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Abstract
We study singular perturbations of eigenvalues of the polyharmonic operator on bounded
domains under removal of small interior compact sets. We consider both homogeneous
Dirichlet and Navier conditions on the external boundary, while we impose homogeneous
Dirichlet conditions on the boundary of the removed set. To this aim, we develop a notion
of capacity which is suitable for our higher-order context, and which permits to obtain a
description of the asymptotic behaviour of perturbed simple eigenvalues in terms of a capac-
ity of the removed set, in dependence of the respective normalized eigenfunction. Then, in
the particular case of a subset which is scaling to a point, we apply a blow-up analysis to
detect the precise convergence rate, which turns out to depend on the order of vanishing of
the eigenfunction. In this respect, an important role is played by Hardy–Rellich inequalities
in order to identify the appropriate functional space containing the limiting profile. Remark-
ably, for the biharmonic operator this turns out to be the same, regardless of the boundary
conditions prescribed on the exterior boundary.
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1 Introduction

The aim of the present work is to study perturbations of the eigenvalues of the polyharmonic
operator (−�)m , m ≥ 2, when from a given bounded domain � ⊂ R

N an interior compact
set K is removed, thus introducing a singular perturbation. We focus on the case in which
K is small, in the sense that its capacity is asymptotically near 0, with respect to a notion
of capacity suitably developed for our higher-order setting. More specifically, for m ≥ 2 we
consider the eigenvalue problems{

(−�)mu = λu in �,

u = ∂nu = · · · = ∂m−1
n u = 0 on ∂�,

resp.

{
(−�)mu = λu in �,

u = �u = · · · = �m−1u = 0 on ∂�,

(1.1)

with Dirichlet and Navier boundary conditions (BCs) respectively, and, given a compact set
K ⊂⊂ �, we are interested in the corresponding eigenvalue problems in case K is removed
from �, that is {

(−�)mu = λu in � \ K ,

u = ∂nu = · · · = ∂m−1
n u = 0 in ∂(�\K ),

(1.2)

in the Dirichlet case, and⎧⎪⎨
⎪⎩

(−�)mu = λu in � \ K ,

u = �u = · · · = �m−1u = 0 on ∂�,

u = ∂nu = · · · = ∂m−1
n u = 0 on ∂K ,

(1.3)

where, instead, Navier BCs on ∂� are considered. Note that in both cases we always deal
with Dirichlet BCs on ∂K . The goal is to investigate spectral stability and sharp asymptotic
estimates for the eigenvalues of problems (1.2) and (1.3) when K vanishes in a capacitary
sense.

Qualitative properties of solutions to higher-order problem are deeply related to the bound-
ary conditions that one prescribes. The most common ones in the literature are Dirichlet BCs

u = ∂nu = · · · = ∂m−1
n u = 0 on ∂�, (1.4)

and Navier BCs

u = �u = · · · = �m−1u = 0 on ∂�. (1.5)

Indeed, from the point of view of the applications, they correspond to the simplest Kirchhoff-
Love models of a thin plate, either clamped or hinged at the boundary, respectively in the
Dirichlet and the Navier case.

While the existence and regularity theory for linear problems is essentially the same in
both cases (see e.g. [17]), however solutions have relevant differences, even when � is a
smooth domain. The most striking and famous one is regarding positivity. In the Navier case
the solution inherits its sign from the data, since one can decouple the problem into a systemof
second-order equations, for which a maximum principle holds. Instead, positivity preserving
is in general lost in the Dirichlet case, even for smooth and convex domains, except for
peculiar situations in which one can rely on a global analysis of the Green function, such as
for the case of the ball and its smooth deformations, see [17, 19]. On the other hand, functions
which undergo Dirichlet BCs can be trivially extended by 0 outside the domain, so that the
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extension continues to belong to the same higher-order Sobolev space, while this is not true
anymore for solutions of Navier problems because of possible jumps on ∂� of the normal
derivative. Motivated by these arguments, we investigate perturbations of the eigenvalues of
(−�)m in both context of Dirichlet and Navier BCs on ∂�. Since we rely more on extension
properties rather than positivity issues, our analysis will be harder in the Navier case.

In the second-order case (i.e.m = 1), spectral stability under removal of small (condenser)
capacity sets is proved in [10] in a very general context, see also [7] and [14].More specifically,
in [10] it is shown there that the function λ(�\K )−λ(�) is differentiable with respect to the
capacity of the removed set K relative to �. A sharp quantification of the vanishing order of
the variation of simple eigenvalues is given in [2], when concentrating families of compact
sets are considered: the precise rate of convergence is asymptotic to the u-capacity associated
to the limit eigenfunction u (see [7, Definition 2.1] and [10, (14)] for the notion of u-capacity)
and sharp asymptotic estimates are given in terms of the diameter of the removed set if the
limit set is a point in R

2, and either if the eigenfunction does not vanish there, or in case of
specific concentrating sets such as disks or segments. Asymptotic estimates of u-capacities
and eigenvalues of the Dirichlet Laplacian, on bounded planar domains with small holes of
the more general form εω with ω a bounded domain and ε → 0, are given in [1]. In both
[2] and [1], a tool that helps to provide precise asymptotic estimates in dimension two is
given by elliptic coordinates, which allow rewriting the equations satisfied by the capacitary
potentials in a rather explicit way and which however do not have a simple analogue in higher
dimensions. In the complementary case N ≥ 3, an approach based on a blow-up argument is
used in [13] to derive sharp asymptotic estimates of the u-capacity, and consequently of the
eigenvalue variation, for general families of sets which may also concentrate at the boundary.
This method has been applied also to fractional problems in [3].

For the higher order setting m ≥ 2, asymptotic expansions of eigenvalues of biharmonic
operators under removal of a family of sets which are uniformly vanishing to a point {x0}
have been obtainsed in [8, 21, 22]. All these papers deal with the two-dimensional case and
only Dirichlet boundary conditions, both on ∂� and on ∂K , are considered. The main dif-
ference with the corresponding two-dimensional second-order problem, is that the limiting
problem involves the punctured domain � \ {x0}. In [8] formal recursive asymptotic expan-
sions are found in the nondegenerate case, namely when the gradient of the corresponding
eigenfunction does not vanish at x0, as well as in the degenerate case. In the former case,
these expansions are justified in a suitable functional setting which makes use of weighted
Sobolev spaces, named after Kondrat’ev, in order to deal with the point constraint. On the
other hand, motivated by the study of MEMS devices, in [21], the asymptotic behaviour of
eigenpairs is formally obtained, using the method of matching asymptotic expansions. A
more delicate situation is taken into account in [22], when both the removed subdomain is
vanishing, as well as the biharmonic part of the operator, provided a second-order term is
introduced in the equation. In all these works, the asymptotic expansions of the perturbed
eigenvalues are of logarithmic kind, fact that recalls the expansion in the two-dimensional
case for the Laplace operator given in [2, Theorem 1.7]. We note however that, unlike what
happens for the second order problem, capacities cannot play there the role of perturbation
parameters, since in dimension 2 the higher order capacity of a point (defined as in (1.11))
is different from zero; this is also the reason why the limiting problem is formulated in the
punctured domain. We mention that the spectral behavior of higher-order elliptic operators
upon domain perturbation is investigated also in [5] for Dirichlet, Neumann and intermediate
boundary conditions.

The first aim of the present paper is a rigorous description of the asymptotic behaviour of
the perturbed eigenvalues for polyharmonic operators (−�)m for any m ≥ 2 and for a large
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class of removed sets, in the spirit of [2, 3, 13]. Sincewe deal with sets of vanishing capacities,
we are focused on the high dimensional case N ≥ 2m. Furthermore, as second important
objective, we investigate whether and how different boundary conditions on ∂� affect the
analysis. As already remarked, in the present workwe consider Dirichlet boundary conditions
on ∂K . In order to have a complete picture of the influence of the boundary conditions, the
complementary situation of Navier BCs on ∂K should be addressed. However, the techniques
developed in the present work strongly rely on extension properties which are characteristic
of the Dirichlet case, so that a different approach should be devised to treat the Navier case
on ∂K . We plan to address this in a future work.

In order to give the precise statements of the main results, we first describe the functional
setting and the notation we are going to use throughout the paper.

NotationWe denote the normal derivative of the function u by ∂nu. For a set D ⊂ R
N , U(D)

denotes some open neighbourhood of D, C∞
0 (D) is the space of the infinitely differentiable

functions which are compactly supported in D, and L p(D)with p ∈ [1,+∞] is the space of
p-integrable functions. The norm of L p(D) is denoted simply by ‖ ·‖p whenever the domain
is clear from the context. For every m ∈ N and u : D → R with D ⊂ R

N , we denote as
Dmu the tensor of m-th order derivatives of u and define |Dmu|2 = ∑

|α|=m |Dαu|2, where
|α| is the length of the multi-index α.

The symbol � is used when an inequality is true up to an omitted structural constant, and
we write f = O(g) (resp. f = O(g)) as x → x0 when there exists a constant C > 0 such
that | f (x)| ≤ C |g(x)| in a neighbourhood of x0 (resp.

f (x)
g(x) → 0 as x → x0).

1.1 The functional setting

Let � be a bounded smooth domain in R
N . In order to treat at once different boundary

conditions on ∂�, i.e. the settings of problems (1.2) and (1.3), we introduce the following
notation. For m ≥ 2 the set Vm(�) ⊂ Hm(�) is defined either as

Vm(�) := Hm
0 (�)

in caseDirichlet boundary conditions (1.4) are prescribed on ∂�, where Hm
0 (�) is the closure

in Hm(�) of C∞
0 (�), or by

Vm(�) := Hm
ϑ (�)

if Navier boundary conditions (1.5) are assumed on ∂�. Here Hm
ϑ (�) is the closure in Hm(�)

of the space

Cm
ϑ (�) :=

{
u ∈ Cm(�)

∣∣ � j u|∂� = 0 for all 0 ≤ j < m
2

}
and it can be characterized as

Hm
ϑ (�) =

{
u ∈ Hm(�)

∣∣ � j u|∂� = 0 in the sense of traces for all 0 ≤ j < m
2

}
.

Note that for m = 2 we have H2
ϑ(�) = H2(�) ∩ H1

0 (�). In both cases Vm(�) is a closed
subspace of Hm(�). Moreover, for a bounded domain � ⊂ R

N , the norms

‖ · ‖Hm (�) :=
∑

|α|≤m

‖Dα · ‖L2(�)
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(with the multi-index notation) and

‖∇m · ‖L2(�), where ∇m f :=
{

�
m
2 f for m even,

∇�
m−1
2 f for m odd,

are equivalent on both Hm
0 (�) and Hm

ϑ (�), see e.g. [17, Theorem 2.2] for the Dirichlet case
and [18] for the Navier case. In particular, there exists a constant C = C(N ,m,�) > 0,
depending only on N , m, and �, such that

‖u‖Hm (�) ≤ C‖∇mu‖L2(�) for all u ∈ Vm(�). (1.6)

Note also that in the Dirichlet case all boundary conditions are stable, and therefore they are
all included in the definition of the space Hm

0 (�); on the other hand, only the first half of the
Navier conditions are stable, while the boundary conditions� j u|∂� = 0 for m

2 ≤ j ≤ m−1
are natural and thus do not appear in the definition of Hm

ϑ (�). For a comprehensive discussion,
see [17, Sec.2.4].

The next spaces are relevant when a “hole” is produced in the domain. For a compact set
K ⊂ �, we define

Vm
0 (� \ K ) :=

{
Hm
0 (� \ K ) in the Dirichlet case,

Hm
ϑ,0(� \ K ) in the Navier case.

Here Hm
ϑ,0(� \ K ) denotes the space suitable for Navier BCs on ∂� and Dirichlet BCs on

∂K . More precisely, Hm
ϑ,0(� \ K ) is the closure in Hm

ϑ (�) of

Cm
ϑ,0(� \ K ) := {

u ∈ Cm
ϑ (�)

∣∣ supp u ∩ U(K ) = ∅ for some U(K )
}
.

In case ∂K is smooth, u ∈ Hm
ϑ,0(�\K ) if and only if u ∈ Hm(�\K ) and

� j u|∂� = 0 for all 0 ≤ j < m
2 and ∂hn u|∂K = 0 for all 0 ≤ h ≤ m − 1

in the sense of L2-traces. Note that we have the following chain of inclusions

Hm
0 (� \ K ) � Hm

ϑ,0(� \ K ) � Hm
ϑ (�) � Hm(�), (1.7)

where the second inclusion holds by extending to 0 in K functions defined in�\K , thanks to
the Dirichlet conditions imposed on ∂K . For the same reason, note also that, for any compact
sets K1, K2 such that K1 ⊂ K2 ⊂ �, one has

Vm(� \ K2) ⊂ Vm(� \ K1).

All such spaces are Hilbert spaces with scalar product1 qm(u, v) := ∫
�

∇mu ∇mv. Note
that, unlike the general case, qm(·, ·) does not involve boundary integrals, see [17, Sec.2.4].
By standard arguments [17, Theorem 2.15], the linear problem (−�)mu = f in � \ K , with
f ∈ L2(� \ K ) and boundary conditions either (1.4) or (1.5), admits a unique weak solution
u ∈ Vm

0 (� \ K ), in the sense that∫
�

∇mu ∇mϕ =
∫

�

f ϕ for all ϕ ∈ Vm
0 (� \ K ).

