

h𝛼l
x

2Δ𝛼

)
. We have

{txMN}N ∼𝜆
(
𝛼(x, y, 𝜃1, 𝜃2), ̃Ω × [0, 𝜋]2

)

with

𝛼(x, y, 𝜃1, 𝜃2) ∶=

{
𝛼(𝜃1, 𝜃2), (x, y) ∈ Ω,
𝛼(𝜃1, 𝜃2) + ̂C𝜂, (x, y) ∈ ̃Ω ⧵Ω,

(15)

𝛼(𝜃1, 𝜃2) ∶= −cl

(

g𝛼l(𝜃1) +
tx

ty
g𝛼l (𝜃2)

)

,

and ̂C𝜂 = limhx ,Δ𝛼→0 C𝜂(hx,Δ𝛼), where C𝜂(hx,Δ𝛼) ∶=
h𝛼l

x
2Δ𝛼𝜂

.

Proof. Let us start from

txMN = txIN − txAx
N − txAy

N + txDN .

As Ax
N = In2 ⊗ Bx

n1
= Tn2(1)⊗ Bx

n1
and

{
txBx

n1

}
n1
∼𝜆 (clg𝛼l(𝜃1), [0, 𝜋]) where cl =

𝜌(𝛼l)𝜉(𝛼l)
2

, we have
{

txAx
N
}

N ∼𝜆
(

cl g𝛼l(𝜃1), [0, 𝜋]
)
.

On the other hand,

txAy
N = h𝛼l

x

(
c1

h𝛼1
y

An2(𝛼1) + · · · +
cl−1

h𝛼l−1
y

An2(𝛼l−1) +
cl

h𝛼l
y

An2(𝛼l)

)

⊗ In1 , (16)

where ck =
𝜌(𝛼k)𝜉(𝛼k)

2
, k = 1, … , l and since 1 < 𝛼1 < 𝛼2 < · · · < 𝛼l < 2, by using the hypothesis tx

ty
= h𝛼l

x

h𝛼l
y
= (1),

and Equation (13), we have
‖
‖
‖
‖

ck
h𝛼l

x

h𝛼k
y

An2(𝛼k)
‖
‖
‖
‖
≤ ck

h𝛼l
x

h𝛼k
y
||g𝛼k ||∞ → 0, which by Theorem 2 with BN =

tx
ty

clAn2(𝛼l),

CN = txAy
N − BN means that

{
txAy

N
}

N ∼𝜆
(

tx

ty
clg𝛼l(𝜃2), [0, 𝜋]

)

.

Now, let us observe that the matrices
{
−txAx

N − txAy
N
}

N are symmetric two-level Toeplitz and that the function

𝛼(𝜃1, 𝜃2) ∶= −cl

(

g𝛼l(𝜃1) +
tx

ty
g𝛼l(𝜃2)

)

is real nonnegative. Therefore, by Theorem 1 and by hypothesis tx
ty
= h𝛼l

x

h𝛼l
y
= (1) we deduce that

{
−txAx

N − txAy
N
}

N ∼𝜆
(
𝛼(𝜃1, 𝜃2), [0, 𝜋]2

)
.
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MAZZA et al. 11 of 23

Moreover, as h𝛼l
x = o(ΔtΔ𝛼) it holds that ||txIN || = o(1)hence again by Theorem 2, this time with BN = −txAx

N −
txAy

N and CN = txIN , it holds

{
txLN = txIN − txAx

N − txAy
N
}

N ∼𝜆 (𝛼(𝜃1, 𝜃2), [0, 𝜋]2).

Now, as txMN = txDN + txLN with LN = IN − Ax
N − Ay

N and DN = Δt
2𝜂
N

(
1 ̃Ω⧵Ω

)
, it holds that txDN =

txΔt
2𝜂
N

(
1 ̃Ω⧵Ω

)
= h𝛼l

x
2Δ𝛼𝜂
N

(
1 ̃Ω⧵Ω

)
= C𝜂(hx,Δ𝛼)N

(
1 ̃Ω⧵Ω

)
. Therefore, by Proposition 1, we obtain

{txDN}N ∼𝜆 ̂C𝜂 1 ̃Ω⧵Ω.

Finally {txMN}N ∼𝜆 𝛼(𝜃1, 𝜃2) on Ω, while {txMN}N ∼𝜆 𝛼(𝜃1, 𝜃2) + ̂C𝜂 on ̃Ω ⧵Ω which concludes the proof,
because diagonal sampling matrix-sequences and two-level Toeplitz matrix-sequences are GLT sequences and
the GLT class is a ∗-algebra. ▪

Remark 2. We recall that 𝜂 should tend to zero. From Theorem 3 it is clear that, in order not to spoil the
approximation, 𝜂 should tend to zero in such a way that ̂C𝜂 → ∞. For instance, 𝜂 = O(Δt) is not sufficient as
it implies ̂C𝜂 = o(1) and {txMN}N ∼𝜆 𝛼(𝜃1, 𝜃2) on the whole rectangle ̃Ω.

