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Quantum Field Theory in the de Sitter Universe
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We present a study of quantum scalar fields on de Sitter (dS) space-time based on analyticity in

the complexified Riemannian manifold; a new expansion of the linear fields in terms of coordinate
independent dS plane waves and an explicit form of the propagators at real or imaginary times are given.
Our approach controls the thermal properties and the zero-curvature limit of the fields; it provides a
general setting for interacting fields, in which some steps are taken: a Kallen-Lehmann type formula for
complete propagators and a treatment of a class of self-energy diagrams and their resummation.
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In the absence of a theory for interacting quantized
gravity and matter, the study of quantum Geld theories
(QFT's) on a gravitational background has produced a
number of interesting results (for a review, see [1])which
culminate in. the celebrated Hawking prediction of black-
hole evaporation [2]. In this context linear theories on the
de Sitter (dS) space-time are probably the most studied
example. This is because the dS solution of the cosmo-
logical Einstein equations has the same degree of symme-
try as the Minkowski solution and it can be seen as a
one-parameter deformation of the latter, involving a
fundamental length R. This length may also be re-

garded as providing a (dS covariant) infrared cutoff for
Minkowskian QVI's, whose removal regenerates auto-
matically Poincare covariance. Furthermore, the inter-

pretation of dS space-time as a universe in exponential
expansion in the context of the inflationary cosmological
models [3] has lead to renewed interest in dS QFT's. For
all these reasons it would be highly desirable that one
could dispose of a global dS-Fourier type calculus for de-
scribing wave propagation, "particle states, " and second
quantization on this universe. Here we present a method
which is appropriate to this program; this method also
sheds a new light on the "preferred representations" of
dS QFT (see [4] and references therein) and on the way
they solve the problem of the absence of a true spectral
condition [5] which plagues QFT on curved space-time in

the general case. Indeed, while it is simple to formalize
the requirements of locality (microcausality) and covari-
ance (when it applies) when one tries to quantize a field
on a curved space-time, it is generally impossible to for-
mulate any condition on the spectrum of the "energy" op-
erator (even worse, it is impossible to define such a global
object). For this reason there are many inequivalent quan-
tum theories for any single field model on a curved space-
time, the quantizations being mostly linked to particular
choices of coordinates on the underlying space-time mani-

fold (which induce corresponding frequence splittings).
We will show that, by transporting some familiar no-

tions of complex Minkowski space-time to the complexi-

fied dS space-time, one can lifi all ambiguities for- d5
QFT's and obtain "vacua" which (in spite of their thermal

properties) are the exact analogs of Minkowski vacuum
representations (the latter appearing as the limit of the
former when the curvature tends to zero). In particular,
we shall keep from the Minkowskian case the idea that
the properties of analytic continuation of the theory in the
complexified space-time are directly related to the energy
content of the model considered. In the simplest case of
linear dS QFT's, these representations (known in the lit-
erature [1,6] under the name of "Euclidean vacua"), will

be here completely described at real and imaginary times;
in particular we shall compute the propagators by intro-
ducing an intrinsic (i.e., coordinate independent) plane
wave expansion of them. In the second part of this Letter
we will show how our approach suggests a general setting
for the theory of interacting fields and present a study of
the complete propagators.

The dS space-time is visualized as the hyperboloid with

equation X = &x e IR-': x'"'-' —x"'-' — —x""- =-

—R'-]. The ambient space R-' is a Minkowski space whose
scalar product
(x-' = x . x) induces the relevant pseudodistance d on

d(x,y]
X&, namely, cosh ~' = —~' . The causality properties
in X& are globally expressed by the light-cone order-

ing; let V = [x E IR. : x "' & v'x('i2 + . + x'+"-] be
the forward light cone in the ambient space; then, for
x, y in X~, .v is in the future of y provided x —

y is
a vector in V . The relativity group of the de Sitter
space-time is the Lorentz group SOo(1, 4) of the ambient
space (dS group). Since the dS group acts transitively
on Xg, one can distinguish an origin If() in Xg, we
choose x~~

= (O, O. O, O, R). The, dS-Klein-Gordon field
equation is written tt P + "„, @ = 02, where '„ I»

the O'Alembertian on X~, p is a mas» parameter, and

c is the speed of light. The definition of appropriate
dS plane waves will require the use of a special basis
of solutions of this equation [7]. In contrast with the