Analogously, we define the eigenvalues of problems (1.2) and (1.3) in the weak sense. We
say that (λ, u) is an eigenpair of (1.2) (resp. (1.3)) if (λ, u) ∈ R × Vm

0 (� \ K ) satisfies

u �≡ 0 and
∫

�

∇mu ∇mϕ = λ

∫
�

uϕ for all ϕ ∈ Vm
0 (� \ K ). (1.8)

1 We always omit to indicate the scalar product in R
N with ·.
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By classical spectral theory, problems (1.2) and (1.3) admit a diverging sequence of positive
eigenvalues

0 < λ1(� \ K ) ≤ · · · ≤ λ j (� \ K ) ≤ · · · → +∞,

where each one is repeated as many times as its multiplicity. Of course the same holds for the
unperturbed problems (1.1), whose eigenvalues are denoted as

(
λ j (�)

)
j∈N. We recall that

the eigenvalues may be variationally characterized as

λ j (� \ K ) = min
X j⊂Vm

0 (�\K )

dimX j= j

max
v∈X j

∫
�\K |∇mv|2∫

�\K |v|2 . (1.9)

Finally, for � and K as before, we define

Xm(�) :=
{
C∞
0 (�) in the Dirichlet case,

Cm
ϑ (�) in the Navier case,

(1.10)

and

Xm
0 (� \ K ) :=

{
C∞
0 (� \ K ) in the Dirichlet case,

Cm
ϑ,0(� \ K ) in the Navier case,

for the sake of a compact notation in some of the proofs.

1.2 Main results

In the spirit of the previously cited works [2, 3, 13], asymptotic expansions of eigenvalues
under removal of small sets can be established treating as a perturbation parameter a suitable
notion of capacity. Extending to the higher-order Sobolev framework the classical definition
in the second-order case, for every compact set K ⊂ � we define the (condenser) Vm-
capacity of K in � as

capVm, �(K ) := inf

{∫
�

|∇m f |2
∣∣∣ f ∈ Vm(�), f − ηK ∈ Vm

0 (� \ K )

}
, (1.11)

where ηK is a fixed smooth function such that supp ηK ⊂ � and ηK ≡ 1 in a neighbourhood
of K . The Vm-capacity of a set K gives an indication about its relevance for the higher-order
Sobolev space Vm , in the sense that zero Vm-capacity sets do not affect the space Vm(�)

when they are removed from �, and hence nor the spectrum of the polyharmonic operator
(Proposition 2.1).

In our analysis, a notion of “weighted” capacity, which represents the higher order ana-
logue of the u-capacity introduced in [7, Definition 2.1] and [10, (14)] for second order
problems, will be significant too. Given a function u ∈ Vm(�), we define the (u, Vm)-
capacity of K in � as

capVm, �(K , u) := inf

{∫
�

|∇m f |2
∣∣∣ f ∈ Vm(�), f − u ∈ Vm

0 (� \ K )

}
. (1.12)

Note that u is relevant only in a neighbourhood of K . Hence,

capVm, �(K , u) = capVm, �(K , ηK u)
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for any cut-off function ηK as before. This permits to extend the notion of (u, Vm)-capacity
to functions u ∈ Hm

loc(R
N ).

For those cases in which we need to distinguish the capacities according to the boundary
conditions on ∂�, we use the following notation:

capm,�(K ) := capHm
0 ,�(K ) and capm,ϑ,�(K ) := capHm

ϑ ,�(K ),

for the Dirichlet and Navier BCs on ∂�, respectively. Similarly we denote

capm, �(K , u) := capHm
0 ,�(K , u) and capm,ϑ,�(K , u) := capHm

ϑ ,�(K , u).

(1.13)

We point out that the Vm-capacity as well as the (u, Vm)-capacity of a compact set K are
attained by a unique minimizer, which is called capacitary potential, and which we denote
by WK and WK ,u respectively. The proof of the attainment of both capacities, together with
some basic properties which will be used throughout the paper, is presented in Sect. 2.

Our first result is about the stability of the spectrum of (−�)m , once a set of small Vm-
capacity is removed.

Theorem 1.1 Let N ≥ 2m and � ⊂ R
N be a smooth bounded domain. Suppose one of the

following:

(D) Vm(�) = Hm
0 (�) and K ⊂ � is compact;

(N) Vm(�) = Hm
ϑ (�) and the exists K0 ⊂ � compact such that K is compact and K ⊂ K0.

Denote by λ j (�) and λ j (� \ K ), j ∈ N \ {0}, the eigenvalues respectively for (1.1) and
(1.8). For all j ∈ N \ {0}, there exist δ > 0 and C > 0 (which depends on K0 in the Navier
case (N)) such that, if capVm, �(K ) < δ, one has

|λ j (� \ K ) − λ j (�)| ≤ C
(
capVm,�(K )

)1/2
.

In particular λ j (� \ K ) → λ j (�) as capVm, �(K ) → 0.

The proof of Theorem 1.1 is based on the variational characterization of the eigenvalues
(1.9) and it is detailed in Sect. 3.1. We remark that spectral stability in a more general higher-
order context was also established in [5] with a different approach. Here we propose a
self-contained and simple proof for our Dirichlet and Navier-Dirichlet settings.

Aiming now at amore precise estimate of the convergence rate, we introduce the following
notion of convergence of sets.

Definition 1.1 Let {Kε}ε>0 be a family of compact sets contained in �. We say that Kε is
concentrating to a compact set K ⊂ � as ε → 0 if, for every open set U ⊆ � such that
U ⊃ K , there exists εU > 0 such that U ⊃ Kε for every ε ∈ (0, εU ).

An example is given by a decreasing family of compact sets, see e.g. [13, Example 3.7].
Note that this property alone is not sufficient to have the standard (i.e. metric) convergence of
sets. For instance, the uniqueness of the limit set is not assured (e.g. if Kε is concentrating to
K then Kε is concentrating also to K̃ for any compact set K̃ which contains K ). However, as
for second-order problems, in the case of a 0-capacity limit set, this concept of convergence
of sets is enough to prove the continuity of the capacity (Proposition 3.1) and the Mosco
convergence [11, 25] of the respective Vm-spaces (Proposition 3.2). These will be the tools
needed for a sharp asymptotic expansion of a perturbed simple eigenvalue λJ (� \ Kε) in
terms of the (uJ , Vm)-capacity of the vanishing compact sets Kε, where uJ is a normalized
eigenfunction relative to λJ (�).
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Theorem 1.2 Let N ≥ 2m and � ⊂ R
N be a smooth bounded domain. Let λJ (�) be a

simple eigenvalue of (1.1) and uJ ∈ Vm(�) be a corresponding eigenfunction normalized
in L2(�). Let {Kε}ε>0 be a family of compact sets concentrating, as ε → 0, to a compact
set K with capVm, �(K ) = 0. Then, as ε → 0,

λJ (� \ Kε) = λJ (�) + capVm, �(Kε, uJ ) + O(capVm, �(Kε, uJ )). (1.14)

Theorem 1.2 is the higher-order counterpart of [2, Theorem 1.4] and its proof is presented
in Sect. 3.2. In the expansion (1.14), the asymptotic parameter is the (uJ , Vm)-capacity of
the vanishing set. The next aim is to quantify capVm,�(Kε, uJ ) as a function of the diameter
of Kε. In this respect, we focus on the particular case in which the limit set K is a point
x0 ∈ � (which in dimension N ≥ 2m has zero Vm-capacity, see Proposition 2.3); without
loss of generality, we consider x0 = 0.We deal with a uniformly shrinking family of compact
sets Kε, the model case being Kε = εK � 0 for some fixed compact set K ⊂ R

N . In this
case, assuming 0 to be an interior point of �, and having the operator (−�)m − λ constant
coefficients, the eigenfunction uJ is analytic at 0, see [20], and hence it does not have infinite
order of vanishing there. Therefore, there exist γ ∈ N and a γ -homogeneous polyharmonic
polynomial U0 ∈ Hm

loc(R
N ) such that

Uε := uJ (ε ·)
εγ

→ U0 in Hm(BR(0)) (1.15)

for all R > 0 as ε → 0. This fact follows from a general result about elliptic equations
by Bers [6, Sec.4 Theorem 1], see also [9, Theorem 2.1], provided—as in our case—one
discards the possibility of an infinite order of vanishing.

In light of (1.15), our strategy to find an asymptotic expansion of capVm, �(Kε, uJ ) is
based on a blow-up argument: we rescale the boundary value problem defining the capac-
itary potential WKε,uJ , find a limit equation on R

N \ K, and prove the convergence of the
family of rescaled capacitary potentials to the one for the limiting problem. To this aim,
a suitable notion of capacity in R

N , involving homogeneous higher-order Sobolev spaces
Dm,2
0 (RN ) and denoted by capm,RN , will be needed, see Sect. 2.2. The asymptotic expansion

of capVm,�(Kε, uJ ) obtained by these arguments turns out to depend on the order of vanish-
ing of uJ at the point 0. More precisely, we have the following results, which we state below
for the model case Kε = εK and prove in more generality in Sect. 4.1. For the Dirichlet case
we have the following:

Theorem 1.3 (Dirichlet case) Let N > 2m and � ⊂ R
N be a bounded smooth domain with

0 ∈ �. Let K ⊂ R
N be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be an

eigenvalue of (1.1)with Dirichlet boundary conditions and uJ ∈ Hm
0 (�) be a corresponding

eigenfunction normalized in L2(�). Then

capm, �(Kε, uJ ) = εN−2m+2γ (
capm,RN (K,U0) + O(1)

)
(1.16)

as ε → 0, with γ and U0 as in (1.15).

The dimensional restriction N > 2m is mainly due to the possibility of characterizing
higher-order homogeneous Sobolev spaces as concrete functional spaces satisfying Sobolev
and Hardy-type inequalities (see Sects. 2.2.1 and 2.2.2 ). In the conformal case N = 2m such
spaces are instead made of classes of functions defined up to additive polynomials, see [15,
II.6-7]. In the Navier setting, we need to restrict to the biharmonic case m = 2.

Theorem 1.4 (Navier case) Let N > 4 and � ⊂ R
N be a bounded smooth domain with

0 ∈ �. Let K ⊂ R
N be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be an
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eigenvalue of (1.1) with m = 2 and Navier boundary conditions and uJ ∈ H2
ϑ(�) be a

corresponding eigenfunction normalized in L2(�). Then

cap2,ϑ,�(Kε, uJ ) = εN−4+2γ (
cap2,RN (K,U0) + O(1)

)
as ε → 0, with γ and U0 as in (1.15) with m = 2.

It is remarkable that the same asymptotic expansion (1.16) for m = 2 holds true for both
Dirichlet and Navier BCs on ∂�. As a consequence, imposing different conditions on the
external boundary does not affect the first term of the asymptotic expansion of the perturbed
eigenvalues. In the proof of Theorems 1.3 and 1.4 wewill need to distinguish between the two
settings. If in the case of Dirichlet BCs on ∂� the natural candidate as functional space for
the limiting problem is Dm,2

0 (RN \ K), on the other hand, in the Navier case, because of the
impracticability of the trivial extension of a function outside�, this is not evident and follows
after a more involved analysis which makes use of suitable Hardy–Rellich inequalities. In
Sect. 2.2.2 we give the precise statement and proofs of such inequalities. This is the main
reason for the restriction to the case m = 2, see Sect. 4.1.

Braiding together Theorem 1.2 and Theorems 1.3–1.4, we obtain the following sharp
asymptotic expansions of λJ (� \ Kε), stated here for the model case Kε = εK.

Theorem 1.5 (Dirichlet case) Let N > 2m and � ⊂ R
N be a bounded smooth domain

containing 0. Let K ⊂ R
N be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be

a simple eigenvalue of (1.1) with Dirichlet boundary conditions and let u J ∈ Hm
0 (�) be a

corresponding eigenfunction normalized in L2(�). Then

λJ (� \ Kε) = λJ (�) + εN−2m+2γ (
capm,RN (K,U0) + O(1)

)
as ε → 0, with γ and U0 as in (1.15).

Theorem 1.6 (Navier case)Let N > 4 and� ⊂ R
N be a bounded smooth domain containing

0. Let K ⊂ R
N be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be a simple

eigenvalue of (1.1) with m = 2 and Navier boundary conditions and let u J ∈ H2
ϑ(�) be a

corresponding eigenfunction normalized in L2(�). Then

λJ (� \ Kε) = λJ (�) + εN−4+2γ (
cap2,RN (K,U0) + O(1)

)
as ε → 0, with γ and U0 as in (1.15) with m = 2.

Theorems 1.3–1.6 deal with the model case Kε = εK. Section4.1 will be devoted to the
proof of their analogues for amore comprehensive setting of general families of concentrating
compact sets {Kε}ε>0 which uniformly shrink to a point, see Theorems 4.4–4.7.

The asymptotic expansion provided by Theorems 1.5–1.6 detects the sharp vanishing
rate of the eigenvalue variation whenever capm,RN (K,U0) �= 0. In Sect. 4.2 we establish
sufficient conditions for this to hold. In particular, this will always be the case when the
Lebesgue measure of K is positive (Proposition 4.8), or when either the eigenfunction uJ

does not vanish at the point x0 (Proposition 4.9), or it does vanish but the compactum K and
the null-set of the limiting polynomial U0 in (1.15) are “transversal enough” (Proposition
4.10).

The paper is then concluded by the short Sect. 5 which contains a discussion about ques-
tions which are left open by our analysis and possible directions in which our results may be
extended.
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  128 Page 10 of 36 V. Felli, G. Romani

2 Definition of higher-order capacity with Dirichlet and Navier BCs and
first properties

The aim of this section is to introduce a notion of capacity which agrees with the higher-
order framework of the problem and which turns out to be an important tool in order to
study the asymptotics of the eigenvalues of the perturbed problems (1.2)–(1.3). The concept
of (condenser) capacity, well-known for the second-order case, was first considered in the
higher-order setting by Maz’ya for bounded domains on which Dirichlet boundary condi-
tions are imposed, or for the whole space, see2 e.g. [23, 24]. In Sect. 2.1 we propose an
unified treatment for both Dirichlet and Navier settings and establish the main properties
of the capacities defined by (1.11)–(1.12). In Sect. 2.2 we recall the main properties of the
homogeneous Sobolev spaces and establish a Hardy–Rellich inequality with intermediate
derivatives. Moreover we introduce the notion of capacity of a compact set in the whole
space R

N for large dimensions N > 2m.

2.1 Higher-order capacities in Vm
0

Let m ∈ N \ {0}, � be a bounded smooth domain in R
N and K be a compact subset of �.

