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Abstract
We propose a method for characterizing the local structure of weighted multivari-
ate time series networks. We draw intensity and coherence of network motifs, i.e. 
statistically recurrent subgraphs, to characterize the system behavior via higher-
order structures derived upon effective transfer entropy networks. The latter consists 
of a model-free methodology enabling to correct for small sample biases affecting 
Shannon transfer entropy, other than conducting inference on the estimated direc-
tional time series information flows. We demonstrate the usefulness of our proposed 
method with an application to a set of global commodity prices. Our main result 
shows that, despite simple triadic structures are the most intense, coherent and sta-
tistically recurrent over time, their intensity suddenly decreases after the Global 
Financial Crisis, in favor of most complex triadic structures, while all types of sub-
graphs tend to become more coherent thereafter.

Keywords  Risk management · Transfer entropy · Statistical inference · Network 
motifs · Commodity market · Market risk

1  Introduction

Network models received early recognition as useful tools in the social science 
community, when Social Networks began to publish in 1978, and several articles 
on network analysis appeared in the Journal of the American Statistical Asso-
ciation directly after - see Fienberg (2012). Since then, the number of papers by 
social scientists and statisticians has been surpassed by those of computer scien-
tists and statistical physicists. Nevertheless, the study of network connectedness 
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is gaining much importance in statistics, econometrics and risk management (see 
Lauritzen and Wermuth 1989; Billio et al. 2012; Giudici and Spelta 2016; Bosma 
et al. 2019; Baruník et al. 2020; Chen et al. 2021; Han et al. 2021; Giudici et al. 
2023).

Time series network models have become a cornerstone approach in the financial 
literature to study shock transmission across asset prices (see e.g. Billio et al. 2012; 
Pagnottoni and Spelta 2022; Pagnottoni 2023). Such models widen the category of 
statistical models applied in social sciences, and many of them respond to the need 
for modeling strategies that are capable of investigating nonlinear market interac-
tions and responses to large, exogenous shocks such as climate and pandemic shocks 
(see e.g. Pagnottoni et al. 2021, 2022; De Giuli et al. 2022; Spelta and Pagnottoni 
2021b). Amongst these, transfer entropy, first introduced by Shannon, has emerged 
as a fundamental tool for the quantification of the statistical soundness between 
systems evolving in time (Schreiber 2000). From a statistical viewpoint, transfer 
entropy is regarded as a nonlinear generalization of Granger causality (Barnett et al. 
2009). A number of papers show the exact equivalence between Granger causality 
and transfer entropy for given assumptions on the data generating processes: this 
enables to view transfer entropy as a nonparametric test of pure Granger causality 
under certain conditions (Barnett et  al. 2009; Hlavácková-Schindler 2011; Barnett 
and Bossomaier 2012). These topics drew the attention of many statisticians and 
empirical researchers, who have widely investigated properties and applications of 
transfer entropy - see, e.g.   Gupta et al. (2007); Dimpfl and Peter (2013); Toomaj 
(2017); Caserini and Pagnottoni (2022). Particularly, Dimpfl and Peter (2013) have 
proposed an alternative methodology, named effective transfer entropy, to exam-
ine the information flow between two time series, which underpins our proposed 
method. Effective transfer entropy allows to eliminate small sample biases induced 
by traditional transfer entropy measures, as well as to make statistical inference on 
the estimated information flows.

Transfer entropy is a convenient metric to characterize the evolution of temporal 
networks over time, as it consists of a model-free approach able to detect statistical 
dependencies without being restricted to linear dynamics, and construct adjacency 
matrices representing information flows across asset prices. In our paper, transfer 
entropy is the building block to derive time series networks. In particular, we con-
sider networks whose nodes are time-varying random variables and whose edges 
are the mutual transfer entropy between these variables. This enables to model the 
evolution of network linkages across financial assets over time and analyze them 
through the lens of network theory.