Remark 3. In proving Theorem 3, taking into account the system (12) and its structure one line below, we
implicitly handle the distribution of the Toeplitz-plus-diagonal coefficient matrix sequence, by exploiting the
∗-algebra character of the GLT class and by invoking Proposition 1. Other than that, we could rely on simple
Toeplitz tools as the reformulation of 1 as 2 is obtained by means of an additive term

(
i.e., 1−1Ω(x,y)

𝜂

u𝜂(x, y, t)
)
.

If in place of the volume-penalization method the original problem (1) is extended in a multiplicative way
by replacing (1) with

⎧
⎪
⎨
⎪
⎩

𝜕u(x,y,t)
𝜕t

= ∫ 2
1 1Ω(x, y)

(
𝜕
𝛼u(x,y,t)
𝜕|x|𝛼

+ 𝜕
𝛼u(x,y,t)
𝜕|y|𝛼

)
𝜌(𝛼)d𝛼 + 1Ω(x, y)f (u, x, y, t), (x, y, t) ∈ ̃Ω × [0,T],

u(x, y, 0) = 1Ω(x, y)u0(x, y), (x, y) ∈ ̃Ω,
u(x, y, t) = 0, (x, y) ∈ R2 ⧵ ̃Ω and t ∈ (0,T],

(17)

then the computation of the symbol can still be performed by resorting to the GLT theory. Indeed, the
discretization of Equation (17) in matrix form reads as

{
N(1Ω)LNN(1Ω)um+1 = N(1Ω)

(
IN + Ax

N + Ay
N
)

um + ΔtN(1Ω)f m

N(1 ̃Ω⧵Ω)um+1 = 0

with LN = IN − Ax
N − Ay

N and Ax
N , Ay

N as in (10) and (11), and it can be easily shown that
{txN(1Ω)LNN(1Ω)}N ∼𝜆 1Ω(x, y)𝛼(𝜃1, 𝜃2), by means of the GLT theory. This kind of approach underlies the
reduced GLTs, a more sophisticated tool for computing the symbol of the coefficient matrix that corresponds
to (1); see Reference 29, pp. 395–399, Section 3.1.4 Reference 26 for the initial proposal and terminology and
Reference 25 for a systematic treatment and for a complete development of the theory. Note that the reduced
GLTs have recently been exploited to carry on the spectral analysis for some specific immersed methods for
differential problems described by classical derivatives in Reference 30.

Remark 4. We stress that the present proposal takes inspiration from Reference 9 and hence we restrict our
attention on convex domains, however, while the assumption is of technical importance for proving existence,
uniqueness, regularity and for studying the approximation power of the adopted numerical scheme (as it
happens in many contexts when treating PDEs or FDEs), the spectral analysis of the original matrix sequences
and of the related preconditioning strategies holds in larger generality due to the structure of ∗-algebra of
the reduced generalized locally Toeplitz class. As a matter of fact only the Peano-Jordan measurability of the
domain is required which is equivalent to the Riemann integrability of its characteristic function that in turn
is equivalent to the zero Lebesgue measure of the frontier of the considered domain.14
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12 of 23 MAZZA et al.

4 ALGEBRA PRECONDITIONINGS

In this section, we benchmark the performances of several algebra preconditioners used for solving the linear system (12).
Consider the 𝜏-preconditioners  (Bx

n1
) and  (By

n2
) for the Toeplitz matrices Bx

n1
and By

n2
respectively.31 The first

preconditioner we analyze is defined as

N = IN − In2 ⊗  (B
x
n1
) −  (By

n2
)⊗ In1 .

As a term of comparison, we use the Strang-type preconditioner defined in analogy with N as

N = IN − In2 ⊗ (B
x
n1
) − (By

n2
)⊗ In1 ,

where (Bx
n1
) and (By

n2
) are the Strang preconditioners for the Toeplitz matrices Bx

n1
and By

n2
respectively.

Both aforementioned matrix-algebra preconditionings do not ensure a superlinear convergence in a multidimensional
setting.16,17 However, the 𝜏-preconditioner is a preferable option in the real symmetric setting,18 especially because of a
substantially better matching of the small eigenvalues.19

The following theorem presents the symbol of the (scaled) preconditioners sequences.

Theorem 4. Assume that tx
ty
= h𝛼l

x

h𝛼l
y
= (1), hΔ𝛼x = o(1), h𝛼l

x = o(ΔtΔ𝛼), and 𝜂 = 
(

h𝛼l
x

2Δ𝛼

)
. It holds

{txN}N , {txN}N ∼𝜆
(
𝛼(𝜃1, 𝜃2), ̃Ω × [0, 𝜋]2

)
,

where 𝛼(𝜃1, 𝜃2) is defined in (15).

Proof. It is well-known that the matrix sequences {tx (Bx
n1
)}n1 , {ty (By

n2
)}n2 have spectral distribution equal

to {txBx
n1
}n1 , {tyBy

n2
}n2 , respectively, simply because the difference with respect to their Toeplitz counterpart

is a zero distributed matrix sequence. For the same reason, the same holds for {tx(Bx
n1
)}n1 and {ty(By

n2
)}n2 .

Then, we obtain the thesis by reasoning as in the proof of Theorem 3. ▪

Note that these preconditioners are highly convenient from a computational point of view because they can be diago-
nalized through fast transforms, namely discrete sine transform (DST) for N and the FFT for N , allowing us to perform
the inversion and the matrix-vector product in (N log(N)) steps.