First, we observe that both capacities (1.11)–(1.12) are attained. Indeed, for any u ∈ Vm(�),
we have that Su := {

g ∈ Vm(�) | g − u ∈ Vm
0 (�\K )

}
is an affine hyperplane in Vm(�), so

in particular a convex set. This implies that there exists a unique element in Vm(�) which
minimizes the distance from the origin, i.e. the norm ‖∇m ·‖2 in Su , which is called capacitary
potential and is denoted by WK ,u (in case u is replaced by ηK , we simply denote it by WK ).
This means that WK ,u is such that

capVm, �(K , u) =
∫

�

|∇mWK ,u |2

and it is the unique (weak) solution of the problem⎧⎪⎨
⎪⎩

(−�)mWK ,u = 0 in � \ K ,

WK ,u ∈ Vm(�),

WK ,u − u ∈ Vm
0 (� \ K ),

(2.1)

in the sense that WK ,u ∈ Vm(�), WK − u ∈ Vm
0 (�\K ) and∫

�\K
∇mWK ,u∇mϕ = 0 for all ϕ ∈ Vm

0 (� \ K ).

In (2.1) we are in fact prescribing homogeneous Dirichlet or Navier boundary conditions on
∂� and, in case ∂K is smooth, an “m-Dirichlet-matching” between WK ,u and u on ∂K , i.e.
the m conditions WK ,u = u, ∂nWK ,u = ∂nu, . . . , ∂m−1

n WK ,u = ∂m−1
n u on ∂K .

In particular, the minimizer WK of the Vm-capacity is such that

capVm, �(K ) =
∫

�

|∇mWK |2

2 In these works the higher-order capacity is defined through the L p-norm of the tensor of them-th derivatives
Dmu. However, the two norms are equivalent on any bounded smooth domain.
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and it is the unique (weak) solution of the problem⎧⎪⎨
⎪⎩

(−�)mWK = 0 in � \ K ,

WK ∈ Vm(�),

WK − ηK ∈ Vm
0 (� \ K ),

in the sense that WK ∈ Vm(�), WK − ηK ∈ Vm
0 (�\K ) and∫

�\K
∇mWK∇mϕ = 0 for all ϕ ∈ Vm

0 (� \ K ). (2.2)

We observe that capVm, �(K ) = 0 implies that 0 ∈ SηK , i.e. ηK ∈ Vm
0 (� \ K ). Since

ηK ≡ 1 on K , this can only hold true when the Sobolev space “does not see” K , i.e. when
Vm
0 (� \ K ) = Vm(�). As a consequence, the eigenvalues of problems (1.2) and (1.3)

coincide with those of (1.1). More precisely, in the spirit of [10, Propositions 2.1 and 2.2]
(see also [13, Proposition 3.3]), we prove the following.

Proposition 2.1 The following statements are equivalent:

i) capVm, �(K ) = 0;
ii) V m

0 (� \ K ) = Vm(�);
iii) λn(� \ K ) = λn(�) for all n ∈ N.

Proof To show (i) ⇒ (i i), by density of Xm(�) in Vm(�), see (1.10), it is enough to
prove that each u ∈ Xm(�) may be approximated by functions in Vm

0 (� \ K ) in the Vm-
norm. Since capVm, �(K ) = 0, there exists (wi )i ⊂ Vm(�) with wi − ηK ∈ Vm

0 (�\K )

so that ‖∇mwi‖22 → 0 as i → +∞. Hence, defining vi := u(1 − ηKwi ), one has that
vi ∈ Vm

0 (� \ K ) and, in view of (1.6),

‖∇m(u − vi )‖22 = ‖∇m(uηKwi )‖22 �
m∑
j=0

∫
�

|Dm− j (ηK u)|2|D jwi |2

≤ ‖ηK u‖2Wm,∞(�)

m∑
j=0

∫
�

|D jwi |2 = ‖ηK u‖2Wm,∞(�)‖wi‖2Hm (�)

≤ C2‖ηK u‖2Wm,∞(�)‖∇mwi‖22 → 0

as i → +∞.
The reversed implication (i i) ⇒ (i) is due to the fact that ϕ = WK may be used as a test

function in (2.2) to obtain that ‖WK ‖Vm
0 (�\K ) = ‖WK ‖Vm (�) = 0, which is equivalent to

(i).
(i i) ⇒ (i i i) easily follows from the minimax characterization of the eigenvalues (1.9).

The converse is implied by the spectral theorem, because by (i i i) one is able to find an
orthonormal basis of Vm(�) made of Vm

0 (� \ K )-functions. ��
Remark 1 From Proposition 2.1, in particular from the implication (i) ⇒ (i i), one derives
the following equivalence:

capVm, �(K ) = 0 ⇔ capVm, �(K , u) = 0 for all u ∈ Vm(�).

Next, we investigate some properties of the above defined capacities, in particular the
monotonicity properties with respect to � and K , and the relation between the Dirichlet and
the Navier capacities.
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  128 Page 12 of 36 V. Felli, G. Romani

Proposition 2.2 (Monotonicity properties of the capacity) The following properties hold.

i) If K1 ⊂ K2 ⊂ �, K1, K2 are compact, and h ∈ Vm(�), then

capVm, �(K1, h) ≤ capVm, �(K2, h).

ii) If K ⊂ �1 ⊂ �2, K is compact, and h ∈ Hm(�2), then

capm,�2
(K , h) ≤ capm,�1

(K , h).

iii) For every K ⊂ � compact and h ∈ Hm(�), there holds

capm,ϑ,�(K , h) ≤ capm, �(K , h).

Proof i) It is enough to notice that, for u ∈ Vm(�), the condition u − h ∈ Vm
0 (� \ K2) is

more restrictive than u − h ∈ Vm
0 (� \ K1).

ii) Any u ∈ Hm
0 (�1) can be extended by 0 to a function in Hm

0 (�2), so the minimization
for capm,�2

(K , h) takes into consideration a larger set of test functions than the one for
capm,�1

(K , h), and consequently the inf decreases.
iii) It follows directly from the inclusions in (1.7). ��

Remark 2 Note that the argument used in the proof of (ii) for Dirichlet BCs is no more
available in the case of Navier BCs on ∂�.

As an example, which is also relevant for our purposes, we compute the capacity of a
point in R

N .

Proposition 2.3 (Capacity of a point) Let x0 ∈ �. Then capVm, �({x0}) = 0 if N ≥ 2m,
while capVm,�({x0}) > 0 when N ≤ 2m − 1.

Proof It is not restrictive to assume that x0 = 0 ∈ �. If N ≤ 2m − 1, then the embedding
Vm(�) ↪→ C0(�) is continuous i.e. ‖∇mu‖2 ≥ C(m, N ,�)‖u‖∞ for all u ∈ Vm(�), with
a constant C(m, N ,�) > 0 which does not depend on u. In particular for those functions
in Vm(�) for which u(0) = 1, one has ‖∇mu‖2 ≥ C(m, N ,�). Hence the infimum in the
definition of capVm,�(K ) is strictly positive.

In view of Proposition 2.2(iii), it is sufficient to prove the result for the Dirichlet case. Let
N ≥ 2m+1 and take a sequence of shrinking cut-off in the followingway: let ζ ∈ C∞

0 (B2(0))
such that ζ ≡ 1 on B1(0) and consider ζk(x) := ζ(kx). One has that ζk ∈ C∞

0 (B 2
k
(0)) and

ζk ≡ 1 on B 1
k
(0), hence supp ζk ⊂ � for k ≥ k0 = k0(dist(0, ∂�)). We compute∫

�

|∇mζk |2 =
∫
B 2
k
(0)

|km(∇mζ )(kx)|2dx = k2m−N
∫
B2(0)

|∇mζ |2 → 0

as k → ∞ since 2m − N < 0. Being such functions admissible for the minimization of
capm, �, we deduce capm, �({0}) = 0. The argument is similar for the case N = 2m, provided
we choose accurately the sequence of cut-off functions, see [24, Proposition 7.6.1/2 and
Proposition 13.1.2/2]. For the sake of completeness, we retrace here the proof. Let α denote a
function in C∞ ([0, 1]) equal to zero near t = 0, to 1 near t = 1, and such that 0 ≤ α(t) ≤ 1.
Define then ζε := α(vε), where

vε(x) :=

⎧⎪⎨
⎪⎩
1 if |x | ≤ ε,
log |x |−log

√
ε

log ε−log
√

ε
if ε ≤ |x | ≤ √

ε,

0 if |x | ≥ √
ε.
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Notice that vε is continuous but not C1; on the other hand ζε ∈ C∞
0 (B√

ε(0)), since α is
constant in a neighbourhood of 0 and in a neighbourhood of 1 by construction. Therefore
ζε ∈ Hm

0 (B1(0)) for any ε ∈ (0, 1). Moreover ζε ≡ 1 in Bε(0) so that ζε is an admissible test
function in the minimization of capm, �({0}). By direct calculations, there exists a constant
C = C(m) > 0 (independent of ε) such that

|∇mζε(x)| ≤ C

| log ε|
1

|x |m for all ε < |x | <
√

ε,

whereas

∇mζε(x) = 0 if either |x | ≤ ε or |x | ≥ √
ε.

Therefore

∫
�

|∇mζε|2 � 1

log2 ε

∫ √
ε

ε

1

r
dr = 1

2| log ε| → 0

as ε → 0. The argument is concluded as above. ��

2.2 Homogeneous Sobolev spaces and capacities inR
N

2.2.1 The homogeneous Sobolev spaces Dm,2
0 (RN )

So far, we defined the notion of Vm-capacity for compact sets contained in an open bounded
smooth domain� ⊂ R

N . An analogous definition can be given when� = R
N , provided the

underlined space is of homogeneous kind. We introduce the homogeneous Sobolev spaces
(sometimes referred to as Beppo Levi spaces) Dm,2

0 (RN ) as the completion ofC∞
0 (RN )with

respect to the norm

‖u‖Dm,2
0 (RN )

:=
(∫

RN
|∇mu|2

) 1
2

.

Actually, the spaces Dm,2
0 (RN ) are more commonly defined as the completion with respect

to the norm ‖Dm · ‖2, i.e. with respect to the full tensor of all highest derivatives. However,
the two definitions are equivalent since, by integration by parts, ‖Dm · ‖2 and ‖∇m · ‖2 are
equivalent norms on C∞

0 (RN ), see e.g. [17, Sec.2.2.1].
For large dimensions N > 2m, the following Sobolev inequalities are well-known: for

every 0 ≤ j ≤ m there exists a constant S(N ,m, j) > 0 (depending only on N , m and j)
such that

S(N ,m, j)

(∫
RN

|D ju|2∗
m, j

) 2
2∗m, j ≤ ‖Dmu‖2L2(RN )

for all u ∈ C∞
0 (RN ), (2.3)

where 2∗
m, j := 2N

N−2(m− j) . In particular, for j = 0, there exists a constant S(N ,m) > 0 such
that

S(N ,m)

(∫
RN

|u|2∗
m

) 2
2∗m ≤ ‖u‖Dm,2

0 (RN )
for all u ∈ C∞

0 (RN ),
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where 2∗
m := 2∗

m,0 = 2N
N−2m , see [17, Theorem 2.3]. In view of (2.3), if N > 2m, one may

also characterize Dm,2
0 (RN ) as

Dm,2
0 (RN ) = {

u ∈ L2∗
m (RN )

∣∣ D ju ∈ L2∗
m, j (RN ) for all 0 < j ≤ m

}
.

Analogously, for K ⊂ R
N compact, one may consider the exterior domain � = R

N \ K and
define Dm,2

0 (RN \ K ) as the completion of C∞
0 (RN \ K ) with respect to the norm ‖∇m · ‖2,

which is characterized, for N > 2m, as

Dm,2
0 (RN \ K ) =

{
u ∈ L2∗

m (RN \ K )
∣∣ D ju ∈ L2∗

m, j (RN \ K ) for all 0 < j ≤ m
and ψu ∈ Hm

0 (RN \ K ) for all ψ ∈ C∞
0 (RN )

}
,

see [15, Theorem II.7.6].

2.2.2 A Hardy–Rellich-type inequality with intermediate derivatives

Besides Sobolev inequalities, an important tool in the theory of Sobolev spaces in large dimen-
sions N > 2m is represented by Hardy–Rellich inequalities, which state that the Sobolev
norm of the highest order derivatives controls a singularly weighted Sobolev norm of the
function. We refer to [12] for such inequalities in Hm

0 (�) and to [16, 18] for their extensions
to Hm

ϑ (�). In this section, inspired by [26], we prove a Hardy–Rellich-type inequality for the
space H2

ϑ(�) including also the gradient term, which provides a further characterization of

the space D2,2
0 (RN ) for N > 4. It will be needed in Sect. 4.1 to identify the functional space

containing the limiting profile in the blow-up argument, when Navier BCs are imposed on
∂�.

Theorem 2.4 Let N > 4 and� ⊂ R
N be a smooth bounded domain. Then, for every function

u ∈ H2(�) ∩ H1
0 (�), one has that u

|x |2 ,
∇u
|x | ∈ L2(�) and

(N − 4)2
∫

�

|u|2
|x |4 dx + 2(N − 4)

∫
�

|∇u|2
|x |2 dx ≤

∫
�

|�u|2 dx . (2.4)

Proof Let u ∈ C∞(�) be such that u|∂� = 0. Let us assume that 0 ∈ �. Let us introduce a
parameter λ to be fixed later and, for ε > 0 small, let us denote �ε := � \ Bε(0). We have
that

0 ≤
∫

�ε

(
x

|x |�u + λu
x

|x |3
)2

dx =
∫

�ε

(�u)2 + λ2
∫

�ε

u2

|x |4 dx + 2λ
∫

�ε

u

|x |2 �u dx .