In temporal networks, the notion of centrality measures (Newman et  al. 2006; 
Newman 2018) enables to rank nodes and link over time. This concept is of utmost 
importance, and is summarized by node degree and strength, i.e. the number of 
directly connected neighbours of a node, and the sum of the weights of its links. 
Despite their simplicity in terms of interpretation, degree, strength and similar cen-
trality measures often stem from pairwise relationships among variables, disregard-
ing the fact that interactions might simultaneously occur across a group of nodes. 
This is equivalent to say that dyads are not always suitable to describe the interac-
tions across nodes in a network.
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Against this background, we characterize the local structure of weighted effec-
tive transfer entropy networks by means of statistically validated measures of inten-
sity and coeherence on their recurrent subgraphs. While “intensity” is defined as the 
geometric mean of link weights, “coherence” is defined as the ratio of the geometric 
to the corresponding arithmetic mean. These two measures are able to generalize 
motifs scores and clustering coefficients to weighted directed networks, which are 
suitable structures to analyze financial price connectedness and might consider-
ably modify the conclusions obtained from the study of unweighted characteristics 
(Onnela et  al. 2005). In other words, intensity and coherence allow us to identify 
statistically recurrent subgraphs, i.e. network motifs, their dynamic properties and 
significance over time, so to characterize the system behavior via higher-order struc-
tures which might heavily drive time series co-movements.

We apply our methodology to study the interconnected dynamics of a set of 63 
global commodity prices over a 30-year period ranging from January 1990 to May 
2020. The application to the set of commodity prices is illustrative of the usefulness 
of the methodology in detecting ”unexpected” or ”anomalously exceptional” edges, 
i.e. connections between commodity prices. Our results show how different types of 
motifs occur at starkly diverse rates of intensity in the commodity transfer entropy 
network. Particularly, the intensity of simple triadic structures decrease in the after-
math of the Global Financial Crisis in spite of that of more complex ones, whereas 
the coherence of all types of subgraphs tend to increase. This suggests that, while 
on average link intensity decreases (increases) for simple (complex) subgraphs, 
the weights of links attached to nodes become internally more coherent, i.e. they 
become less heterogeneous as a consequence of such shock.

Our study is casted in the network theory literature (Squartini and Garlaschelli 
2012; Squartini et al. 2013) which concentrates on diadic or, at most, triadic struc-
tures. The fundamental reason for this is that there are only 13 conceivable combina-
tions of three nodes, whereas there are 64 if one is interested in 4-way motifs, which 
makes interpretation highly challenging. 4-way motifs are studied in different disci-
plines, such as genetics and chemistry. Only a portion of them are considered since, 
a priori, some 4-way motifs, such as the feed-forward or the bi-fan and bi-parallel, 
are linked to particular roles of genes in regulatory networks or of cells in neuronal 
networks (Milo et al. 2002).

The remainder of the paper is structured as follows. Section  2 introduces the 
methodological framework. In section 3 we develop our empirical application. Sec-
tion 4 concludes.

2 � Methodology

2.1 � Effective transfer entropy

Shannon (1948) derived a measure for the uncertainty by averaging, over all pos-
sible states, the amount of information gained from a certain state of a random 
variable which can be assumed by the random variable itself. The formulation of 
transfer entropy in the context of time series is founded on the Shannon transfer 
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entropy, and has been outlined by Schreiber (2000). Let us consider a discrete ran-
dom variable X whose probability distribution is pX(x) , where x denotes all pos-
sible outcomes that the random variable X can assume. The definition of entropy 
formulated by Shannon (1948) corresponds to the average number of bits needed 
to optimally encode independent draws from the distribution of X, formally:

where the sum goes over all possible states x the random variable X can assume, and 
log(⋅) represents the logarithm function, whose basis varies across different appli-
cations (base 2 is one of the most commonly used, and gives the unit of bits, or 
”Shannons”). From the interpretation viewpoint, Shannon’s entropy can be seen as 
the average level of uncertainty associated to the variable’s possible outcomes.