For this reason, in both N and N the contribution of the penalization matrix DN is overlooked, since its presence
would prevent the use of fast transforms. On the other hand, this could cause poor performances of PCG, as, due to the
presence of DN , the eigenvalues of MN present a number (as many as the cardinality of the grid points in ̃Ω ⧵Ω) of large
eigenvalues whose magnitude increases when both the mesh width and 𝜂 decreases. Indeed, 𝜂 should be chosen in such
a way that the reaction regularization term becomes dominating without spoiling the accuracy of the numerical solution,
that is, it should opportunely decrease with the mesh width. We then expect that a too small value of 𝜂 causes an increase
in the iteration of PCG (see the numerical results in the next section).

If we take into account the contribution of DN , we obtain the second group of preconditioning proposals, defined as


split

N = N + DN = IN − In2 ⊗  (B
x
n1
) −  (By

n2
)⊗ In1 + DN ,


split
N = N + DN = IN − In2 ⊗ (B

x
n1
) − (By

n2
)⊗ In1 + DN .

We refer to these preconditioners as 𝜏 and circulant splitting preconditioners, respectively. As we will explain a few
lines down, the reason for this name is that they can be recast as a sum of two contributions on a splitting of ̃Ω.

Let us first determine the symbol of the scaled sequences {tx
split

N }N , {tx
split
N }N .

Theorem 5. Assume that tx
ty
= h𝛼l

x

h𝛼l
y
= (1), hΔ𝛼x = o(1), h𝛼l

x = o(ΔtΔ𝛼), and 𝜂 = 
(

h𝛼l
x

2Δ𝛼

)
. It holds

{
tx

split
N

}

N
,

{
tx

split
N

}

N
∼𝜆

(
𝛼(x, y, 𝜃1, 𝜃2), ̃Ω × [0, 𝜋]2

)
,

where 𝛼(x, y, 𝜃1, 𝜃2) is defined in (15).
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MAZZA et al. 13 of 23

Proof. From Theorem 4 we know that {txN}N , {txN}N ∼𝜆 (𝛼(𝜃1, 𝜃2), [0, 𝜋]2). Following again the same
reasoning as in Theorem 3 we prove the thesis. ▪

It is expected that both  split
N and split

N provide a better cluster than N and N , since the symbol of the (scaled)
split preconditioners is equal to the symbol of the (scaled) coefficient matrix MN and therefore they take care of all the
eigenvalues, including the large eigenvalues related to ̂C𝜂 . However, as we mentioned above, diagonalization through fast

transform is not possible and the computation of
(


split
N

)−1
and

(


split
N

)−1
would be too expensive.

This obstacle was overcome in the case of a non-distributed problem,9 where an analogous 𝜏-splitting
preconditioner was presented. What follows is the corresponding adaptation to our distributed case. Let us split the matrix


split
N in the form


split

N = N(1Ω)N +N(1 ̃Ω⧵Ω)
(

N +
Δt
2𝜂

IN

)

. (18)

Mimicking this splitting, we define

(
̂

split
N

)−1
∶= N(1Ω)(N)−1 +N(1 ̃Ω⧵Ω)

(

N +
Δt
2𝜂

IN

)−1

.

Then it becomes possible to resort to the DST again. The respective circulant version is given by

(
̂

split
N

)−1
∶= N(1Ω)(N)−1 +N(1 ̃Ω⧵Ω)

(

N +
Δt
2𝜂

IN

)−1

,

which can be diagonalized through the FFT. We stress that such inversion requires two more DSTs/FFTs than the inver-

sion of N and N . Moreover,
(
̂

split
N

)−1
and

(
̂

split
N

)−1
are non-symmetric, thus GMRES instead of PCG should be used,

which could then cause higher CPU times than PCG.
We now compute the symbol of the scaled sequences

{
(tx ̂

split
N )−1

}

N
,
{
(tx ̂

split
N )−1

}

N
and prove that, even if the inverse

of the split preconditioners is only approximated, the preconditioned sequences
{
(̂ split

N )−1MN

}

N
,
{
( ̂split

N )−1MN

}

N
are

still (weakly) clustered at 1.

Theorem 6. Assume that tx
ty
= h𝛼l

x

h𝛼l
y
= (1), hΔ𝛼x = o(1), h𝛼l

x = o(ΔtΔ𝛼), and 𝜂 = 
(

h𝛼l
x

2Δ𝛼

)
. It holds

{
(tx ̂

split
N )−1

}

N
,

{
(tx ̂

split
N )−1

}

N
∼𝜆

(
1Ω𝛼(𝜃1, 𝜃2)−1 + 1 ̃Ω⧵Ω

(
𝛼(𝜃1, 𝜃2) + ̂C𝜂

)−1
,
̃Ω × [0, 𝜋]2

)
,

where 𝛼(𝜃1, 𝜃2) is defined in (15). Moreover,
{
(̂ split

N )−1MN

}

N
,

{
( ̂split

N )−1MN

}

N
∼𝜆

(
1, ̃Ω × [0, 𝜋]2

)
.