(2.5)

We can rewrite the third term as∫
�ε

u

|x |2 �u dx = −
∫

�ε

∇u

( ∇u

|x |2 − 2u
x

|x |4
)
dx +

∫
∂�

u

|x |2 ∂νu dσ − 1

ε2

∫
∂Bε

u∇u · x
ε
dσ

= −
∫

�ε

|∇u|2
|x |2 dx +

∫
�ε

∇(u2)
x

|x |4 dx + O(εN−3)

= −
∫

�ε

|∇u|2
|x |2 dx − (N − 4)

∫
�ε

u2

|x |4 dx +
∫

∂�

u2
x · ν

|x |4

−
∫

∂Bε

u2

ε3
dσ + O(εN−3)
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as ε → 0. Since the third term vanishes and the second to last term is O(εN−4) as ε → 0,
from (2.5) we get

0 ≤
∫

�ε

(�u)2 + λ2
∫

�ε

u2

|x |4 dx − 2λ
∫

�ε

|∇u|2
|x |2 dx − 2λ(N − 4)

∫
�ε

u2

|x |4 dx + O(εN−4).

Choosing now λ = N − 4, we obtain

(N − 4)2
∫

�ε

u2

|x |4 dx + 2(N − 4)
∫

�ε

|∇u|2
|x |2 dx ≤

∫
�ε

(�u)2 + O(εN−4) as ε → 0.

Inequality (2.4) follows by letting ε → 0 and by density of the set {u ∈ C∞(�) | u|∂� = 0}
in H2(�) ∩ H1

0 (�). If 0 /∈ � the above argument can be repeated by considering directly in
(2.5) the integral on the whole �. ��

We observe that (2.4) holds also for all functions in C∞
0 (RN ) (since any u ∈ C∞

0 (RN )

is contained in some H2
ϑ(�)). Therefore, by density of C∞

0 (RN ) in D2,2
0 (RN ) and Fatou’s

Lemma we easily deduce that, if N > 4, then

(N − 4)2
∫
RN

|u|2
|x |4 dx + 2(N − 4)

∫
RN

|∇u|2
|x |2 dx ≤

∫
RN

|�u|2 dx

for all u ∈ D2,2
0 (RN ). In particular we have that D2,2

0 (RN ) is contained in the space

S2(RN ) :=
{
u ∈ H2

loc(R
N )

∣∣∣ ∇2−ku

|x |k ∈ L2(RN ) for k ∈ {0, 1, 2}
}

.

We prove now that the two functional spaces coincide.

Proposition 2.5 S2(RN ) = D2,2
0 (RN ) for all N > 4.

Proof We have already observed above that S2(RN ) ⊇ D2,2
0 (RN ). Let now u ∈ S2(RN ), η

be a cutoff function with support in B2(0) and which takes the value 1 in B1(0), and define
ηR := η

( ·
R

)
for all R > 0.HenceηRu ∈ H2

0 (B2R(0)) andwe claim that‖�(ηRu−u)‖2 → 0
as R → +∞. Indeed,

‖�(
(ηR − 1) u

)‖22 � ‖(�ηR)u‖22 + ‖∇ηR∇u‖22 + ‖ (ηR − 1) �u‖22,
where

‖ (ηR − 1)�u‖22 ≤
∫
RN \BR

|�u|2 → 0

as R → +∞, and for k ∈ {1, 2},

‖∇kηR∇2−ku‖22 =
∫
R<|x |<2R

1

R2k

∣∣∣(∇kη
) ( x

R

)∣∣∣2 |∇2−ku|2 dx

� 22k
∫
RN \BR(0)

|∇2−ku|2
|x |2k dx → 0

as R → +∞. By density ofC∞
0 (B2R(0)) in H2

0 (B2R(0)), this implies thatC∞
0 (RN ) is dense

in S2(RN ) in the D2,2
0 -norm, thus concluding the proof. ��
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2.2.3 Capacities inR
N

Similarly to the case of a bounded set � described in Sect. 2.1, for any compact set K ⊂ R
N

and any u ∈ Dm,2
0 (RN ) with N > 2m, we define

capm,RN (K , u) := inf

{∫
RN

|∇m f |2
∣∣∣ f ∈ Dm,2

0 (RN ), f − u ∈ Dm,2
0 (RN \ K )

}
, (2.6)

which we simply denote by capm,RN (K ) when u = ηK . The argument for the attainability
of the capacity is easily adapted from the one for capVm ,�(K , u). Analogous properties hold
also in this setting, in particular it is true that

Dm,2
0 (RN ) = Dm,2

0 (RN \ K ) if and only if capm,RN (K ) = 0 (2.7)

which directly implies that

capm,RN (K ) = 0 ⇔ capm,RN (K , u) = 0 for all u ∈ Dm,2
0 (RN ).

The analogue of (2.7) in the case of a bounded domain � is contained in Proposition 2.1
and its proof relies on (1.6), which in turn is based on a Poincaré inequality, the latter being
no longer valid in R

N . However, if N > 2m, the role played by Poincaré inequalities can
be replaced by the critical Sobolev embedding. Although known, here we retrace the proof
of (2.7) for the sake of completeness. Let u ∈ C∞

0 (RN ), set � := supp(u), and consider

(wi )i ⊂ Dm,2
0 (RN ) with wi − ηK ∈ Dm,2

0 (RN\K ) such that ‖∇mwi‖22 → 0 as i → +∞.

Then vi := u(1 − wi ) ∈ Dm,2
0 (RN \ K ) and, defining q j := 2∗

m, j = 2N
N−2(m− j) ≥ 2 for

j ∈ {0, . . . ,m}, one has that

‖∇m(u − vi )‖22 = ‖∇m(uwi )‖2L2(�)
� ‖u‖2Wm,∞(RN )

m∑
j=0

∫
�

|D jwi |2

�
m∑
j=0

(∫
�

|D jwi |q j

) 2
q j ≤

m∑
j=0

‖D jwi‖2Lq j (RN )

� ‖Dmwi‖2L2(RN )
� ‖∇mwi‖2L2(RN )

→ 0,

where in the last steps we used Hölder inequality, the Sobolev inequality (2.3), and the
equivalence of the norms ‖Dm · ‖2 and ‖∇m · ‖2.

For later use, we also recall the right continuity of the capacity, see [24, Sec. 13.1.1].

Lemma 2.6 Let K be a compact subset of � ⊂ R
N . For any ε > 0 there exists a neighbour-

hood U(K ) ⊂ � such that for any compact set K̃ with K ⊂ K̃ ⊂ U(K ), there holds

capm,�(K̃ ) ≤ capm,�(K ) + ε.

Although the notion of capacity needed for the blow-up analysis in Sect. 4.1 is the one
given in (2.6), sometimes it is useful to consider a second one defined as

Cap≥
m,RN (K ) := inf

{∫
RN

|∇m f |2
∣∣∣ f ∈ Dm,2

0 (RN ), f ≥ 1 a.e. on K

}
, (2.8)

which is well-defined for N > 2m, and similarly Cap≥
m,� for � ⊂⊂ R

N , see [23, 24]. One

of the advantages in this approach is that the capacitary potential associated to Cap≥
m,RN is

positive, see [17, Sec. 3.1.2]. Note that for all � ⊂ R
N one has Cap≥

m,�(K ) ≤ capm,�(K )
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because the class of test functions considered in (2.8) includes the one considered for the
minimization in (2.6). Actually it turns out that the two definitions are equivalent, in the
sense that the two capacities estimate each other, as stated below. We report here the result
for � = R

N , referring to [23] for the general case � � R
N .

Lemma 2.7 ([24], Theorem 13.3.1) Let m ∈ N \ {0} and N > 2m. There exists a constant
c > 0 such that

c capm,RN (K ) ≤ Cap≥
m,RN (K ) ≤ capm,RN (K )

for any compact set K ⊂ R
N .

Remark 3 The constant c appearing in Lemma 2.7 can be taken 1 in the second-order case
m = 1, so the two definitions coincide, see e.g. [24, Sec. 13.3]. Whether this is the case also
for the higher-order case it is still an open question.

Remark 4 As an extension of Proposition 2.3, it is known that a regularmanifold of dimension
d has zero capacity in the sense of (2.8) if and only if d ≤ N −2m, see [4, Corollary 5.1.15].
By Lemma 2.7, this result holds also for the notion (2.6) of capacity.

3 Convergence and asymptotic expansion of the perturbed
eigenvalues

In this section we study stability and asymptotic expansion of the perturbed eigenvalues of
(1.2) and (1.3), when from a bounded domain� ⊂ R

N one removes a compact set K of small
Vm-capacity. The main goal is to extend the results obtained in the second-order framework
(in particular [2, Theorem 1.4]) to the higher-order settings described in the introduction. The
first part is devoted to the proof of the stability result of Theorem 1.1, which applies for rather
general domains, while in the second part we focus on the asymptotic expansion of simple
eigenvalues contained in Theorem 1.2, for which we require the notion of concentrating
family of compact sets.

3.1 Spectral stability: Proof of Theorem 1.1

We present here a simple and self-contained proof of the stability of the point spectrum of
the polyharmonic operator with respect to the capacity of the removed compactum, in both
Dirichlet and Navier settings described in Sect. 1.1. It is essentially based on the variational
characterization of the eigenvalues (1.9) and on the properties of the capacitary potentials,
and it follows some ideas exploited for the same question in the second-order case in [3,
Theorem 1.2].

Proof of Theorem 1.1 Denote by (ui )∞i=1 an orthonormal basis of L2(�) such that each ui is
an eigenfunction of problem (1.1) associated to the eigenvalue λi (�). By classical elliptic
regularity theory (see e.g. [17, Section 2.5]), the smoothness of ∂� yields ui ∈ Cm(�) for
all i ∈ N. In order to deal at once with both cases (D) and (N), we introduce the function H
defined by H ≡ 1 in the Dirichlet case, and by H = ηK0 in the Navier case. Here ηK0 is
a cutoff function which is equal to 1 in a neighbourhood on K0 and with support contained
in some compact set K̃0 such that K0 ⊂ K̃0 ⊂ �. The cutoff ηK0 is introduced in order to
enforce the boundary conditions on ∂� in the Navier case.
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Fix j ∈ N \ {0}. For any � ∈ {1, . . . , j}, we define �� := u�(1 − HWK ) and introduce
the subspace X j := span{��} j�=1. Note that �� ∈ Vm

0 (�\K ) by definition of the capacitary
potentialWK , so X j ⊂ Vm

0 (�\ K ). The aim is to prove that X j is a j-dimensional subspace
of Vm

0 (�\K ) so that the right hand side of (1.9) is smaller than the maximum of the Rayleigh

quotient over X j . Note that, by trivially extending the functions {��} j�=1 in K , the integrals
may be evaluated on �. First,

∫
�

�h�� =
∫

�

uhu� − 2
∫

�

uhu� HWK +
∫

�

uhu� H
2W 2

K ,

therefore, by orthonormality of {u�} j�=1 in L2(�) and (1.6),

∣∣∣∣
∫

�

�h�� − δh,�

∣∣∣∣ ≤ max
1≤h≤ j

‖uh‖2L∞(�)

(
2|�|1/2‖WK ‖2 + ‖WK ‖22

)
�

(
capVm, �(K )

)1/2 + capVm, �(K ),

(3.1)

where δh,� stands for the Kroenecker delta. Let now (Wn)n ⊂ Xm(�), see (1.10), be a
sequence of smooth functions which approximates in the Vm-norm the capacitary potential
WK and satisfying Wn = 1 in U(K ). The existence of such a sequence is guaranteed by the
definition of WK . Define moreover ��

n := u�(1 − HWn) for n ∈ N. Note that ��
n → �� in

Vm(�) as n → +∞. We get

∫
�

∇m�h
n∇m��

n =
∫

�

∇m (uh(1 − HWn)) ∇m (u�(1 − HWn))

=
∫

�

∇muh∇mu�(1 − HWn)
2 + Tm(uh, u�,Wn),

(3.2)

where the term Tm contains all remaining products between the derivatives of uh , u�, and
1− HWn . To deal with the first term on the right in (3.2), consider u�(1− HWn)

2 ∈ Vm(�)

by regularity of the factors, as a test function for the eigenvalue problem (1.8) for λh(�).
One obtains

λh(�)

∫
�

�h
n�

�
n = λh(�)

∫
�

uhu�(1 − HWn)
2 =

∫
�

∇muh∇m (
u�(1 − HWn)

2)
=

∫
�

∇muh∇mu�(1 − HWn)
2 +

∫
�

∇muh Sm(u�,Wn),

where again all remaining products involving intermediate derivatives of u� and 1 − HWn

are collected in the term Sm (which is a vector if m is odd). Isolating the first term on the
right hand-side, and substituting it into (3.2), we get

∫
�

∇m�h
n∇m��

n − λh(�)

∫
�

�h
n�

�
n = −

∫
�

∇muh Sm(u�,Wn) + Tm(uh, u�,Wn).

(3.3)
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Moreover,∣∣∣ ∫
�

∇muh Sm(u�,Wn)

∣∣∣
≤

m∑
i=1

i∑
τ=0

∫
�

|∇muh ||Dm−i u�||Di−τ (1 − HWn)||Dτ (1 − HWn)

∣∣∣
≤ ‖∇muh‖∞‖u�‖Wm,∞(�)

m∑
i=1

i∑
τ=0

‖Di−τ (1 − HWn)‖2‖Dτ (1 − HWn)‖2

≤ max
1≤k≤ j

‖uk‖2Wm,∞(�)

m∑
i=1

(
2‖Di (HWn)‖2‖1 − HWn‖2

+
i−1∑
τ=1

‖Di−τ (HWn)‖2‖Dτ (HWn)‖2
)

≤ C(�, j,m)
(
‖H‖Wm,∞(�)‖Wn‖Hm (�)(|�|1/2 + ‖Wn‖2)

+ ‖H‖2Wm,∞(�)‖Wn‖2Hm (�)

)
� C(�, j,m)

(
‖H‖Wm,∞(�)

(
capVm,�(K ) + on(1)

)1/2
+ ‖H‖2Wm,∞(�)(capVm,�(K ) + on(1))

)
as n → ∞,

(3.4)

having used the equivalence of the norms ‖ · ‖Hm (�) and ‖∇m · ‖2 in Vm(�). Here on(1)
denotes a real sequence converging to 0 as n → +∞. Analogously one may estimate the
last term in (3.3):

|Tm(uh, u�,Wn)| ≤
∑

i,τ∈{0,...,m}
(i,τ )�=(0,0)

∫
�

|Dm−i uh ||Di (1 − HWn)||Dm−τu�||Dτ (1 − HWn)|

≤ max
1≤h≤ j

‖uh‖2Wm,∞(�)

(
2

m∑
τ=1

‖Dτ (HWn)‖2‖1 − HWn‖2

+
∑

i,τ∈{1,...,m}
‖Di (HWn)‖2‖Dτ (HWn)‖2

)

≤ C(�, j,m)
(
‖H‖Wm,∞(�)‖Wn‖Hm (�)

(|�|1/2 + ‖Wn‖2
)

+ ‖H‖2Wm,∞(�)‖Wn‖2Hm (�)

)
� C(�, j,m)

(
‖H‖Wm,∞(�)

(
capVm, �(K ) + on(1)

)1/2
+ ‖H‖2Wm,∞(�)(capVm, �(K ) + on(1))

)
as n → ∞.