The Kullback–Leibler distance (Kullback and Leibler 1951) establishes the 
link between uncertainty and information by defining the excess number of bits in 
the encoding in case of erroneous assumption on the probability distribution of X. 
In a bivariate setting, let Y be a second discrete random variable with probability 
distribution pY (y) . The Kullback–Leibler (KL) distance of the two random vari-
ables, also known as mutual information, is

where pX(x) and pY (y) denote the marginal probability distributions of X and Y. 
Despite mutual information measures any form of statistical dependency between 
two random variables, its symmetry makes it unsuitable to measure directional 
information exchange.

In the time series framework, Schreiber (2000) outlined a dynamic struc-
ture based on transition probabilities built upon such measures. The underlying 
assumption is that the dynamic structure of a discrete random variable Y cor-
responds to a stationary Markov process of order k. This implies that the prob-
ability of observing Y at time t + 1 in state y, conditional on k previous observa-
tions, is p(yt+1|yt, ..., yt−k+1) = p(yt+1|yt, ..., yt−k) . Then, the average amounts of bits 
required to encode an additional time series observation if the previous values 
are known is hY (k) = −

∑
y
p(yt+1, y

(k)
t ) log (p(yt+1�y(k)t )) , where y(k)t = (yt, ..., yt−k+1) . 

In the bivariate case, Schreiber (2000) measures the information flow from time 
series X to time series Y by as the deviation from the generalized Markov prop-
erty, namely the transfer entropy

where x(l)t = (xt, ..., xt−l+1) . Notice that such measure is asymmetric, meaning it 
allows to detect the dominant direction of the information flow when computed for 
both directions.

(1)HX = −
∑
x

pX(x) log (pX(x)),

(2)MXY =
∑
x,y

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
,

(3)TX→Y (k, l) =
∑
x,y

p
(
yt+1, y

(k)
t , x

(l)
t

)
log

(
p(yt+1|y(k)t , x

(l)
t )

p(yt+1|y(k)t )

)
.
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Given that equation (3) is designed for discrete time series, whereas in economic 
and financial applications time series are mostly continuous, time series are gener-
ally partitioned into discretized values. The discretized series St is obtained via a 
partition of the generic time series zt into n bins:

where the choice of the number of bins and quantiles is, in general, motivated by the 
data and the aims of the analysis.

2.1.1 � Inference on time series transfer entropy

Marschinski and Kantz (2002) show that, due to small sample effects, the trans-
fer entropy estimates derived in equation (3) are likely to be biased. Therefore, the 
authors propose an alternative measure, i.e. the effective transfer entropy, obtained 
by subtracting to the original transfer entropy in equation (3) a transfer entropy com-
puted on a shuffled version of the time series of the variable X, namely

with TXs→Y (k, l) denoting the transfer entropy determined on a shuffled version of 
the series X. As shuffling is implemented via a random drawing of the realizations 
from the distribution of X, the statistical dependencies between the two time series 
are annihilated. This is equivalent to state that TXs→Y (k, l) converges to zero as the 
sample size increases, and that any non-null value of TXs→Y (k, l) can be attributed to 
small sample bias. Averaging across repeated shuffling and estimation of the transfer 
entropy is a common practice to determine effective transfer entropy.

In order to conduct statistical inference on the estimated information flows, we 
bootstrap the underlying Markov process building on Dimpfl and Peter (2013), 
rather than simply shuffling the time series and computing the corresponding effec-
tive transfer entropy. While this procedure annihilates the statistical dependencies 
between the two time series, as for the shuffling one, the main difference consists 
of the fact that it preserves the dependencies within the variables X and Y. Indeed, 
when shuffling the series, single discretizations of the time series are randomly rear-
ranged into blocks which may not even occur in the actual sample. When bootstrap-
ping, instead, the discretized values are rearranged based on the probabilities with 
which they occur in the actual sample. As a matter of fact, the joint probabilities 
of specific blocks of length k which need to be estimated within the series X corre-
spond more closely to the observed ones in the sample.