Proof. All the involved matrix-sequences clearly belong to the GLT class, because they are diagonal sampling
matrix-sequences or Toeplitz matrix-sequences, plus zero-distributed matrix-sequences. Therefore we get the
spectral symbol of the sequences of interest by exploiting the structure of ∗-algebra of the GLT class.

From Theorem 4 we know that {txN}N , {txN}N ∼𝜆 (𝛼(𝜃1, 𝜃2), [0, 𝜋]2) and consequently{
(txN)−1}

N ,
{
(txN)−1}

N ∼𝜆 (𝛼(𝜃1, 𝜃2)−1
, [0, 𝜋]2), while from Proposition 1 we get {N(1Ω)}N ∼𝜆 1Ω and

{N(1 ̃Ω⧵Ω)}N ∼𝜆 1 ̃Ω⧵Ω. Moreover, it holds
{

tx
Δt
2𝜂

IN

}

N
=

{
h𝛼l

x

2Δ𝛼𝜂
IN

}

N
= {C𝜂(hx,Δ𝛼)IN}N ∼𝜆 ̂C𝜂,

since txΔt
2𝜂
= h𝛼l

x
2Δ𝛼𝜂

= C𝜂(hx,Δ𝛼) converges to ̂C𝜂 as hx andΔ𝛼 tend to zero. Combining the contributions we get

the spectral symbol of the whole sequences
{
(tx ̂

split
N )−1

}

N
,
{
(tx ̂

split
N )−1

}

N
, which is

1Ω𝛼(𝜃1, 𝜃2)−1 + 1 ̃Ω⧵Ω
(
𝛼(𝜃1, 𝜃2) + ̂C𝜂

)−1
.
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14 of 23 MAZZA et al.

Moreover, the spectral distribution of the preconditioned matrix-sequences
{
(̂ split

N )−1MN

}

N
,

{
( ̂split

N )−1MN

}

N
is given by the product of the symbols of

{
(tx ̂

split
N )−1

}

N
,

{
(tx ̂

split
N )−1

}

N
and {txMN}N

respectively, that is,
(

1Ω𝛼(𝜃1, 𝜃2)−1 + 1 ̃Ω⧵Ω
(
𝛼(𝜃1, 𝜃2) + ̂C𝜂

)−1) (
1Ω𝛼(𝜃1, 𝜃2) + 1 ̃Ω⧵Ω

(
𝛼(𝜃1, 𝜃2) + ̂C𝜂

))

= (1Ω)2 + (1 ̃Ω⧵Ω)2 + 1Ω1 ̃Ω⧵Ω

(
𝛼(𝜃1, 𝜃2)−1(

𝛼(𝜃1, 𝜃2) + ̂C𝜂

)
+

(
𝛼(𝜃1, 𝜃2) + ̂C𝜂

)−1
𝛼(𝜃1, 𝜃2)

)

= 1Ω + 1 ̃Ω⧵Ω = 1 ̃Ω,

since 1Ω1 ̃Ω⧵Ω is clearly zero everywhere. ▪

Remark 5. The symbol for
{

tx
split

N

}

N
,
{

tx
split
N

}

N
, and {txMN}N can of course be obtained by leveraging the

splitting in (18) as well. In particular, for {txMN}N we have

MN = LN + DN = N(1Ω)LN +N(1 ̃Ω⧵Ω)
(

LN +
Δt
2𝜂

IN

)

.

In the following section, we provide numerical examples to test and compare the performances of all discussed the
preconditioners.

5 NUMERICAL EXPERIMENTS

In the current section, we present and critically discuss few selected examples, by emphasizing the performances of the
proposed preconditioners and the spectral properties of the different matrix-sequences. We propose three examples with
increasing level of generality. In Example 1, we consider a linear problem on a square domain. In Example 2, another
linear problem, this time defined on a circular domain, is considered. Finally, in Example 3, the problem of Example 2 is
modified by adding a nonlinear term.

5.1 Example 1

We first consider the two-dimensional version7 of the example presented in the one-dimensional setting.15 The problem
is defined on the square Ω = [0, 1] × [0, 1] as

⎧
⎪
⎨
⎪
⎩

𝜕u
𝜕t
= ∫ 2

1

(
𝜕
𝛼u

𝜕|x|𝛼
+ 𝜕

𝛼u
𝜕|y|𝛼

)
𝜌(𝛼)d𝛼 + f (x, y, t), (x, y, t) ∈ Ω × [0,T],

u(x, y, 0) = u0(x, y) = x2(1 − x)y2(1 − y)2, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ 𝜕Ω and t ∈ (0,T],

where
𝜌(𝛼) = −2Γ(5 − 𝛼) cos

(
𝛼𝜋

2

)
,

f (x, y, t) = etx2(1 − x)2y2(1 − y)2 − etx2(1 − x)2 [R(y) + R(1 − y)] − ety2(1 − y)2 [R(x) + R(1 − x)] ,

in which Γ is the Gamma function and

R(r) = Γ(5)R1(r) − 2Γ(4)R2(r) + Γ(3)R3(r)

with
R1(r) =

1
ln r

(r3 − r2),

R2(r) =
1

ln r
(3r2 − 2r) + 1

(ln r)2
(r − r2),

R3(r) =
1

ln r
(6r − 2) + 1

(ln r)2
(3 − 5r) + 2

(ln r)3
(r − 1).
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MAZZA et al. 15 of 23

The exact solution is given by u(x, y, t) = etx2(1 − x)y2(1 − y)2 for (x, y) ∈ Ω.