(3.5)

All in all, from (3.3)–(3.5), one concludes∣∣∣∣
∫

�

∇m�h
n∇m��

n − λh(�)

∫
�

�h
n�

�
n

∣∣∣∣
≤ C̃

((
capVm, �(K ) + on(1)

)1/2 + capVm, �(K ) + on(1)
)

,
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where C̃ depends on K0 in the Navier case. Letting now n → +∞ in both sides of the
inequality, and taking into account (3.1), one infers∣∣∣∣

∫
�

∇m�h∇m�� − λh(�)δh,�

∣∣∣∣ ≤ C̃
((
capVm, �(K )

)1/2 + capVm,�(K )
)

. (3.6)

Hence, from (3.1) and (3.6) one sees that, when capVm, �(K ) is small enough, the functions

{��} j�=1 are linearly independent in Vm
0 (� \ K ), and so the subspace X j has dimension j .

Therefore, recalling that λh(�) ≤ λ j (�) for all h ∈ {1, . . . , j}, again from (3.1) and (3.6)
one finally infers that

λ j (� \ K ) ≤ max
(α1,...,α j)∈R j∑ j

i=1 αi=1

j∑
h,�=1

αhα�

∫
�

∇m�h∇m��

j∑
h,�=1

αhα�

∫
�

�h��

≤ max
(α1,...,α j)∈R j∑ j

i=1 αi=1

j∑
h=1

α2
hλh(�) + O

((
capVm,�(K )

)1/2)
j∑

h=1
α2
h + O

((
capVm, �(K )

)1/2)

≤
λ j (�) + O

((
capVm, �(K )

)1/2)
1 + O

((
capVm, �(K )

)1/2) = λ j (�) + O
((
capVm, �(K )

)1/2)

as capVm,�(K ) → 0. ��

3.2 Asymptotic expansion of eigenvalues: Proof of Theorem 1.2

Let {Kε}ε>0 be a family of compact subsets of� and denote byλJ (�\Kε) the J -th eigenvalue
of (−�)m in Vm

0 (� \ Kε), i.e. of problem (1.8) with K = Kε. If there exists a limiting set K
for which capVm,�(Kε) → capVm, �(K ) = 0, Theorem 1.1 and Proposition 2.1 guarantee
that λJ (�\Kε) → λJ (�\K ) = λJ (�), if we denote by λJ (� \ K ) the corresponding
eigenvalue of the limiting problem in Vm

0 (�\K ) = Vm
0 (�). Moreover, Theorem 1.1 gives

us a first estimate on the eigenvalue convergence rate in terms of the Vm-capacity of the
removed set Kε. Inspired by [2], we are now going to sharpen this result, by detecting the
first term of the asymptotic expansion of λJ (� \ Kε), provided the family of compact sets
{Kε}ε>0 converges to K as specified in Definition 1.1. Indeed, as the next two propositions
show, this definition of convergence, although very general, is enough to prove the stability
of the (u, Vm)-capacity in case capVm,�(K ) = 0, as well as the Mosco convergence of the
functional spaces.

Proposition 3.1 Let {Kε}ε>0 be a family of compact sets contained in� ⊂ R
N concentrating

to a compact set K ⊂ � with capVm,�(K ) = 0 as ε → 0. Then, for every function
u ∈ Vm(�), one has that WKε,u → WK ,u = 0 strongly in Vm(�) and

capVm, �(Kε, u) → capVm, �(K , u) = 0 as ε → 0.

Proof It is analogous to the one for the case m = 1 given in [2, Proposition B.1]. It is in
fact essentially based on the fact that Vm

0 (� \ K ) = Vm(�) for sets of null Vm-capacity, as
shown in Proposition 2.1, and on the consequent Remark 1. ��
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Definition 3.1 Let {Kε}ε>0 be a family of compact sets compactly contained in a bounded
domain�.We say that�\Kε converges to�\K in the sense ofMosco in Vm

0 if the following
two conditions are satisfied:

(i) the weak limit points in Vm(�) of every family of functions uε ∈ Vm
0 (�\Kε) belong

to Vm
0 (� \ K );

(ii) for every u ∈ Vm
0 (� \ K ), there exists a family of functions {uε}ε>0 such that, for

every ε > 0, uε ∈ Vm
0 (�\Kε) and uε → u in Vm(�).

In order to stress the underlined functional space, we also say that Vm
0 (� \ Kε) converges

to Vm
0 (� \ K ) in the sense of Mosco.

Lemma 3.2 Let {Kε}ε>0 be a family of compact sets concentrating to a compact set K ⊂ �

with capVm, �(K ) = 0 as ε → 0. Then Vm
0 (� \ Kε) converges to Vm

0 (� \ K ) as ε → 0 in
the sense of Mosco.

Proof Verification of (i). Let {uε}ε ⊂ Vm(�) be such that uε ∈ Vm
0 (� \ Kε) and uε⇀u

in Vm(�). Since capm,�(K ) = 0, we have that Vm(�) = Vm
0 (� \ K ) by Proposition 2.1,

hence u belongs to Vm
0 (�\K ).

Verification of (ii). Let u ∈ Vm
0 (�\K ) = Vm(�). For every k ∈ N\{0}, by density there

exists χk ∈ Xm
0 (� \ K ) such that ‖∇m(χk − u)‖2 < 1

k . Note that, if Kε is concentrating to
K in the sense of Definition 1.1, for a chosen cutoff function ηK ∈ C∞

0 (�) such that ηK ≡ 1
in a neighbourhood of K , one has that ηK ≡ 1 in a neighbourhood of Kε for ε small enough.
By definition of WK , one may find (Wn)n ⊂ Vm(�) and a sequence (εn)n ↘ 0 such that
‖∇mWn‖2 < 1

n and Wn ≡ 1 in a neighbourhood of Kε for all ε ∈ (0, εn]. Defining, for all
n, k ∈ N\{0}, Zk

n := χk (1 − ηKWn), one has that Zk
n ∈ Vm

0 (� \ Kε) for all ε ∈ (0, εn] and

‖∇m
(
Zk
n − χk

)
‖2 � ‖ηK ‖Wm,∞(�)‖Wn‖Vm (�)‖χk‖Wm,∞(�) ≤ Ck

n

for some Ck > 0 depending on k. Hence, for each k ∈ N\{0}, there exists nk ∈ N such that
nk ↗ ∞ as k → ∞ and ‖∇m

(
Zk
nk − χk

) ‖2 < 1
k . In order to construct the family required

for the Mosco convergence, for any ε ∈ (0, εn1) it is sufficient to define uε := Zk
nk , choosing

k such that ε ∈ (εnk+1 , εnk ]. Indeed, for any δ > 0, letting k ∈ N \ {0} be such that 2
k < δ,

we have that, for all ε ∈ (0, εnk ], uε = Z j
n j for some j ≥ k, so that

‖∇m (uε − u) ‖2 ≤ ‖∇m(
Z j
n j − χ j

)‖2 + ‖∇m (
χ j − u

) ‖2 <
2

j
≤ 2

k
< δ,

thus proving that uε → u in Vm(�) as ε → 0. ��
Remark 5 Note that the Mosco convergence of sets implies the convergence of the spectra
of the polyharmonic operators, see [5]. For the Dirichlet case, in particular this can be seen
combining [5, Proposition 2.9, footnote 2 p.8, and Theorem 4.3].

Lemma 3.3 Let K ⊂ � be a compact set and {Kε}ε>0 be a family of compact subsets of �

concentrating to K as ε → 0. If capVm, �(K ) = 0, then, for every f ∈ Vm(�), we have that
‖WKε, f ‖2Hm−1(�)

= O(capVm, �(Kε, f )) as ε → 0.

Proof The proof is inspired by [2, Lemma A.1]. Suppose by contradiction that there exist
C > 0 and a sequence εn → 0 such that

‖WKεn , f ‖2Hm−1(�)
≥ C capVm, �(Kεn , f ) for all n. (3.7)
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Let us consider

Zn := WKεn , f

‖WKεn , f ‖Hm−1(�)

.

We have

‖Zn‖Hm−1(�) = 1 and ‖∇m Zn‖22 = ‖∇mWKεn , f ‖22
‖WKεn , f ‖2Hm−1(�)

≤ 1

C

with C > 0 as in (3.7).
Then one may find a subsequence (still denoted by Zn) and Z ∈ Vm(�), so that Zn⇀Z

in Vm(�). By the compact embedding Hm(�) ↪→↪→ Hm−1(�), Z is also the strong limit
in the Hm−1(�) topology. This implies that ‖Z‖Hm−1(�) = 1. However, by the Mosco
convergence of Lemma 3.2 one may show that∫

�\K
∇m Z ∇mϕ = 0 for all ϕ ∈ Vm

0 (� \ K ), (3.8)

and hence for all ϕ ∈ Vm(�) by Proposition 2.1, since we assumed capVm, �(K ) = 0.
Indeed, given ϕ ∈ Vm

0 (� \ K ) there exists a sequence {ϕεn }n so that ϕεn ∈ Vm
0 (�\Kεn ) for

each n ∈ N and ϕεn → ϕ in Vm(�), for which then∫
�\Kεn

∇m Zn ∇mϕεn = 0

for all n ∈ N by definition of Zn as a multiple of the capacitary potentialWKεn , f . Then, (3.8)
follows by weak-strong convergence in Vm(�), yielding Z = 0, a contradiction. ��

We are now in the position to prove the asymptotic expansion of the perturbed eigenvalues.
The suitable asymptotic parameter turns out to be the (uJ , Vm)-capacity of the removed set,
where uJ is an eigenfunction normalized in L2(�) associated to the eigenvalue λJ .

In the following, (−�)mε stands for the polyharmonic operator acting on Vm
0 (�\Kε).

Similarly, to shorten notation, we write λε := λJ (� \ Kε) and the corresponding (uJ , Vm)-
capacitary potential is denoted by Wε := WKε,uJ ∈ Vm(�); we also write λJ := λJ (�).

Proof of Theorem 1.2 First note that the simplicity of λJ , i.e. of λJ (�\K ) by Proposition 2.1,
together with the convergence of the perturbed eigenvalues given by Theorem 1.1, implies
the simplicity of λε for ε sufficiently small.

Let ψε := uJ − Wε ∈ Vm
0 (�\Kε) and ϕ ∈ Vm

0 (�\Kε). Then∫
�

∇mψε∇mϕ − λJ

∫
�

ψεϕ =
∫

�\Kε

∇muJ∇mϕ − λJ

∫
�

ψεϕ = λJ

∫
�

Wεϕ.

This means that ψε satisfies weakly in Vm
0 (� \ Kε) the equation(

(−�)m − λJ
)
ψε = λJWε. (3.9)

Since by Lemma 3.3 with f = uJ one has ‖Wε‖2 = O(capVm, �(Kε, uJ )
1/2) as ε → 0, we

infer

dist(λJ , σ ((−�)mε )) ≤ ‖((−�)m − λJ )ψε‖2
‖ψε‖2 = O(capVm,�(Kε, uJ )

1/2)
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as ε → 0. Since we know by Theorem 1.1 and Proposition 3.1 that the spectrum of (−�)m

in Vm
0 (�\Kε) varies continuously with respect to ε and that the eigenvalue λε is simple for

ε small enough, one first deduces

|λε − λJ | = O(capVm, �(Kε, uJ )
1/2) as ε → 0.

Denote now by�ε the projector (with respect to the scalar product in L2) onto the eigenspace
related to λε and take uε := �εψε

‖�εψε‖2 as normalized eigenfunction. The first goal is to estimate
the difference of the two eigenfunctions uJ and uε:

‖uJ − uε‖2 ≤ ‖uJ − ψε‖2 + ‖ψε − �εψε‖2 +
∥∥∥∥�εψε − �εψε

‖�εψε‖2
∥∥∥∥
2

= ‖Wε‖2 + ‖ψε − �εψε‖2 +
∣∣∣1 − ‖�εψε‖−1

2

∣∣∣ ‖�εψε‖2.

Note that Lemma 3.3 yields ‖Wε‖2 = O(capVm, �(Kε, uJ )
1/2) and, moreover, we have

‖�εψε‖2 ≤ ‖ψε‖2 ≤ ‖uJ‖2 + ‖Wε‖2 = O(1) as ε → 0.