In summary, such procedure yields the distribution of the estimates under the null 
hypothesis of no information flow, and it can be obtained by repeating the estimation 
of the transfer entropy using the bootstrapped time series. This yields Z-scores and 

(4)St =

⎧
⎪⎪⎨⎪⎪⎩

1 for zt ≤ q1
2 for q1 < zt < q2
⋮ ⋮

n − 1 for qn−2 < zt < qn−1
n for zt ≥ qn−1,

(5)TEX→Y (k, l) = TX→Y (k, l) − TXs→Y (k, l),
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p-values, which can be used to conduct standard inference on the effective information 
flows exchanged between random variables. While the effective transfer entropy meas-
ure will be the basis to construct the adjacency matrix of our temporal network of asset 
price connectedness, standard p-values will be used in order to retain in the network 
structure solely the significant flows of information across time series.

2.2 � Statistically recurrent subgraphs in weighted directed networks

The concept of a motif was originally introduced by Milo et  al. (2002) as “patterns 
of interconnections occurring in complex networks at numbers that are significantly 
higher than those in randomized networks”. In other words, the frequency with 
which a subgraph emerges in a network can be used to describe the local structure of 
unweighted networks.

On the other hand, when dealing with weighted networks, it becomes more natural 
to approach this concept in terms of intensities (Onnela et al. 2005), as opposed to the 
number of occurrences, where the latter is obtained as a special case of the former. In 
this setup, one can determine the “intensity” of a subgraph as the geometric mean of its 
link weights, and a motif’s “coherence” as the ratio of the geometric to the equivalent 
arithmetic mean. Then, motifs showing statistically significant deviation from some ref-
erence system can be referred to as high or low intensity motifs.

To expand the motif detection method for weighted networks, these are gener-
ally thought of as a fully connected graph with some links having zero weights. We 
introduce the intensity I(g) of subgraph g with vertices vg and links lg as the geomet-
ric mean of its weights

where |||lg
||| is the number of links in lg , and “ wij represents the generic element (i, j) of 

the weighted adjacency matrix W constructed via pairiwise transfer entropy. The 
aforementioned definition implies a shift in perspective from viewing subgraphs as 
discrete objects (either they exist or do not exist) to a continuum of subgraph inten-
sities, with zero or very low intensity values implying that the subgraph in question 
does not exist or exists at a practically insignificant intensity level. Due to the nature 
of the geometric mean, the subgraph intensity I(g) may be low because one of the 
weights is very small, or it might result from the case where all of the weights result 
low. In order to distinguish between these two extremes, we apply the concept of 
subgraph coherence Q(g),  which is defined as the geometric mean to the arithmetic 
mean of the weights

where Q ∈ [0, 1] and it is close to unity only if the subgraph weights do not differ 
much, namely when they are internally coherent.

(6)I(g) =

⎛⎜⎜⎝
�
(ij)∈lg

wij

⎞⎟⎟⎠

1∕�lg�
,

(7)Q(g) = I(g)
|||lg
|||∕

∑
(ij)∈lg

wij,
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We define the total intensity IM of a motif M in the network as the sum of its 
subgraph intensities IM = Σg∈MI(g) . Similarly, the total coherence of a motif QM 
is computed as the sum of its subgraph coherence QM = Σg∈MQ(g).

2.3 � Maximum likelihood inference via null models with strength preserving 
constraints

In order to conduct standard inference, the statistical significance of the presence 
of motifs can be determined by comparing the distributions of motifs intensity 
and coherence to those generated from an ensemble of adequately randomized 
networks. Such randomized networks are regarded as constituents of a null 
hypothesis, since their topological structure is produced via a method in which 
no selection is applied to the network’s component motifs. In order to conduct a 
thorough comparison, we employ randomized networks that are identical to the 
real network in terms of single-node characteristics. Specifically, since we are 
dealing with weighted directed networks, we preserve the in-strength and out-
strength of each node, namely the sum of incoming and outgoing links weights. 
In this way, we are able to control for patterns that only occur due to the net-
work’s single-node characteristics.