5.1.1 Eigenvalue distribution

We start by numerically verifying the eigenvalue distribution of the scaled coefficient matrix-sequence {txMN}N , which
in this particular case is lacking of the diagonal term DN and is therefore a Toeplitz sequence with symbol 𝛼(𝜃1, 𝜃2).
In Figure 1, we compare the eigenvalues of txMN with a uniform sampling of the symbol. We fix l = 2 and n1 = n2 =
24, 27. It is evident that, as n1 and n2 increase, the symbol becomes a better approximation of the eigenvalues. Similar
results are obtained for l = 5 and are shown in Figure 2, although as l increases larger values of n1, n2 are needed to
observe the asymptotic relation. The reason of this degradation relies in formula (16), since l − 1 terms are neglected in
the computation of the symbol because their matrix-sequences are zero-distributed.

(a) (b)

F I G U R E 1 Example 1: Comparison between the symbol 
𝛼
(𝜃1, 𝜃2) and eig(txMN ) for l = 2.

(a) (b)

F I G U R E 2 Example 1: Comparison between the symbol 
𝛼
(𝜃1, 𝜃2) and eig(txMN ) for l = 5.
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16 of 23 MAZZA et al.

T A B L E 1 Example 1: PCG method performances for N and N , with tolerance 10−8, l = 5, and Δt = 0.1.

N N

n1 = n2 Iter CPU Iter CPU

24 8.00 0.0027 5.00 0.0027

25 9.70 0.0064 5.00 0.0049

26 12.10 0.0198 6.00 0.0130

27 14.90 0.0598 6.00 0.0367

28 18.80 0.3285 6.00 0.1605

29 23.20 1.2508 7.00 0.5483

210 28.60 5.8819 7.00 2.2251

5.1.2 PCG method

We now discuss the performances of the PCG method. Note that if Ω is a rectangle ̂ split
N and ̂

split
N coincide with N and

N , respectively, and for this reason we apply and analyze the PCG method only. In Table 1 the preconditioner N is
compared to the circulant one N in terms of iterations and CPU times. We set the tolerance to 10−8, l = 5, n1 = n2, and
Δt = 0.1. “Iter” stands for the average number of iterations at the last time step and “CPU” is the corresponding average
CPU timings in seconds.

We note that the 𝜏 preconditioner greatly outperforms the circulant one in terms of number of iterations, even for
small sizes, and this is reflected in CPU timings, which are smaller for the 𝜏 preconditioner. This difference becomes
more relevant as n1, n2 increase. These results are not unexpected and are consistent with the theoretical predictions in
Section 4.

5.2 Example 2

We now consider a problem defined on a convex region.7 Let Ω =
{
(x, y)| x2

a2 +
y2

b2 < 1
}

, with a = b = 1
4
, and

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕u
𝜕t
= ∫ 2

1

(
𝜕
𝛼u

𝜕|x|𝛼
+ 𝜕

𝛼u
𝜕|y|𝛼

)
𝜌(𝛼)d𝛼 + f (x, y, t), (x, y, t) ∈ Ω × [0,T],

u(x, y, 0) = u0(x, y) =
(

x2

a2 +
y2

b2 − 1
)2
, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y) ∈ 𝜕Ω and t ∈ (0,T],

where

f (x, y, t) = −e−t
(

x2

a2 +
y2

b2 − 1
)2

− e−tP(x, y, t) − e−tQ(x, y, t),

and

P(x, y, t) = Γ(5)
a4 (R1(x − xl) + R1(xr − x)) + 4Γ(4)

a4 [xlR2(x − xl) − xrR2(xr − x)] + 4Γ(3)
a4

[
x2

l R3(x − xl) + x2
r R3(xr − x)

]
,

Q(x, y, t) = Γ(5)
b4 (R1(y − yl) + R1(yr − y)) + 4Γ(4)

b4 [ylR2(y − yl) − yrR2(yr − y)] + 4Γ(3)
b4

[
y2

l R3(y − yl) + y2
r R3(yr − y)

]
,

with

xl = −
a
b
√

b2 − y2
, xr =

a
b
√

b2 − y2
,

yl = −
b
a

√
a2 − x2

, yr =
b
a

√
a2 − x2

,
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(a) (b)

F I G U R E 3 Example 2: Comparison between the symbol 
𝛼
(x, y, 𝜃1, 𝜃2) and eig(txMN ) with 𝜂 = 10−5 and C

𝜂
(hx ,Δ𝛼) = 100.

and R1, R2, R3, 𝜌(𝛼) defined as in Example 1. The exact solution for this problem is u(x, y, t) = e−t
(

x2

a2 +
y2

b2 − 1
)2

. In the
application of the volume-penalization method, we extend the domain Ω to the rectangle ̃Ω = [−a, a] × [−b, b].

5.2.1 Eigenvalue distribution

First, we want to verify the eigenvalue distribution of the scaled coefficient matrices, as portrayed in Theorem 3. In this
case, MN contains the penalization term DN and therefore the sequence {txMN}N is associated to the symbol𝛼(x, y, 𝜃1, 𝜃2).