Hence,weneed to estimate‖ψε−�εψε‖2 and
∣∣∣1 − ‖�εψε‖−1

2

∣∣∣.Weclaim that both quantities

are O(capVm, �(Kε, uJ )
1/2), obtaining thus

‖uJ − uε‖2 = O(capVm, �(Kε, uJ )
1/2) as ε → 0, (3.10)

and postpone the proof of such claim to the end of the proof. Then we have

capVm, �(Kε, uJ ) =
∫

�

|∇mWε|2 =
∫

�

∇m(uJ − ψε)∇mWε =
∫

�

∇muJ∇mWε

= λJ

∫
�

uJWε = λJ

∫
�

uεWε + λJ

∫
�

(uJ − uε)Wε

(3.9)=
∫

�

∇mψε∇muε − λJ

∫
�

uεψε + λJ

∫
�

(uJ − uε)Wε

= (λε − λJ )

∫
�

uεψε + λJ

∫
�

(uJ − uε)Wε,

and therefore

(λε − λJ )

∫
�

uεψε = capVm, �(Kε, uJ ) − λJ

∫
�

(uJ − uε)Wε. (3.11)

Since now ∫
�

uεψε = ‖uε‖22 +
∫

�

uε (ψε − uε) = 1 +
∫

�

uε (ψε − uε)

and ∣∣∣∣
∫

�

uε (ψε − uε)

∣∣∣∣ ≤ ‖uε‖2‖ψε − uε‖2 = O(capVm, �(Kε, uJ )
1/2),

where the last equality is again due to the claims above, from (3.11) and (3.10), we infer

λε − λJ = capVm, �(Kε, uJ ) + O(capVm, �(Kε, uJ ))

1 + O(1)
= capVm, �(Kε, uJ ) (1 + O(1))
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as ε → 0, as desired. To conclude, we prove the claims above. Sinceλε is a simple eigenvalue,
denoting by Tε the restriction of (−�)mε on ker�ε , we have that σ(Tε) = σ((−�)mε ) \ {λε}
and, by simplicity, dist(λε, σ (Tε)) ≥ δ for some δ > 0, uniformly with respect to ε. Hence,

‖ψε − �εψε‖2 ≤ 1

δ
‖(Tε − λε) (ψε − �εψε)‖2 � ‖ (

(−�)m − λε

)
ψε‖2

≤ ‖ (
(−�)m − λJ

)
ψε‖2 + |λJ − λε|‖ψε‖2 = |λJ |‖Wε‖2 + |λJ − λε|‖ψε‖2

= O(capVm,�(Kε, uJ )
1/2).

Since, by definition of ψε and Lemma 3.3, ‖ψε‖2 = 1 + O(capVm, �(Kε,uJ )
1/2) as ε → 0,

one thus finds that ‖�εψε‖2 = 1 + O(capVm, �(Kε, uJ )
1/2), which in particular yields the

desired estimate 1 − ‖�εψε‖−1
2 = O(capVm, �(Kε, uJ )

1/2). This concludes the proof. ��
Remark 6 We observe that, in the proof of Theorem 1.2, the following estimate for the
normalized eigenfunction uε ∈ Vm

0 (�\Kε) of (−�)m relative toλJ (�\Kε)was established:

‖uε − uJ‖2 = O(capVm, �(Kε, uJ )
1/2) as ε → 0.

4 Sharp asymptotic expansions of perturbed eigenvalues: the case of
uniformly shrinking holes.

4.1 A blow-up analysis

In Theorem 1.2 we obtained an asymptotic expansion of a perturbed simple eigenvalue in
terms of capVm, �(Kε, uJ ), in case the limiting removed set has zero Vm-capacity. However,
in view of possible applications, the dependence on the removed set Kε is quite implicit
using such an asymptotic parameter. Therefore, we aim to understand how this quantity
behaves with respect to the diameter of the hole, in the case of a uniformly shrinking family
of compact sets which concentrate to a point, a set with zero Vm-capacity in large dimensions
by Proposition 2.3.

First, we only suppose that {Kε}ε>0 uniformly shrinks to a point, which is assumed to be
0 in the following, in the sense that

Kε ⊂ BCε(0) (4.1)

for some constantC > 0 and ε small enough. The following is a generalization of [2, Lemma
2.2] to the higher-order setting.

Proposition 4.1 Let � ⊂ R
N be a smooth bounded domain such that 0 ∈ � and let {Kε}ε>0

be a family of compact sets satisfying (4.1). Let h ∈ Hm(�) be such that

|Dkh(x)| = O(|x |γ−k) as |x | → 0

for some γ ∈ N and all k ∈ {0, . . . ,m}. Then
capVm,�(Kε, h) = O(εN−2m+2γ ) as ε → 0. (4.2)

Proof By Proposition 2.2(iii), it is sufficient to prove (4.2) for the Dirichlet case Vm(�) =
Hm
0 (�). Let ϕ ∈ C∞

0 (RN ) with suppϕ ⊂ B2(0) and ϕ ≡ 1 in a neighbourhood of B1(0),
and define ϕε(x) := ϕ((Cε)−1x) for all ε > 0 small. Then hε := ϕεh coincides with h in a
neighbourhood of BCε(0). By monotonicity
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capm, �(Kε, h) ≤ capm, �(BCε(0), h) ≤
∫

�

|∇mhε|2

�
m∑

k=0

∫
B2Cε(0)

|Dm−kϕε(x)|2|Dkh(x)|2 dx

�
m∑

k=0

(Cε)2k−2m
∫
B2Cε(0)

∣∣∣Dm−kϕ
( x

Cε

)∣∣∣2 |Dkh(x)|2 dx

�
m∑

k=0

(Cε)2k−2m+N
∫
B2(0)

|Dm−kϕ(y)|2|Dkh(Cεy)|2 dy

� εN−2m+2γ
m∑

k=0

∫
B2(0)

|Dm−kϕ(y)|2 dy � εN−2m+2γ ,

having used the assumption that ‖Dkh‖∞ � εγ−k in B2Cε(0). ��
Next, having in mind the model case Kε := εK for a fixed compactum K, we consider

families of compact sets which uniformly shrink to {0} as in (4.1) but enjoying amore specific
structure. To this aim we assume

(M1) there exists M ⊂ R
N compact such that ε−1Kε ⊆ M for all ε ∈ (0, 1) ;

(M2) there existsK ⊂ R
N compact such that RN \ ε−1Kε → R

N \K in the sense of Mosco
as ε → 0.

In our context (M2) means the following:

(i) if uε ∈ Dm,2
0 (RN \ ε−1Kε) is so that uε⇀u in Dm,2

0 (RN ) as ε → 0, then we have

that u ∈ Dm,2
0 (RN \ K);

(ii) if u ∈ Dm,2
0 (RN \ K), then there exists a family of functions {uε}ε>0 such that

uε ∈ Dm,2
0 (RN\ε−1Kε) for all ε > 0 and uε → u in Dm,2

0 (RN ) as ε → 0.

In this case we also say that Dm,2
0 (RN \ ε−1Kε) converges to Dm,2

0 (RN \K) in the sense of
Mosco.

Remark 7 Assumption (M1) is actually equivalent to the condition (4.1), since M ⊂ BC (0)
for some C > 0.

Lemma 4.2 Let N > 2m. Under the assumption (M1) the following are equivalent:

1. Dm,2
0 (RN \ ε−1Kε) converges to Dm,2

0 (RN \ K) in the sense of Mosco;
2. Hm

0 (BR(0)\ε−1Kε) converges to Hm
0 (BR(0)\K) in the sense ofMosco for all R > r(M),

where r(M) := inf{ρ > 0 | Bρ(0) ⊃ M}.
Wedenote by (MR2.i) and (MR2.ii) the correspondent conditions (M2.i) and (M2.ii)which

enter in the definition of the Mosco convergence relative to the space Hm
0 (BR(0)). In the

following we use the shorter notation BR := BR(0).

Proof 1) ⇒ 2). Verification of (MR2.i). Let {uε}ε>0 ⊂ Hm
0 (BR) be a family of functions

such that uε ∈ Hm
0 (BR\ε−1Kε) and uε⇀u in Hm

0 (BR). We show that u ∈ Hm
0 (BR \ K).

Denoting by uE
ε and uE the trivial extension of uε and u outside BR respectively, then

uE
ε ∈ Dm,2

0 (RN \ ε−1Kε) and uE
ε ⇀uE in Dm,2

0 (RN ). Hence condition (M2.i) guarantees

that uE ∈ Dm,2
0 (RN\K), which by construction implies that u ∈ Hm

0 (BR \ K).
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Verification of (MR2.ii). Let v ∈ C∞
0 (BR\K) and �1,�2 ⊂ � be two open sets such

that supp v ⊂⊂ �1 ⊂⊂ �2 ⊂⊂ BR . Take η ∈ C∞
0 (�2) with η ≡ 1 on �1. Since

vE ∈ Dm,2
0 (RN \ K), then by (M2.ii) there exists a family {vε}ε>0 ⊂ Dm,2

0 (RN ) with

vε ∈ Dm,2
0 (RN \ ε−1Kε) for all ε > 0 such that vε → vE in Dm,2

0 (RN ), i.e.

‖∇m(vε − vE )‖L2(RN ) → 0 as ε → 0.

By construction, ηvε ∈ Hm
0 (BR\ε−1Kε). We claim that ηvε → v in Hm

0 (BR). Indeed,

denoting by q j := 2∗
m, j = 2N

N−2(m− j) ≥ 2 and p j := 2
( q j
2

)′ = N
m− j for j ∈ {0, . . . ,m},

one has

‖∇m(ηvε − v)‖L2(BR) = ‖∇m(η(vε − v))‖L2(BR) ≤
m∑
j=0

‖Dm− jη D j (vε − v)‖L2(BR)

≤
m∑
j=0

‖Dm− jη‖L p j (supp η)‖D j (vε − vE )‖Lq j (RN )

≤
m∑
j=0

|supp η|
1
p j ‖Dm− jη‖∞‖Dm(vε − vE )‖L2(RN )

≤ C(m, N , R)‖η‖Wm,∞(RN )‖∇m(vε − vE )‖L2(RN ) → 0.

(4.3)

The last steps are due to the critical Sobolev embedding on R
N (for which it is fundamental

that N > 2m), see (2.3), and to the equivalence of the norms ‖Dm · ‖2 and ‖∇m · ‖2, see e.g.
[17, Chp. 2.2].

The above argument and the density ofC∞
0 (BR \K) in Hm

0 (BR \K) imply that, fixing any
v ∈ Hm

0 (BR\K), for every δ > 0 there exists a family {vδ,ε}ε>0 such that vδ,ε ∈ Hm
0 (BR\Kε)

and ‖vδ,ε − v‖Hm (BR) < δ for all ε ∈ (0, ε̄δ] for some ε̄δ > 0. Therefore there exists a
vanishing sequence (εn)n ↘ 0 such that

∥∥v 1
k ,ε − v

∥∥
Hm (BR)

< 1
k for all ε ∈ (0, εk]. Defining

vε = v 1
n ,ε for ε ∈ (εn+1, εn], we have that, for all ε ∈ (0, ε1], vε ∈ Hm

0 (BR\Kε) and vε → v

in Hm
0 (BR) as ε → 0.

2) ⇒ 1). Verification of (M2.i). Let {uε}ε>0 ⊂ Dm,2
0 (RN ) be a family of functions such

that uε ∈ Dm,2
0 (RN\ε−1Kε) and uε⇀u in Dm,2

0 (RN ). Taking η ∈ C∞(RN ) and R > 0 such

that supp η ⊂ BR(0), due to the continuity of the map Dm,2
0 (RN ) → Hm

0 (BR), u �→ ηu,
which can be easily proved arguing as in (4.3), one has that ηuε⇀ηu in Hm

0 (BR). Hence,

(MR2.i) implies ηu ∈ Hm
0 (BR \K). Hence ηu ∈ Dm,2

0 (RN\K) for every η ∈ C∞
0 (RN ). Let

us now take η1 ∈ C∞
0 (RN ) with 0 ≤ η1 ≤ 1, η1 ≡ 1 on B 1

2
and supp η1 ⊂ B1, and define

ηk := η1
( ·
k

)
, so that supp ηk ⊂ Bk . We are going to prove that ηku → u in Dm,2

0 (RN ) as

k → +∞, in order to conclude that u ∈ Dm,2
0 (RN \ K). We estimate as follows:
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‖∇m(ηku − u)‖2L2(RN )
≤

∫
RN

|ηk − 1|2|∇mu|2 +
m−1∑
j=0

∫
Bk\B k

2

|Dm− jηk |2|D ju|2

≤
∫
RN \B k

2

|∇mu|2 +
m−1∑
j=0

‖Dm− jηk‖2L p j (RN )
‖D ju‖2

Lq j (RN \B k
2
)

=
∫
RN \B k

2

|∇mu|2 +
m−1∑
j=0

‖Dm− jη1‖2L p j (RN )
‖D ju‖2

Lq j (RN \B k
2
)
,

(4.4)

where we have used the fact that supp (Dm− jηk) ⊂ Bk\Bk
2
if j ≤ m − 1 and

‖Dm− jηk‖2L p j (RN )
= k−2(m− j)

(∫
RN

|Dm− jη1(x/k)|
N

m− j dx

)2(m− j)
N

=
(∫

RN
|Dm− jη1(y)|

N
m− j dy

)2(m− j)
N

.

Since u ∈ Dm,2
0 (RN ), the first term at the right-hand side of (4.4) tends to 0 as k → +∞;

moreover, the critical Sobolev embedding (2.3) implies that D ju ∈ Lq j (RN ) for all 0 ≤
j ≤ m, so that also the second term goes to 0. We conclude that ηku → u in Dm,2

0 (RN ) as

k → +∞, which yields u ∈ Dm,2
0 (RN\K).

Verification of (M2.ii). Let u ∈ Dm,2
0 (RN\K). Let δ > 0.By density, there exists a function

v ∈ C∞
0 (RN \K) such that ‖∇m(u−v)‖L2(RN ) < δ

2 . Take R > 0 so that supp v ⊂ BR . Then
v ∈ Hm

0 (BR \ K) and by (MR2.ii) there exist ε̄δ > 0 and a family of functions {ϕδ
ε }ε∈(0,ε̄δ)

such that ϕδ
ε ∈ Hm

0 (BR \ ε−1Kε) and ‖∇m(v − ϕδ
ε )‖L2(BR) < δ

2 for all ε ∈ (0, ε̄δ). Hence,

for all ε ∈ (0, ε̄δ), (ϕδ
ε )

E ∈ Dm,2
0 (RN \ ε−1Kε) and ‖∇m(u − (ϕδ

ε )
E )‖L2(RN ) < δ.