In other words, we aim at discriminating whether the IM and QM statistics are 
fully determined by the local centrality measures. Accordingly, we construct null 
models by preserving the strength of nodes to investigate whether IM and QM are 
significantly over- (or under-) represented in the real network compared to the 
null models.

To achieve this goal, we opt for family of statistically randomized benchmarks, 
i.e. ensembles of graphs where the local heterogeneity is the same as in the real 
network, while the topology is random in any other respect. Nontrivial relevant 
motifs are then detected in the form of empirical deviations from the theoretical 
expectations of the null model (see Garlaschelli and Loffredo 2008, 2009; Squar-
tini and Garlaschelli 2011). To build graph ensembles, we use maximum likeli-
hood estimation where model parameters, e.g. the node strength, is fixed such 
that its expected value match the empirically observed one.

Let P(G ∣ �) be the conditional probability of occurrence of a graph G, depend-
ing on the set of parameters � . For a realization of the graph G = G� , P(G� ∣ �) is 
the likelihood that G′ is generated by the parameter choice � . Therefore, for fixed 
G′ , the maximum likelihood estimator of � is the value �∗ maximizing P(G� ∣ �) 
or, equivalently, �(�) ≡ lnP(G� ∣ �).

Considering our weighted directed network, in the case of strength preserv-
ing, each set of nodes is characterized by strength vectors, whose components 
are kv ≡

∑
u TE(v, u) for the in-strength and ku ≡

∑
v TE(v, u) for the out-strength. 

The model constrains the strength sequences to those of the real effective transfer 
entropy network.

The unknown parameter vectors �v and �u can be determined by maximizing 
the log-likelihood function
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where

and pv,u ≡ �v�u . Once solutions are found, we can draw weighted links from vertex v 
to vertex u using the corresponding geometric distribution.

Motif intensity and coherence are considered statistically significant if such values, 
computed on the original graph, are exceptionally higher (lower) compared to their 
mean derived from random networks under the null model. To assess such exceptional-
ity, Milo et al. (2002) propose to employ standard inference to derive statistical signifi-
cance of motif occurrences. The standard Z-score can be defined as

where NM is the number of subgraphs in motif M in the empirical network and ⟨nM⟩ 
is the expectation of their number in the reference ensemble, and �M is the standard 
deviation of the latter. Replacing the number of subgraphs by their intensities the 
Z-score becomes

where iM is the total intensity of motif M in one realization of the reference system. 
In an analogous way, we introduce the motif coherence score as

where QM and qM are the total coherence for motif M in the empirical network and 
in one realization of the reference system, respectively. The intensity (coherence) 
of a 3-node subgraph (motif) is thus considered statistically significant if its value 
in the original graph is exceptionally higher compared to that produced by random 
networks under the null model. The Z-score being defined as the difference of the 
intensity (coherence) of a motif M in the target network and its mean average value 
in a sufficiently large set of randomized networks, divided by the standard deviation 
allows to measure of the statistical significance of intensity (coherence) for a par-
ticular motif.

(8)

�(�v, �u) ≡ lnP
(
TE ∣ �v, �u

)
=

=
∑
v

kv ln �v +
∑
u

ku ln �u

+
∑
v

∑
u

ln
(
1 − �v�u

)
,

P(TE ∣ �v, �u) =
∏
v

∏
u

pTE(v,u)
v,u

(
1 − pv,u

)
,

(9)zM =
�
NM − ⟨nM⟩

�
∕�M ,

(10)z̄M =
�
IM − ⟨iM⟩

�
∕
��

i2
M

�
− ⟨iM⟩2

�1∕2
,

(11)z̄�
M
=
�
QM − ⟨qM⟩

�
∕
��

q2
M

�
− ⟨qM⟩2

�1∕2
,
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3 � Application to commodity price co‑movements