In Figure 3, we compare the eigenvalues of txMN with a uniform sampling of the symbol, setting 𝜂 = 10−5 and adjusting
hx and Δ𝛼 to obtain C𝜂(hx,Δ𝛼) = 100. The symbol provides a reliable approximation of the eigenvalues. We have already
noted in Example 1 that as l increases the spectral distribution result still holds asymptotically, but we would need a
smaller hx to observe it, and again as discussed before the reason relies in the nature of formula (16).

Now, in order to observe the behavior as 𝜂 tends to zero and n1, n2 tend to infinity, we vary 𝜂 and n1, n2, maintaining
n1 = n2. We recall that in Theorem 3 we requested that 𝜂 = 

(
h𝛼l

x
2Δ𝛼

)
. Having fixedΔ𝛼, this means that n1 and 𝜂 should be

chosen such that 𝜂 and h𝛼l
x balance each other. Figure 4 highlights this fact. When n1 = 24, 𝜂 = 10−2 is not small enough to

counterbalance h𝛼l
x and, as a consequence, it is not possible to discern the part of the symbol corresponding to the domain

Ω and the one corresponding to its complement. In other words, we are not able to identify the solution on the domain
of interest. If we decrease 𝜂 to 10−4, the separation becomes perceptible.

The same happens if we set n1 = 26, as shown in Figure 5. For 𝜂 = 10−4 there is no distinction between the two portions
of the plot, while with the smaller value 𝜂 = 10−6 the gap is apparent.

5.2.2 PCG and GMRES method

Next, we discuss the performance of the PCG and GMRES methods with the proposed preconditioners. The results are
shown in Table 2, with tolerance set to 10−8, l = 5, n1 = n2 and Δt = 0.1.

First, we examine ̂
split

N , N compared to ̂
split
N , N . As in Example 1, the superior performance of both the

𝜏-preconditioners in relation to their respective circulant counterparts is evident and consistent with theoretical predic-
tions in Section 4.

Nonetheless, we observe that the ratio between the iterations required for N and N , or likewise between those
required for ̂split

N and ̂ split
N , is greater than the ratio between the corresponding CPU times. In other words, the difference

between the CPU times does not fully reflect the considerable difference in the required iterations. This is due to the fact
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18 of 23 MAZZA et al.

(a) (b)

F I G U R E 4 Example 2: Comparison between the symbol 
𝛼
(x, y, 𝜃1, 𝜃2) and eig(txMN ) with l = 2 and n1 = n2 = 24.

(a) (b)

F I G U R E 5 Example 2: Comparison between the symbol 
𝛼
(x, y, 𝜃1, 𝜃2) and eig(txMN ) with l = 2 and n = 26.

that the circulant preconditioners are implemented by the means of the FFT, while the 𝜏-preconditioners employ the DST,
which in MATLAB is implemented via two FFTs. Then, the computation of N in MATLAB requires twice the number
of FFTs as compared to N , and the same holds for ̂ split

N and ̂
split
N . The use of an algorithm less computationally expen-

sive for computing the DST would lead to lower CPU times for the 𝜏-preconditioners, especially for smaller sizes. In this
direction, for n power of 2, the Van Loan book32 indicates a floating point cost of the FFT as 4n log2(n) operations while
with the same setting the DST operation count amounts to 5

2
n log2(n) and the same type of advantage in favor of the DST

holds for generic sizes. Therefore, with a careful implementation of the DST, we would have a CPU timing substantially
in favor of the 𝜏 approach, when compared with the circulant one.

Now, let us analyze the performance of ̂ split
N , ̂split

N compared to N ,N . Since, as shown in Section 4, the symbol of the
split preconditioners matches the symbol of the coefficient matrix, contrary to the symbol of the non-split preconditioners
which does not include the term arising from the penalty matrix, we expect the split preconditioners to be the favored
choice. This is confirmed by the numerical results collected in Table 2, where the number of iterations required by the split
preconditioners is lower than their respective non-split versions. The same effect is reflected in the CPU times for small
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MAZZA et al. 19 of 23

T A B L E 2 Example 2: PCG versus GMRES method performances, with tolerance 10−8, l = 5, and Δt = 0.1.