As a consequence, there exists a strictly decreasing and vanishing sequence {εn}n such
that, for every n ∈ N\{0}, there exists a family of functions {unε }ε∈(0,εn) such that

unε ∈ Dm,2
0 (RN \ ε−1Kε) and ‖∇m(u − unε )‖L2(RN ) <

1

n

for all ε ∈ (0, εn). For every ε ∈ (0, ε1), we define uε := unε if εn+1 ≤ ε < εn . It
is easy to verify that, by construction, uε ∈ Dm,2

0 (RN\ε−1Kε) for all ε ∈ (0, ε1) and
‖∇m(u − uε)‖L2(RN ) → 0 as ε → 0. (M2.ii) is thereby verified. ��

Before stating the main results of the section, we prepose a lemma about the stability of
the (h, Vm)-capacitary potential with respect to the function h.

Lemma 4.3 Let K ⊂ � ⊂ R
N , K compact, {hn}n∈N ⊂ Hm

loc(�) and h ∈ Hm
loc(�). Let us

suppose that, for some U(K ) ⊂ � open neighbourhood of K , hn → h in Hm(U(K )) as
n → ∞anddenote byWK ,hn (resp.WK ,h) the capacitary potential for capVm,�(K , hn) (resp.
capVm, �(K , h)). Then WK ,hn → WK ,h in Vm(�) and capVm, �(K , hn) → capVm,�(K , h).

Proof Being capacitary potentials, the functions WK ,hn and WK ,h satisfy∫
�

∇mWK ,h∇mϕ = 0 and
∫

�

∇mWK ,hn∇mϕ = 0 for all n ∈ N and ϕ ∈ Vm
0 (� \ K ).
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Let ηK ∈ C∞(RN ) be a cutoff function such that 0 ≤ ηK ≤ 1, supp ηK ⊂ U(K ) and ηK ≡ 1
in a neighbourhood of K . Hence, by construction, one has that

WK ,hn − ηK hn ∈ Vm
0 (� \ K ) and WK ,h − ηK h ∈ Vm

0 (� \ K ).

Therefore

‖∇m(WK ,hn − WK ,h)‖22
=

∫
�

(∇mWK ,hn − ∇mWK ,h
) (∇mWK ,hn − ∇mWK ,h

)
=

∫
�

∇mWK ,hn∇m (
WK ,hn − ηK hn

) +
∫

�

∇mWK ,hn∇m (ηK hn − ηK h)

+
∫

�

∇mWK ,hn∇m (
ηK h − WK ,h

) −
∫

�

∇mWK ,h∇m (
WK ,hn − ηK hn

)
−

∫
�

∇mWK ,h∇m (ηK hn − ηK h) −
∫

�

∇mWK ,h∇m (
ηK h − WK ,h

)
=

∫
�

∇m (
WK ,hn − WK ,h

) ∇m (ηK hn − ηK h)

≤ ‖∇mWK ,hn − ∇mWK ,h‖2‖∇m (ηK (hn − h)) ‖2.
This yields

‖∇mWK ,hn − ∇mWK ,h‖2 ≤ ‖∇m (ηK (hn − h)) ‖2 � ‖hn − h‖Hm (U(K )) → 0,

i.e. WK ,hn → WK ,h in Vm(�), directly implying that capVm, �(K , hn) → capVm, �(K , h)

as n → ∞. ��
Remark 8 In case � = R

N the same result holds with WK ,hn → WK ,h in Dm,2
0 (RN ).

We are now in a position to prove the main results of this section, namely a generalized
version of Theorems 1.3–1.6, which take into account families of domains which satisfy
(M1)–(M2), rather than just the model case Kε = εK.

Motivated by the asymptotic scaling properties of the eigenfunctions (1.15), we apply a
blow-up argument to a rescaled problem, in order to find a limit equation on R

N \ K and to
prove the convergence of the family of scaled capacitary potentials to the one for the limiting
problem. The capacity capVm, �(Kε, uJ ) will behave then as the limit capacity on R

N \ K
multiplied by a suitable power of ε given by the scaling. In this argument, we work with
the homogeneous Sobolev spaces and, in particular, for the Navier case the characterization
via Hardy–Rellich inequalities of Sect. 2.2.2 will be needed. This is the main reason for the
restriction to the fourth-order case in the Navier setting, since, up to our knowledge, the
extension of Proposition 2.5 to the full generality m ≥ 2 is an open problem.

Theorem 4.4 (Asymptotic expansion of the capacity, Dirichlet case) Let N > 2m and � ⊂
R

N be a bounded smooth domain with 0 ∈ �. Let {Kε}ε>0 be a family of compact sets
uniformly concentrating to {0} satisfying (M1)–(M2) for some compact set K. Let λJ be an
eigenvalue of (1.1)with Dirichlet boundary conditions and uJ ∈ Hm

0 (�) be a corresponding
eigenfunction normalized in L2(�). Then

capm, �(Kε, uJ ) = εN−2m+2γ (
capm,RN (K,U0) + O(1)

)
(4.5)

as ε → 0, with γ and U0 as in (1.15).
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Theorem 4.5 (Asymptotic expansion of the capacity, Navier case) Let N > 4 and � ⊂ R
N

be a bounded smooth domain with 0 ∈ �. Let {Kε}ε>0 be a family of compact sets uniformly
concentrating to {0} satisfying (M1)–(M2) for some compact set K. Let λJ be an eigenvalue
of (1.1) with m = 2 and Navier boundary conditions and uJ ∈ H2

ϑ(�) be a corresponding
eigenfunction normalized in L2(�). Then

cap2,ϑ,�(Kε, uJ ) = εN−4+2γ (
cap2,RN (K,U0) + O(1)

)
(4.6)

as ε → 0, with γ and U0 as in (1.15) with m = 2.

As a direct consequence, braiding together Theorem 1.2 and Theorems 4.4–4.5 respec-
tively, and recalling that for N ≥ 2m the point has null Vm-capacity by Proposition 2.3, we
obtain Theorems 4.6 and 4.7 below.

Theorem 4.6 (Asymptotic expansion of perturbed eigenvalues, Dirichlet case) Let N > 2m
and� ⊂ R

N be a bounded smooth domain containing 0. Let {Kε}ε>0 be a family of compact
sets uniformly concentrating to {0} satisfying (M1)–(M2) for some compact set K. Let λJ be
a simple eigenvalue of (1.1) with Dirichlet boundary conditions and let u J ∈ Hm

0 (�) be a
corresponding eigenfunction normalized in L2(�). Then

λJ (� \ Kε) = λJ (�) + εN−2m+2γ (
capm,RN (K,U0) + O(1)

)
(4.7)

as ε → 0, with γ and U0 as in (1.15).

Theorem 4.7 (Asymptotic expansion of perturbed eigenvalues, Navier case) Let N > 4 and
� ⊂R

N be a bounded smooth domain containing 0. Let {Kε}ε>0 be a family of compact sets
uniformly concentrating to {0} satisfying (M1)–(M2) for some compact set K. Let λJ be a
simple eigenvalue of (1.1) with m = 2 and Navier boundary conditions and let u J ∈ H2

ϑ(�)

be a corresponding eigenfunction normalized in L2(�). Then

λJ (� \ Kε) = λJ (�) + εN−4+2γ (
cap2,RN (K,U0) + O(1)

)
(4.8)

as ε → 0, with γ and U0 as in (1.15) with m = 2.

The proofs of Theorems 4.4 and 4.5 follow a similar structure. We proceed hence to prove
them at once using the introduced unifying notation, detailing the differences when needed.

Proof of Theorems 4.4–4.5 Motivated by (1.15), we define the analogously scaled potentials

W̃ε := Wε(ε·)
εγ

, where Wε := WKε,uJ .

It is easy to verify that W̃ε is the capacitary potential for Uε in ε−1� \ ε−1Kε, i.e.⎧⎪⎨
⎪⎩

(−�)mW̃ε = 0 in ε−1� \ ε−1Kε,

W̃ε ∈ Vm(ε−1�),

W̃ε −Uε ∈ Vm
0 (ε−1� \ ε−1Kε),

(4.9)

wherem = 2 in the Navier case. The first goal now is to prove that the so-rescaled capacitary
potentials weakly converge to some function W̃ and prove that W̃ is a capacitary potential in
R

N \K. To this aim, we need to distinguish between Dirichlet and Navier conditions on ∂�.
Indeed, by extension by zero outside the rescaled domains, in the first case it is rather natural
to prove that the limit functional space is Dm,2

0 (RN \K); that the same holds true in the Navier
case is not evident and requires a finer analysis. A fundamental role in this second case is
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played by the Hardy–Rellich inequality discussed in Sect. 2.2.2, which is however available
just for m = 2. The two cases will converge then in the final step where the asymptotic
expansions (4.5)–(4.6) are proved.

Step 1 (Dirichlet case Vm = Hm
0 ). By (M1) there exists R > 0 such that, for ε small

enough, ε−1Kε ⊂ M ⊂ BR(0) ⊂ ε−1�, and hence, in view of Proposition 2.2,

capm,ε−1�(ε−1Kε,Uε) ≤ capm,BR(0)(M,Uε).

Since Uε → U0 in Hm(BR(0)) by (1.15), applying Lemma 4.3 in BR(0), we infer that

capm,BR(0)(M,Uε) → capm,BR(0)(M,U0) as ε → 0.

This yields in particular that ‖∇mW̃ε‖2L2(ε−1�)
= capm,ε−1�(ε−1Kε,Uε) is bounded uni-

formly with respect to ε. Letting W̃ E
ε be the extension by 0 of W̃ε outside ε−1�, we have

thus that ‖W̃ E
ε ‖Dm,2

0 (RN )
≤ C . Since Dm,2

0 (RN ) is a Hilbert space, and so reflexive, for every

sequence εn → 0+ there exist a subsequence εnk and W̃ ∈ Dm,2
0 (RN ) such that

W̃ E
εnk

⇀W̃ weakly in Dm,2
0 (RN ) as k → ∞. (4.10)

We claim now that ‖∇mW̃‖22 = capm,RN (K,U0).
Let ϕ ∈ C∞

0 (RN\K) and R > r(M) be such that suppϕ ⊂ BR , then by (MR2-ii) of
Lemma 4.2, one may find a family {ϕε}ε>0 ⊂ Hm

0 (BR) such that ϕε ∈ Hm
0 (BR \ε−1Kε) and

ϕε → ϕ in Hm
0 (BR) as ε → 0. In particular, for ε small enough, one has that BR ⊂ ε−1�,

so ϕε may be taken as test function for the capacitary potential W̃ε . Hence,

0 =
∫

ε−1
nk �\ε−1

nk Kεnk

∇mW̃εnk
∇mϕεnk

=
∫
RN \ε−1

nk Kεnk

∇mW̃ E
εnk

∇mϕεnk
→

∫
RN \K

∇mW̃ ∇mϕ as k → ∞

byweak-strong convergence in Dm,2
0 (RN ).We are left to show that W̃−ηU0 ∈ Dm,2

0 (RN \K),
for some cutoff function η which is equal to 1 in a neighbourhood ofK. Let η ∈ C∞

0 (RN ) be
equal to 1 on an open set U withK∪M ⊂ U ; hence η is also equal to 1 on neighbourhoods of
each ε−1Kε by (M1). Then W̃ E

ε − ηUε ∈ Dm,2
0 (RN\ε−1Kε) and W̃ E

εnk
− ηUεnk

⇀W̃ − ηU0

in Dm,2
0 (RN ) as k → ∞, and so by (M2-i) one infers that W̃ − ηU0 ∈ Dm,2

0 (RN \ K). All
in all, we deduce that W̃ is the capacitary potential relative to capm,RN (K,U0), i.e.

‖∇mW̃‖2L2(RN )
= capm,RN (K,U0). (4.11)

Since the limit W̃ in (4.10) depends neither on the sequence {εn} nor on the subsequence
{εnk }, we conclude that

W̃ E
ε ⇀W̃ weakly in Dm,2

0 (RN ) as ε → 0. (4.12)

Step 1 (Navier case V 2 = H2
ϑ ).We recall that here we are assumingm = 2. The boundedness

of ‖�W̃ε‖L2(ε−1�) with a constant independent of ε follows from the Dirichlet case, by
recalling Proposition 2.2(iii). However, unlike the former case, one cannot now extend W̃ε to
0 outside ε−1� and still obtain a function in D2,2

0 (RN ). To overcome this problem we rely
on the Hardy–Rellich inequality proved in Theorem 2.4. In fact, we have∫

ε−1�

|W̃ε|2
|x |4 dx +

∫
ε−1�

|∇W̃ε|2
|x |2 dx �

∫
ε−1�

|�W̃ε|2 ≤ C
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and therefore, by a diagonal process of extracted subsequences, for every sequence εn → 0+
there exist a subsequence εn j and W̃ ∈ H2

loc(R
N ) for which

∇2−k W̃εn j

|x |k ⇀
∇2−k W̃

|x |k in L2(BR) (4.13)

as j → ∞ for any R > 0 and k ∈ {0, 1, 2}. By weak lower semicontinuity of the norm, we
infer that ∫

BR

|∇2−k W̃ |2
|x |2k dx ≤ lim inf

j→∞

∫
BR

|∇2−k W̃εn j
|2

|x |2k dx ≤ C,

so that, letting R → +∞,∫
RN

|∇2−k W̃ |2
|x |2k dx ≤ C for all k ∈ {0, 1, 2}.

By Proposition 2.5, this is equivalent to W̃ ∈ D2,2
0 (RN ).