Minkowskian exponentials, these waves are singular on
three-dimensional lightlike manifolds and are defined at
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first sight only on (suitable) halves of XR but we shall

give below the appropriate ie prescription to obtain
global waves. Here is the relevant definition: let g be
(any) null vector in IR5 (i.e., g2 = 0); for x in XR such
that x $ ) 0 (respectively, x . $ ~ 0) consider the

function p+(x, s) =,R, s E ((: [same definition for
hx-g

(/)((x, s)], where m is a mass parameter. One checks
that R(/I+(x, s) = R, (/I+(x, s). Physical values of the

s(3+s)

parameter s are given by s = —3/2 + i v corresponding
to the constant —s(3 + s)/R2 = p,2c2/h2. The inter-

pretation of tii+(x, s) as dS plane waves is supported by

their large R behavior; in fact, parametrizing g by the
wave vector of a (Minkowskian) particle of mass m,

i.e., j = (ke, k, ——„],with ke = tik + „, , and taking
36 2

p, = m + 2,R (i.e., v = mcR/li), we get

3+ -IscR
t'hxR (x)

lim
I

= exp(ik . x);R- II, mcR )

here, the dS point xR(x) has to be parametrized by
the Minkowskian variable x —= (xIOI = ct, x) measured in
units of the dS radius R; for instance,

( o . x, 2 3 x x . IxI 4
x'I IxI&

xR(x) =—
I
x = Rsinh, x = (x ',x,x ) = R—cosh sin —,x = Rcosh cos —I.R' ' '

Ixl R R' R Rj

0'(z, s) = hz

mcR )
sE(I:, (2)

are globally defined because in this case the imaginary part
of z g does not change sign. These waves allow us to
write a new spectral representation for the propagators:

3 + —3—
W (zt, z, ) = .f (z, . d) '"(d zz) '"dlt„($) (3)

valid for z~, z2 in XR' such that z~ E 1, z2 E 2 +; the
integration is performed along any complete submanifold

y of the cone C+ (i.e., any manifold intersecting at
least once every generatrix of the cone) with respect to
a corresponding ineasure dp, ~(g). A choice of y which
has a direct physical meaning is given by the Lorentz
invariant mass shells y4 = {g C C+: $ 4 = mc} LI (g E
C+: g = —mc}, and d p, ~, is the corresponding Lorentz
invariant measure. The function W is a solution in
both variables of the (complex) dS-Klein-Gordon equation

which is analytic in the domain 1&2 = [(z(, z2) E XR X

XR . z) E 'T, Z2 H 2 +}. Furthermore, it is actually
a function of the single (dS-invariant) variable (z)—
z2) = —2R —2z& . z2. This property permits an explicit
computation, by fixing one of the two points; we obtain
that W, is proportional to a Gegenbauer function of the

A quantum field satisfying the dS-Klein-Gordon equa-
tion is determined by specifying its two-point Wightman
function l4'„(x~, x2) = (0, @(x) )P (x2)A). To expand the
latter in terms of dS plane waves, we need an extension
of those waves to the whole space-time. This problem
has its relevant solution in the complexified dS space-time

XR . There are distinguished domains of XR which are(c) (c)

the analogs of the tubes of the complex Minkowski space-

time, namely, 2 + = T+ 8 XR, 1 = T A XR . Here
T- = R5 + iV- are the forward and backward tubes in
the ambient complex Minkowski space-time (I:~; these are
the (standard) analyticity domains of quantum fields satis-

fying the positivity of the spectrum of the energy operator.
Let C+ = Q E IR: g = 0 gI I ) 0};when z E 1 + (or
2 ) and g E C+ the plane waves

first kind [8],

(4)

14'„(x(,x2)

(—-+ )=c, x~ - 2 '"Ox~ - +e' 2 '"0 —x].
EV (—-' — )Xlx2 .

&I 3 "[ii(x2 . g) + e' ' 3 '"'~(—x2 . f)]dpi'(()

We stress that Eq. (5) allows a factorization of the two-
point function in terms of (global) plane waves on XR

( )
~ 'I5I I~z&

' z2
~I

mcR
—-+iv

k R2 ) '

where c„=2mc3R I'(z)(1 + 4v )e "/(2~m. 7cosh n v

is obtained by imposing the CCR's. Equations (3) and

(4) exhibit the following properties of the two-point
function:

(1) W„(z&, z2) is maximally analytic, i.e., can be an-

alytically continued in the "cut domain" 5 = XR' X

XR tk[(zie Z2) E XR X XR '. (Zi Z2) = p ~ 0}.
(2) W„(zi, z2) satisfies in b the complex covari-

ance condition: W„(gzi, gz2) = W„(zi, z2) for all

g E SOD(1, 4)I'I, the complexified of the group SOD(1, 4).
(3) The two-point Wightman function ]4r„(xi,x2) =

(0, @(x~)(t)(x2)Q) is the boundary value of W„(zi, z2)
from 2 ~q and the "permuted Wightman function"
&„(x2,x&) is the boundary value of W„(zi, z2) from the
doinain 2qi = ((z), z2): zi E '7+, z2 6 + }.