PCG GMRES

N N ̂
split
N

̂
split

N

𝜼 n1 Iter CPU Iter CPU Iter CPU Iter CPU

10−2 24 10.00 0.0030 6.00 0.0030 8.90 0.0040 5.70 0.0048

25 11.50 0.0071 6.00 0.0055 10.00 0.0088 5.60 0.0085

26 16.50 0.0260 6.00 0.0130 12.80 0.0302 5.60 0.0184

27 19.90 0.0732 6.00 0.0353 16.30 0.0940 5.50 0.0643

28 25.40 0.2678 6.00 0.1093 20.80 0.3351 5.50 0.1936

29 31.60 1.5522 6.40 0.4791 25.50 1.7642 5.20 0.6831

210 40.40 7.8513 6.50 2.0485 31.00 8.9884 5.00 3.2243

10−3 24 13.50 0.0037 9.30 0.0041 9.00 0.0038 8.00 0.0060

25 14.00 0.0083 8.00 0.0069 11.00 0.0093 7.00 0.0104

26 16.80 0.0264 8.00 0.0166 12.50 0.0305 7.00 0.0225

27 20.60 0.0745 8.00 0.0448 15.00 0.0838 7.00 0.0754

28 27.20 0.2881 8.00 0.1415 18.70 0.2873 7.00 0.2290

29 32.00 1.4874 8.00 0.5578 23.40 1.5383 7.00 0.8259

210 42.10 8.5684 8.20 2.5449 30.20 10.8054 7.00 4.9177

10−4 24 21.80 0.0065 17.10 0.0079 10.00 0.0063 9.00 0.0109

25 24.40 0.0138 17.40 0.0140 12.00 0.0135 10.70 0.0215

26 25.60 0.0405 16.80 0.0341 13.00 0.0412 10.30 0.0469

27 26.80 0.0962 15.60 0.0813 15.20 0.1296 10.00 0.1460

28 30.40 0.3130 15.30 0.2570 18.50 0.5765 10.00 0.5320

29 37.90 1.8608 15.10 1.0310 22.70 2.6973 10.00 2.0241

210 47.30 9.4967 15.10 4.4302 27.00 7.1147 10.00 4.7834

10−5 24 26.10 0.0068 25.60 0.0104 10.00 0.0044 9.70 0.0075

25 44.70 0.0249 34.50 0.0271 12.40 0.0103 12.00 0.0159

26 51.60 0.0799 40.30 0.0786 16.00 0.0425 13.60 0.0437

27 56.90 0.2002 39.50 0.2093 18.40 0.1069 14.30 0.1464

28 60.30 0.6293 40.90 0.6737 19.30 0.3068 15.00 0.4474

29 64.50 3.1523 40.70 2.7035 21.70 2.0571 14.40 2.1930

210 70.30 14.1906 40.10 11.3976 24.40 7.8825 14.00 7.7301

enough values of the penalization parameter. In fact, as a result of the cost per iteration of the GMRES method and the
need of two extra FFTs/DSTs, when the penalization parameter is not sufficiently small, the lower number of iterations
provided by the split choice does not translate to equally lower CPU times. For this example we see the advantage of using
the split preconditioners when 𝜂 = 10−5.

Finally, we observe that the increase in accuracy given by smaller values of 𝜂 comes at the cost of an increased number
of iterations, and that this is more evident for CG with N , N preconditioners.

5.2.3 Error analysis

To conclude, we briefly discuss the error and its relation to the penalization parameter. Table 3 collects the error for several
values of n1 = n2 and 𝜂, computed as the l2 norm of the difference between the exact and the approximated solution. The
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20 of 23 MAZZA et al.

T A B L E 3 Example 2: PCG versus GMRES method performances, with tolerance 10−6, l = 10, and Δt = 0.1.

𝜼 = 10−2
𝜼 = 10−3

𝜼 = 10−4
𝜼 = 10−5

n1 ErrIn ErrOut ErrIn ErrOut ErrIn ErrOut ErrIn ErrOut

24 4.23e−03 8.10e−04 1.96e−03 1.17e−03 1.33e−03 3.44e−04 1.38e−03 4.15e−05

25 1.44e−03 4.35e−04 7.42e−04 5.24e−04 3.89e−04 1.87e−04 4.54e−04 2.57e−05

26 1.18e−03 3.97e−04 7.43e−04 4.19e−04 1.88e−04 1.75e−04 7.90e−05 2.74e−05

27 7.59e−04 3.18e−04 5.08e−04 3.14e−04 1.49e−04 1.30e−04 9.71e−06 2.18e−05

28 6.67e−04 3.22e−04 4.56e−04 3.06e−04 1.42e−04 1.21e−04 1.58e−05 1.98e−05

tolerance is 10−6, l = 10 and Δt = 0.1. The errors obtained with the different methods and preconditioners are all equal,
therefore only the one related to N is shown. “ErrIn” designates the error inside the domainΩ, while “ErrOut” indicates
the error on ̃Ω ⧵Ω. The latter coincides with the l2 norm of the numerical solution on the same set and is also referred to
as “penalty error”.

• From (7) we know that the truncation error produced by the approximation is 
(

h2
x + h2

y + (Δ𝛼)2 + (Δt)2
)
. With

the fixed values Δ𝛼 = 0.1 and Δt = 0.1 selected for the experiments, we do not expect to see a significant improve-
ment in accuracy as n1, n2 increase. Nevertheless, the proposed numerical method appears to be precise and
reliable.

• Regarding the penalization parameter, we observe that the error slightly improves for smaller values of 𝜂. How-
ever, as n1 increases the error ceases to decrease once the order of the penalty error is reached, because the penalty
error dominates over the global truncation error. For instance, with 𝜂 = 10−2 ErrIn remains of order 10−4 at most,
following the penalty error ErrOut, and further refinements of the spatial grid cannot improve the accuracy of the
numerical solution. Conversely, with 𝜂 = 10−5 ErrIn manages to reach the order 10−5, since that is the order of the
penalty error.