It remains to prove that W̃ is the capacitary potential relative to cap2,RN (K,U0). Let η

be as in the former case. Let ϕ ∈ C∞
0 (B1) be such that ϕ ≡ 1 in B1/2(0) and consider the

scaled functions ϕR := ϕ
( ·
R

)
with R > r(M). Then ϕR

(
W̃εn j

− ηUεn j

)
⇀ϕR

(
W̃ − ηU0

)
weakly in H2

0 (BR) and ϕR(W̃ε − ηUε

) ∈ H2
0 (BR\ε−1Kε). By (MR2-i) we know then that

ϕR
(
W̃ − ηU0

) ∈ H2
0 (BR\K). Now we claim that ϕR

(
W̃ − ηU0

) → W̃ − ηU0 as R → +∞
in D2,2

0 (RN ), thus concluding that W̃ − ηU0 ∈ D2,2
0 (RN\K). Indeed,

‖�(
(ϕR − 1)

(
W̃ − ηU0

))‖22 � ‖�ϕR
(
W̃ − ηU0

)‖22 + ‖∇ϕR∇(
W̃ − ηU0

)‖22
+ ‖ (ϕR − 1)�

(
W̃ − ηU0

)‖22,
where

‖ (ϕR − 1) �
(
W̃ − ηU0

)‖22 ≤
∫
RN \BR/2

|�(
W̃ − ηU0

)|2 → 0

as R → +∞, and, for any k ∈ {1, 2},

‖∇kϕR∇2−k(W̃ − ηU0
)‖22 =

∫
R
2 <|x |<R

1

R2k

∣∣∣(∇kϕ
) ( x

R

)∣∣∣2 |∇2−k(W̃ − ηU0
)|2 dx

�
∫
RN \BR(0)

|∇2−k
(
W̃ − ηU0

)|2
|x |2k dx → 0

as R → +∞ since W̃ − ηU0 ∈ D2,2
0 (RN ) together with Proposition 2.5.

Next, we verify that∫
RN \K

�W̃ �ϕ = 0 for all ϕ ∈ D2,2
0 (RN \ K). (4.14)

By density, it is enough to prove (4.14) for all ϕ ∈ C∞
0 (RN\K). Letting ϕ ∈ C∞

0 (RN\K),
there exist R > r(M) and ε0 > 0 such that suppϕ ⊂ BR ⊂ ε−1� for all ε < ε0,
so that ϕ ∈ H2

0 (BR\K). By (MR2-ii) there exists a family {ϕε}ε ⊂ H2
0 (BR) such that

ϕε ∈ H2
0 (BR \ ε−1Kε) and ϕε → ϕ in H2

0 (BR). Hence,

0 =
∫

ε−1
n j �

�W̃εn j
�ϕεn j

=
∫
BR

�W̃εn j
�ϕεn j

→
∫
BR

�W̃ �ϕ =
∫
RN \K

�W̃ �ϕ
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as j → ∞, by weak-strong convergence in H2
0 (BR). We have thereby proved the claim that

W̃ is the capacitary potential relative to cap2,RN (K,U0). Since the limit W̃ in (4.13) depends
neither on the sequence {εn} nor on the subsequence {εnk }, we conclude that the convergences
in (4.13) actually hold as ε → 0, i.e.

∇2−k W̃ε

|x |k ⇀
∇2−k W̃

|x |k in L2(BR) as ε → 0 for all R > 0 and k ∈ {0, 1, 2}.
(4.15)

Step 2. (m = 2 in the Navier case, m ≥ 2 in the Dirichlet case). We aim now to prove the
asymptotic expansions (4.5)–(4.6). As above, let η ∈ C∞

0 (RN ) be equal to 1 on an open set U
withK∪M ⊂ U . Let R > 0 be such that supp η ⊂ BR . Since W̃ε−ηUε ∈ Vm

0 (ε−1�\ε−1Kε),
by (4.9) and (4.11), together with (4.12) or (4.15), we obtain that

‖∇mW̃ε‖2L2(ε−1�)
=

∫
ε−1�

∇mW̃ε ∇m (ηUε) =
∫
BR

∇mW̃ε ∇m(ηUε)

→
∫
RN

∇mW̃ ∇m(ηU0) = ‖∇mW̃‖2L2(RN )

(4.16)

as ε → 0 by weak-strong convergence. On the other hand, by rescaling one has that

‖∇mW̃ε‖2L2(ε−1�)
= 1

ε2γ

∫
ε−1�

∣∣∇m(Wε(εx))
∣∣2 dx = ε−N+2m−2γ

∫
�

|∇mWε(y)|2 dy
= ε−N+2m−2γ capVm, �(Kε, uJ ).

(4.17)

Hence, from (4.11) and (4.16)–(4.17) we finally infer that

capVm,�(Kε, uJ ) = εN−2m+2γ ‖∇mW̃ε‖2L2(ε−1�)
= εN−2m+2γ (

capm,RN (K,U0) + O(1)
)

as ε → 0. ��

4.2 Sufficient conditions for a sharp asymptotic expansion

Looking at the asymptotic expansions we have found in Theorems 4.6–4.7, one may ask
whether the results are sharp, in the sense that the vanishing rate of the eigenvalue variation
λJ (�\ Kε)− λJ (�) is equal to N −2m+2γ . The next results provide sufficient conditions
on K and U0 in order to ensure that capm,RN (K,U0) �= 0.

Proposition 4.8 Under the assumptions of Theorems 4.6 or 4.7, suppose that the Lebesgue
measure of K is positive. Then

lim
ε→0

λJ (� \ Kε) − λJ (�)

εN−2m+2γ = capm,RN (K,U0) > 0.

Proof Denote by W (0)
K the capacitary potential for capm,RN (K,U0) and suppose by con-

tradiction that capm,RN (K,U0) = 0. Then, by the Hardy inequality for the polyharmonic
operator (see [12, Theorem 12]), there exists a constant c = c(N ,m) such that

0 = ‖∇mW (0)
K ‖2L2(RN )

≥ c
∫
RN

|W (0)
K |2

|x |2m dx ≥ c
∫
K

|W (0)
K |2

|x |2m dx = c
∫
K

|U0|2
|x |2m dx
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since W (0)
K ≡ U0 on K. Since |K| > 0, this readily implies that U0 vanishes a.e. on K.

However, by construction, U0 is a polyharmonic polynomial on R
N which is not identically

zero (see [6, Sec.4 Theorem 1]), so it cannot vanish on a set of positive measure (since
nontrivial analytic functions cannot vanish on positive measure sets). This, together with
Theorems 4.6 and 4.7, concludes the proof. ��

The next results apply to some specific situations in which, although K has vanishing
Lebesgue measure, one may anyway have that capm,RN (K,U0) �= 0.

Proposition 4.9 Let N > 2m and K ⊂ R
N be a compactum with capm,RN (K) > 0. Suppose

moreover that u J (0) �= 0. Then, in the setting of Theorems 4.6 or 4.7, we have that

λJ (� \ Kε) = λJ (�) + εN−2mu2J (0)capm,RN (K) + O(εN−2m) (4.18)

as ε → 0.

We mention that an expansion of type (4.18) was obtained in [10, Theorem 1.4] and [2,
Theorem 1.7] in the case N = 2m = 2, in which the vanishing rate of the eigenvalue variation
is logarithmic.

Proof of Proposition 4.9 Since {Kε}ε>0 is concentrating at {0} and uJ (0) �= 0, then the degree
γ of the polynomial U0 is 0, and U0 = uJ (0). It is then easy to see that

capm,RN (K, uJ (0)) = u2J (0)capm,RN (K) > 0,

so that (4.7) and (4.8) can be rewritten as in (4.18). ��
In the case uJ (0) = 0, the next result, inspired by [13, Lemma 3.11], may be useful. It

tells that, if the compactumK and the null-set of the polynomialU0 are “transversal enough”,
then again capm,RN (K,U0) > 0.

Proposition 4.10 Let N > 2m and K ⊂ R
N be a compactum with capm,RN (K) > 0. Letting

f ∈C∞(RN ), let us consider the set

ZK
f := {x ∈ K | f (x) = 0}.

If capm,RN (ZK
f ) < capm,RN (K), then capm,RN (K, f ) > 0.

Proof Let {Un} be a sequence of nested open sets in R
N so that ZK

f ⊂ Un for all n ∈ N and

ZK
f = ⋂

n∈N Un and letKn := K\Un , which is a sequence of compact sets. By subadditivity
and monotonicity of the capacity (see e.g. [24]) one has that

capm,RN (K) ≤ capm,RN (Kn) + capm,RN (Un).

Moreover, fixing 0 < δ < capm,RN (K) − capm,RN (ZK
f ), one may find a neighbourhood

U(ZK
f ) such that one has Un ⊂ U(ZK

f ) by construction and capm,Rn (Un) ≤ capm,Rn (ZK
f )+δ

by Lemma 2.6, provided n is large enough. This implies

capm,RN (Kn) ≥ capm,RN (K) − capm,RN (ZK
f ) − δ > 0 (4.19)

for n large enough. We defineK+
n := {x ∈ Kn : f (x) > 0} andK−

n := {x ∈ Kn : f (x) < 0}
for all n ∈ N. Noticing that Kn is the union of K+

n and K−
n , we necessarily have that either

capm,RN (K+
n ) > 0 or capm,RN (K−

n ) > 0; let us e.g. consider the case capm,RN (K+
n ) > 0. By

regularity of f and sinceK+
n is compact, then c+

n := infK+
n
f is attained and strictly positive.
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Take now any un ∈ Dm,2
0 (RN ) so that un − ηK+

n
f ∈ Dm,2

0 (RN\K+
n ) and define vn := un

c+
n
.

Then it is clear that vn ∈ Dm,2
0 (RN ) and vn ≥ 1 a.e. on K+

n . Hence,

Cap≥
m,RN (K+

n ) ≤
∫
RN

|∇mvn |2 = 1(
c+
n
)2

∫
RN

|∇mun |2.

Byarbitrariness ofun this yields
(
c+
n

)2 Cap≥
m,RN (K+

n ) ≤ capm,RN (K+
n , f ) ≤ capm,RN (K, f ),

since K+
n ⊂ K for all n ∈ N. Using now the equivalence of the capacities in R

N stated in
Lemma 2.7, one infers that

capm,RN (K, f ) ≥ c
(
c+
n

)2
capm,RN (K+

n ) > 0

by (4.19). This concludes the proof. ��
Remark 9 In view of Remark 4 it is immediate to see that, if capm,RN (K) > 0 and ZK

U0
has

dimension d ≤ N −2m, then the assumptions of Proposition 4.10 are fulfilled, thus ensuring
that capm,RN (K,U0) > 0.

5 Open problems

We finally discuss possible generalizations and questions which are left open by our analysis
and which we believe of interest.
Higher-order Navier setting. The results in Sect. 3 for the Navier setting are obtained in the
general case m ≥ 2. On the other hand, Theorem 4.5 and its consequent Theorem 4.7 are
established only for m = 2. The main difficulty in their extension to higher orders relies
in the characterization of homogeneous Sobolev spaces via Hardy–Rellich inequalities. In
our argument this was necessary to compensate for the lack of a trivial extension, which is
instead available in the Dirichlet setting. Although we envision that a generalization of the
Hardy–Rellich inequality of Proposition 2.4 is reachable, the extension of the characterization
contained in Proposition 2.5 seems to be a non trivial problem. Indeed, for m = 2 the
only intermediate derivative is the gradient and ∇u = Du; on the other hand for m ≥ 3
the Hardy–Rellich inequality would provide a weighted estimate on the derivatives ∇ku,
k ∈ {1, . . . ,m − 1}, while one would need to estimate the full tensor of the derivatives Dku
to be able to conclude that u ∈ Dm,2

0 (RN ).
Small dimensions.Most of our results deal with the high dimensional case N ≥ 2m, because
the concentration of the family of sets {Kε}ε>0 to a zero Vm-capacity compact set was
needed. Recall that for N < 2m all compact sets are of positive capacity, see Proposition 2.3.
Nevertheless, in order to prove that the asymptotic expansions given byTheorem1.2 are sharp,
in Theorems 1.3 and 1.4 we have to restrict to N > 2m. It seems that the conformal case
N = 2m cannot be treated by blow-up analysis, not only due to the different characterization
of the spaces Dm,2

0 (RN ) and the use of Hardy–Rellich inequalities, but also because the m-
capacity capm,R2m (K ) of any compact set K in R

2m is null (see [23]). A different approach
for conformal (and smaller!) dimensions should be in fact developed and we expect that the
expansion involves the logarithm of the diameter of the shrinking sets, in analogy with the
results in [2] for the case m = 1. We remark in particular that, when our results are applied
to the biharmonic operator, i.e. m = 2, we cover the case N ≥ 5, while the two-dimensional
case, from a completely different point of view, is studied in [8, 21, 22]. The case N = 3 is
left open and N = 4 only partially answered by Theorem 1.2.

123



Perturbed eigenvalues of polyharmonic operators in domains… Page 35 of 36   128 

Equivalent definitions of capacities. As described in Sect. 2, both capm,RN in (2.6) and
Cap≥

m,RN in (2.8) are good definitions of capacity, and they are also equivalent for N > 2m,
see Lemma 2.7. In the second order case, it is not difficult to prove that the two coincide,
while—up to our knowledge—this is still unknown in the higher-order setting. A weaker
question would be to ask whether the two capacities are asymptotic for families of shrinking
domains, e.g. for Kε = εK as considered in Sect. 4.1. It would be also interesting to under-
stand whether the equivalence remains true for the weighted capacities capm,RN (·, h) and the
analogue Cap≥

m,RN (·, h) for some class of nonconstant functions h.
Boundary conditions.As mentioned in the introduction, it would be interesting to investigate
the complementary cases of prescribing Navier BCs on the removed set and either Navier
or Dirichlet BCs on the external boundary ∂�. Because of the lack of an extension by zero
in case of Navier BCs, which has consequences on the mutual relations between the spaces
Vm(�\ K ), a different argument would be needed. More in general, it would be challenging
to consider more general types of BCs, which yield a different quadratic form associated to
the polyharmonic operator, involving possibly also boundary integrals. An interesting case
in the biharmonic setting, related to the physical model of hinged thin plates, is for example
given by Steklov BCs u = �u − dκ∂nu = 0, where d ∈ R and κ is the signed curvature of
the boundary.
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