We apply our methodology to analyze data provided by the World Bank1 on 
selected monthly prices of 63 globally widespread commodities belonging to dif-
ferent sectors: Energy (Coal, Crude Oil, Natural Gas), Agriculture (Food, Bever-
ages and Agricultural Raw Materials) and Fertilizers, Metals and Minerals, Precious 
Metals. The sample period ranges from January 1990 to May 2020. We refer the 
reader to Table 1 for the complete list and description of commodities. We perform 
a dynamic analysis in which we derive the effective transfer entropy measures and 
related network statistics on a rolling window basis, setting the estimation width to 
250 monthly observations. Effective transfer entropy is obtained by discretizing the 
observations into three bins, by using the 5% and 95% empirical quantiles of the 
return time series as lower and upper bounds for binning, resulting in a symbolic 
encoding where the first (third) bin includes the extreme negative (positive) returns, 
meaning tails observations are selected (Dimpfl and Peter 2013). Throughout our 
analysis, we select only statistically significant values of the transfer entropy, mean-
ing values for which the associated p-value does not exceed the � = 0.1 significance 
level.

Before entering into the details of the empirical application of weighted motifs 
detection in transfer entropy networks, we report in Fig. 1 all possible 3-node sub-
graphs, i.e. triadic structures for unweighted networks. The figure is instrumental to 
associate all possible motifs, labeled as m = 1, ..., 13 , and their corresponding triadic 
structure.

Moreover we report, in Fig. 2 a schematic illustration of the difference between 
the reciprocated triangle m = 13 frequency in the unweighted framework and 
intensity in the weighted one. The weight of the link among nodes j and k grad-
ually decreases from left to right. The motif occurrence, i.e. the frequency in the 
unweighted framework, is equal for the first three triangles, whereas it suddenly 
drops to zero for the fourth triangle. In contrast, the intensity of the motif in the 
weighted case tends smoothly to zero when the link weight decreases.

We start our analysis by investigating the topological structure of the transfer 
entropy network recorded at different points in time. As an illustrative example we 
show in Fig. 3 two snapshots of the network topology during a ”business as usual 
phase” (left panel) and during the Global Financial Crisis (right panel). The figure 
shows how, during a crisis period, multiple hubs referred to different commodity 
classes emerge, such as those related to metals and food commodities. During a nor-
mal business period, instead, the transfer entropy network tends to become more 
randomly oriented, with less nodes functioning as hubs.

Moreover, we explore the evolution of the aggregate structure of the trans-
fer entropy network by reporting, in Fig.  4, the dynamics of the total number of 
links and of the total network flow, i.e. the sum of link weights, over the analyzed 
period. We observe an increase of the system interconnectedness during the Global 

1  https://​www.​world​bank.​org/​en/​resea​rch/​commo​dity-​marke​ts.

https://www.worldbank.org/en/research/commodity-markets
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Financial Crisis. Indeed, the increase in oil prices in the period of 2007 to 2008 was 
a significant cause of the recession which led commodity prices to rise by roughly 
75% in real terms on average during mid-2008 (see Spatafora and Tytell 2009). This 
was the broadest surge in terms of the number and groups of commodities involved 
(Baffes and Haniotis 2010). Secondly, network connections remain quite stable after 
a decrease occurred in 2010–2012 when the economic slowdown in China was a key 
factor driving the commodity prices burst. Moreover, we observe a sharpe decrease 
in 2017–2018. This suggests that overall interconnectedness and, therefore, systemic 
risk of global commodity prices has considerably decreased over recent times.

Finally, we report, in Figs. 5 and 6 the degree and strength distribution for the 
pooled network. These measures represent the number of links attached to a node 
and the sum of link weights, respectively, and are indicative of the importance of 

Fig. 1   Network Motifs. The 
figure shows the m = 1, ..., 13 
triadic motifs representing all 
the possible non-isomorphic 
topological configurations 
involving three connected nodes 
in a directed network

Fig. 2   Close Triangle Motif. The figure the difference between motif frequency (unweighted case) and 
motif intensity (weighted case) for the reciprocated triangle m = 13 . The link weight among nodes j and 
k gradually decreases from left to right. The motif frequency is equal for the first three triangles and 
drops to zero suddenly for the fourth triangle, while the intensity tends smoothly to zero when the link 
weight decreases
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each node in the network. Moreover, since we are dealing with a directed network, 
we split these statistics into incoming and outgoing (in- and out-) centrality meas-
ures to asses the importance of each node as receiver or as a transmitter of systemic 
risk. Notice that, on average, oil and natural gas, together with raw material have 
higher out-degree (strength) with respect to the in-degree (strength) meaning that 
they are mainly shock propagators in terms of transmitted transfer entropy, while 
food commodities present higher in-degree (strength), thereby mainly being shock 
receivers.