(4) The two-point function is positive definite,
i.e., Jx„„x„Wp(xi,x2)j(xi)f(x2)dxidx2 ~ 0, for any

f E Co (Xd), dx denoting the dS-invariant measure on Xd.
(5) The restriction of W„ to the sphere SR (ZION =

iyIo~, z real) yields the Schwinger function S„(zi,z2); this
is permitted since SR x SR minus the set of coinciding
points z] = z2 is a subset of A.

Properties (1) and (2) characterize W„as being an

invariant perikernel [9] on XR with domain A. Property
(3) allows the explicit construction of the commutator and
the Green functions. Moreover, the boundary value of
Eq. (3) from 7&2 gives a new Fourier type representation
for the two-point function:

1747



VOLUME 73, NUMBER 13 PH Y S ICAL REV IE% LETTERS 26 SvPTEMBvR 1994

which is completely similar to the corresponding Fourier
representation for Minkowski fields @. The latter is
recovered as the flat limit of Eq. (5). By proceeding
as before we obtain that limR 1V-~ (xR(x), yR(y)) =
2~&' ), I e '"' "—„. = (0, , (t((x)@(y)Q). Equation (5) is
also used to prove the positivity property (4) and therefore
to construct the Fock space of (t(, generated by a "one-
particle" space which carries a unitary irreducible repre-
sentation (of the principal series) of the dS group. We
remark that the representations of the Poincare group ob-
tained as contractions of those irreducible ones of the dS
group are not irreducible [10] while representations as-
sociated to the fields (t( are. Therefore group-theoretical
contraction is not a suitable procedure to draw conse-
quences on the structure of the limiting quantum field the-

ory; in particular, no problem of negative energy arises in
the latter. Finally, property (5) makes possible the identi-
fication of our models with the "Euclidean vacua" of [6],
but here we have exhibited their full analytic structure in
real or complex space.

We now give the physical interpretation of the an-

alyticity property (1) of W, : as in [6] we adopt the
viewpoint of an observer sitting on the geodesic h(xo)
of xo, contained in the (x@',x")) plane. The set of all

events of XR which can be connected with the observer
by the reception and the emission of light signals is the
region 'U = (x E X: x" ) ~xo ~); it is bordered by
the "future" and "past" event horizons of the observer
x" = +.x~-', x & 0. The region U is foliated by
hyperbolic trajectories h;(xo) parallel to the geodesic
h(xo) = ho(xo), according to the following parametriza-
tion of 'U: x(r, x) = (x o = QR —x sinh z, x = x,
xt" = QR —x cosh "~); 7 is the proper time of our
observer. The curves h„- (xo) are the orbits of the
one-parameter group Tt, )„„) of isometrics of XL (see
[4] for a general discussion of this kind of struc-
ture): T),t„,)(t)[x(r, x)] = x(t + r, x) —= x', t E IR. The
complexified orbits of T&{„), namely, the complex
hyperbolas h„- (xo) have 2inR/c periodicit. y in t and
all their nonreal points in 2 + and 2 . This entails
a remarkable property of the time-translated corre-
lation functions (0, P(x()@(x2)A) = W, (x(, xz) and

(0, @(xz)(t((x()Q) = W„(x2,x(), where x( and xq are
arbitrary events in U. In fact, from the analyticity
properties (1) of W, (z(, zq), we deduce that W, (x(, x&)

defines a 2im. R/c periodic analytic function of t, whose
domain is the periodic cut plane C'", '„, = t)t E C;3t
4 2nvrR/c, n E Z) LI [t; t —2inm R/c E I„„,n E Z),
where I, „, is the real interval on which (x( —xz)~ ( 0.
One also checks that the boundary values of W„(x(,x2)
on H coincide with the previous correlation functions (the
jumps across the cuts being the retarded and advanced
commutators); these properties imply that W, (x(, x')
is analytic in the strip jt E C, 0 ( 3t ( 2i7rR/c) and

satisfies the following I@VIS relation [11] at temperature
T = hc/2m. KR (K is the Boltzmann constant):

W, (xz, x()
~ Ri+

lim W, , (x, , ~-.
0'

W(-(. .-, ) = p(v) W, (:(,.-~)d v.

with p denoting a positive measure. Formula (7), which
is the analog of the Kallen-Lehmann representation for
the propagators of local fields in Minkowski space, relies
on a suitable mode expansion in the complexified "mass"
variable v = mcR/h associated with the global plane

waves P~(:, ,
——, + i v). Consider indeed for (v ~ 0 the

following Laplace type transform of the retarded function

A„W(x(, x2) = 0(x(, x2 )[ lV(x(, x. )
—14t(x~, x()]:{0) {0)

j
G(v) = A„W(A)Q (A) (A —1)dA, (g)