5.3 Example 3

For the last example, we modify the problem from the previous example by inserting a nonlinear term

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕u
𝜕t
= ∫ 2

1

(
𝜕
𝛼u

𝜕|x|𝛼
+ 𝜕

𝛼u
𝜕|y|𝛼

)
𝜌(𝛼)d𝛼 + f (u, x, y, t), (x, y, t) ∈ Ω × [0,T],

u(x, y, 0) = u0(x, y) =
(

x2

a2 +
y2

b2 − 1
)2
, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y) ∈ 𝜕Ω and t ∈ (0,T],

with

f (u, x, y, t) = u(x, y, t)(1 − u(x, y, t))

on the domain Ω defined above which is once again extended to the rectangle ̃Ω in the volume-penalization method.
Here, the exact solution is not known.

Since the only change made, with respect to Example 2, is in the source term, the coefficient matrix-sequence remains
the same and the comparison between the symbol and the eigenvalues would be redundant. Therefore, we move directly
to the analysis of the numerical methods. We set the tolerance, l and Δt as in Example 2 and apply the PCG and GMRES
methods with their respective preconditioners. The obtained results are gathered in Table 4 and are consistent with the
observations made in the previous examples.
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MAZZA et al. 21 of 23

T A B L E 4 Example 3: PCG versus GMRES method performances, with tolerance 10−8, l = 5, and Δt = 0.1.

PCG GMRES

N N ̂
split
N

̂
split

N

𝜼 n1 Iter CPU Iter CPU Iter CPU Iter CPU

10−2 24 9.60 0.0032 5.10 0.0028 10.00 0.0051 6.00 0.0057

25 11.10 0.0070 5.10 0.0049 11.80 0.0098 6.10 0.0088

26 15.10 0.0243 5.10 0.0114 14.60 0.0344 6.10 0.0197

27 18.90 0.0708 5.10 0.0313 18.20 0.1001 6.00 0.0640

28 22.90 0.2479 5.10 0.0983 22.60 0.3865 7.00 0.2227

29 29.90 1.9227 5.20 0.4682 27.20 1.9674 7.00 0.8897

210 35.50 7.6379 5.80 1.9621 32.80 9.3339 6.20 3.5411

10−3 24 12.50 0.0035 9.10 0.0041 10.10 0.0040 8.60 0.0062

25 13.80 0.0083 8.10 0.0071 12.00 0.0097 8.10 0.0109

26 16.70 0.0269 7.10 0.0153 14.80 0.0337 8.00 0.0232

27 19.00 0.0689 7.10 0.0409 17.00 0.0940 8.00 0.0808

28 24.10 0.2527 7.00 0.1242 21.80 0.3503 8.00 0.2581

29 30.10 1.5727 7.00 0.5657 26.90 1.9032 8.00 0.9314

210 43.30 8.7480 8.10 2.5431 34.20 9.9982 7.20 3.9584

10−4 24 20.20 0.0053 17.10 0.0076 10.90 0.0043 10.00 0.0072

25 22.10 0.0127 16.10 0.0132 13.90 0.0110 12.30 0.0160

26 23.00 0.0356 14.90 0.0294 16.80 0.0399 13.00 0.0365

27 24.60 0.0877 14.00 0.0759 19.20 0.1052 13.00 0.1201

28 27.30 0.2867 13.00 0.2185 22.40 0.3630 13.00 0.3867

29 32.40 1.6974 12.80 0.8859 26.30 1.8314 13.00 1.4260

210 40.60 8.4656 12.10 3.6506 30.80 8.5429 12.10 5.8676

10−5 24 29.30 0.0075 26.40 0.0107 10.80 0.0043 10.80 0.0074

25 42.90 0.0237 32.20 0.0253 16.00 0.0127 13.90 0.0179

26 48.40 0.0725 36.50 0.0706 21.40 0.0526 16.90 0.0488

27 53.20 0.1872 35.50 0.1922 24.60 0.1363 18.90 0.1713

28 53.10 0.5463 34.90 0.5706 27.80 0.4534 20.90 0.6058

29 54.00 2.7608 34.00 2.2506 28.50 1.9706 21.10 2.1799

210 59.10 12.4349 33.10 9.5666 31.50 9.0901 20.70 9.7011

6 CONCLUSIONS AND OPEN PROBLEMS

In the present paper, we considered the numerical solution of a two-dimensional constant coefficient distributed-order
space-FDE, where additional challenges are given by the presence of a nonlinear term and by the domain which is convex
but not necessarily Cartesian.

The problem has been reformulated in such a way that a more convenient Cartesian structure of the domain is recov-
ered, by using a proper penalization technique. The resulting linear systems show structured coefficient matrices, which
can be indeed represented as the sum of a diagonal (sampling) matrix and a two-level Toeplitz matrix with continuous
generating function. The resulting matrix-sequences belong to the class of the GLT sequences and the related spectral
analysis has been provided by minimizing the technicalities of the powerful GLT apparatus. Associated fast iterative
solvers have been proposed and studied. The related numerical performances have been reported and critically discussed.
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22 of 23 MAZZA et al.

As future work, it would be interesting to study the localization of the spectra of the preconditioned matrix-sequences,
for fixed dimensions and in terms of the various problem and approximation parameters, in order to check the robustness
of the proposed methods: this would allow precise estimates of the convergence speed by using classical and important
results, such as those started with the pioneering work by Axelsson and Lindskög.33
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