We now turn our attention on the dynamic evolution of network motifs. Firstly, 
we investigate the behavior of the motif intensity and coherence computed on the 
transfer entropy network. Secondly, we study the patterns of the variables in devi-
ation form the results obtained from 1000 bootstrap replications of the weighted 
directed configuration model that is employed as a null model benchmark. Fig-
ure 7 shows the intensity and coherence dynamic for each triadic structure. The 

Fig. 3   Effective transfer entropy networks. The figure shows the entropy networks at two exemplifying 
points in time: January 2004 (left panel) and July 2007 (right panel). Node size is proportional to the out-
degree while node colors refer to their in-degree scores

Fig. 4   Aggregate network statistics. The figure shows the number of links and the network flow (the sum 
of link weights) on different axis scales
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motifs are labelled m = 1, ..., 13 and we refer the reader to Fig. 1 for the associated 
triadic structures. From Fig.  7, it is evident how diverse types of motifs occur 
at starkly different rates of intensity in the commodity transfer entropy network. 
In particular, “v”-like motif (motifs from 1 to 4) are the most intense structures, 

Fig. 5   Degree distribution on the pooled entropy networks. The figure shows the nodes distributions of 
the out-degree (upper panel) and in-degree (lower panel) obtained by pooling together the entropy net-
works in the sample period. Legends emphasize the average and median values of the statistics

Fig. 6   Strength distribution on the pooled entropy networks. The figure shows the nodes distributions of 
the out-strength (upper panel) and in-strength (lower panel) obtained by pooling together the entropy net-
works in the sample period. Legends emphasize the average and median values of the statistics
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whereas more complex sub-structures are less present in the network. Moreover, 
we observe that the Global Financial Crisis has caused an instantaneous growth 
in the intensity of triangle sub-graphs, including the most complex triadic struc-
tures, with a consequent decrease of the simpler “v”-like motifs. Additionally, as 
opposed to the patterns observed for the intensity, coherence generally increases 
during the 2009 crisis, meaning that during this turbulent market phase motif 
weights do not differ much, i.e. they become internally coherent. Finally, during 
the years 2017–2018 we observe a decrease in all motifs coherence but only the 
intensity of close motifs, i.e. triangles, decreases while “v”-like motif intensity 
remains to the pre-crisis level.

Fig. 7   Real network motif scores. The figure shows aggregate motif intensity (upper panel) and coher-
ence (lower panel) computed on the real entropy network. The legend assigns motifs to the different 
colors

Fig. 8   Intensity and coherence distribution. The figure shows the intensity (left panel) and coherence 
(right panel) distributions derived from the directed weighted configuration model which preserves nodes 
strengths. As en exemplification statistics are compute on the last window of the sample
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We further investigate whether the emerging triadic configurations can be 
explained in terms of the resulting heterogeneity of the network vertices. Before 
comparing the observed frequencies with the expected ones, we report in Fig. 8 the 
intensity and coherence distribution of each motif for the last window of the sample. 
The distributions of statistics related to motifs are generally bell shaped, centered on 
different averages, with a more prominent right tail, especially for the ‘v”-like tri-
adic structures. This is a common feature of motif intensity and coherence in many 
kind of networks, particularly when networks exhibit a large number of links with 
low weights (Fig. 9).

The presence of statistically significant recurrent sub-structures in the transfer 
entropy network are determined through standard inference on their observed inten-
sity and coherence as opposed to that of randomized networks. Indeed, our most 
informative findings will correspond to a deviation, rather than an agreement, with 
null models. To this aim, Fig. 10 shows the dynamic of the Z-scores associated to 
the different types of motifs which emerge from the transfer entropy network.

Motifs on transfer entropy networks are highly dynamic but their significance 
does not dramatically change over time. Interestingly, single link “v”-like motifs, 
which represent the simplest triadic structures, exhibit relatively high Z-scores over 
the whole sample, and the 2008 crisis only produces a decrease in their intensity 
Z-score, but an increase in the coherence one. On the other hand, most complex sub-
graphs such as reciprocated “v”-like motifs and triangles show an opposite behav-
iour. Another compelling result is given by the fact that motifs number 7 and 8 show 
a spike in their intensity Z-score with the advent of the Global Financial Crisis, 
which turned these structures to be statistically over-represented.

Finally, we have aggregated the motifs intensity and coherence Z-score by node. 
We observe that, overall, the average node intensity is positive, while the opposite 
holds for the coherence. Negative values are mostly given by the most complex tri-
adic structures, while positive Z-scores are associated with simpler “v”-like motifs. 
Moreover, we observe that the highest values are associated with food and materials 

Fig. 9   Intensity and coherence Z-score. The figure shows aggregate Z-score for the intensity (upper 
panel) and coherence (lower panel) statistics. The legend assigns motifs to the different colors
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commodities. As far as energy commodities are concerned, only oil exhibits rela-
tive high values, while the opposite happens for natural gas, particularly for the US 
commodity.

One of the main limitations might consist in the fact that the null model con-
sidered in the paper constrains the expected strength sequence, regardless of the 
degree. We have performed a replication exercise constraining the degree sequence, 
rather than the strength sequence, whose results are contained in Appendix.

4 � Conclusion

In this paper we propose a method for characterizing the local structure of weighted 
multivariate time series networks. In particular, we exploit the topological struc-
ture outlined by effective transfer entropy to derive statistically validated measures 
of intensity, i.e. the geometric mean of link weights, and coherence, namely the 
ratio of the geometric to the corresponding arithmetic mean, of multivariate time 
series observations. Effective transfer entropy enables us to correct for small sample 
biases which affect the traditional transfer entropy measures, as well as it allows to 
make inference on the estimated directional information flows. Intensity and coher-
ence allow us to identify statistically recurrent subgraphs, i.e. network motifs, their 
dynamic properties and significance over time, so to characterize the system behav-
ior via higher-order structures which allegedly consist of important drivers of time 
series co-movements.

Our methodology is employed to study the network connectedness of a set of 
commodity prices. Our main result shows that simple triadic structures are the 
most intense, coherent and statistically recurrent ones. However, their intensity sud-
denly decreases after the Global Financial Crisis, in favor of most complex triadic 

Fig. 10   Aggregate Intensity and coherence Z-score by nodes. The figure reports the average Z-score for 
nodes intensity (upper panel) and coherence (lower panel). The legend assigns motifs to the different 
colors
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structures. Despite that, coherence of all types of subgraphs tend to surge after such 
event, meaning that link weights have become less heterogeneous since then and for 
a considerable period of time thereafter.

We remark that there is room for further investigations in this field by means of 
alternative modelling strategies for the multivariate time series connectivity matri-
ces - see, e.g., Spelta and Pagnottoni (2021a),  Celani et al. (2023), Spelta and Pec-
ora (2023), Pagnottoni et al. (2023), Celani and Pagnottoni (2023). Effective transfer 
entropy is just a measure of a broader class of techniques which economic and finan-
cial theory could still much benefit from, and other multivariate time series models 
can be employed and compared. Moreover, other techniques borrowed from network 
theory can unveil useful network properties of time series co-movements, which 
could be employed as statistically validated measures of systemic risk and/or early 
waning signals of market crises, possibily enhancing extant portfolio selection strat-
egies - see, e.g., Spelta et al. (2022).

The interdisciplinary future trajectories of research call for a more in depth inves-
tigation of such topics from a wider variety of viewpoints and disciplines.
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