J

The "energy operator" '$~, {,-0) associated with the
geodesic h(xo) is obtained by the spectral decomposition
of the unitary representation of the time translation

group T),(„,) in the Hilbert space 9f of the theory,
namely, U,', (, , )

——f „e. 'dZ„(„,)((u), which yields

+)(( ( J cQdF) ( )(cu). The previous KMS condition
is then equivalent to the fact that energy measurements
performed by an observer at rest at the origin on states
localized in U are exponentially damped by a factor
exp( —2rrRcu/(((c) in the range of negative energies. In
the limit of flat space-time this factor will kill all negative
energies, so that one recovers the usual spectral condition
of "positivity of the energy.

"
Similar results concerning

the existence of QFT s satisfying the KMS condition have
been obtained for the two-dimensional dS universe in

[12] by the methods of constructive QFT. Other examples
of curved space-time QFT's satisfying the KMS condi-
tion have been investigated in [13] where an axiomatic
approach has been proposed to study such theories.

Here we shall show how our approach, based on
analyticity properties, opens the way to a general setting
of the theory of interacting fields on dS space-time. In
short, a scalar field (t((x) on Xq may be assumed to satisfy
the following properties (besides positive definiteness):

(a) Locality: [(t (x(), ()(((x2)] = 0 for all spacelike sepa-
rated events (x(, x2) on Xt( [i.e. , (x( —x, )'- ( 0].

(b) dS covariance: There is a unitary representation U( )

of SO()(1,4) in A such that (t((gx) = U(g)P(x) U(g)
(c) Geodesical spectral condition or geometrical KMS

~ ondition: The subgroups of time translations Th of'

SOO(1, 4) associated with any timelike geodesic h have

energy spectrum densities which violate the positivity
condition by appropriate exponential damping factors.
This is equivalent to the fact that the propagators of

(and of any associated polynomial composite field)
are analytic in the complexified geodesic h" and in

all the parallel complex hyperbolic trajectories, so that
the corresponding KI'VIS condition (6) is valid. These
properties imply that the propagator of the field ()I( is an

analytic function W(z, -') defined in the cut domain b„, and
that it admits the following integral representation [9,14]:
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FIG. 1. Self-energy diagrams.

with —A = x~ x2/R, Q !, being proportional to
(53

2+'
a Gegenbauer function of the second kind [8]. One
checks that the linear field propagators W„,(zt, z2) are
represented by pole terms of the form G„,(v) =

V V0

(considered for 3v ~ 0) and it follows that any general
propagator W(z~, z2) is represented by an analytic function
G satisfying a dispersion relation of the form G(v) =
fo p(vo)G„, (v)dvo, which, by going back to the space-
time XR, yields the representation (7). The interest of
this "complex mass formalism" is that it produces a
generalized version of the frequency analysis of thermal
field theories. As in the latter our propagators W(zi, z2)
can be considered (in view of their analyticity properties)
either in the real time formalism (RTF), i.e., through
their relevant boundary values on XR, or in the imaginary
time formalism (ITF), i.e., on the Euclidean sphere SR.
Consider the discrete mode expansion of the Schwinger
propagator S [i.e., W(zi, z2) for Euclidean zt, z2] in terms
of Gegenbauer polynomials [8]:

S(zi, z2) = 16, g w. e.P„"'l — ', l, (9)

with c„= (2n + 3)(n + 2)(n + 1). As in the Matsubara
type formalism [15] of thermal QFT, the coefficients w„
are shown [9,14] to coincide with the Green function G at
imaginary integers, i.e., w„= G( —in) (corresponding to
discrete imaginary masses m„= i nb/—Rc)

Let us now indicate in which way the previous analytic
approach can lead to a sensible perturbation calculus on
dS space-time. %e shall stick here to a class of self-
energy diagrams which is closed under the operation
of line insertion and contraction [see Fig. 1(a)], but the
formalism is generalizable to n-point Green functions.
It is clear that any pointwise product of propagators
[P,W' (z&, z2) satisfies the same analytic structure as
any individual factor Wl')(zr, zz); this rules the case of
the contraction operation [Fig. 1(b)]. Let us introduce the
line-insertion operation as a convolution on the Euclidean
sphere Str., for example, for the case of Fig. 1(c), the
propagator is

S(zlrrz2) = [S.(zi. z)] S.(z. z )[S (z ~ zz)j dpdlJ .
SR &&SR

One can show by contour distortion [9] that the resultin~

propagators enjoy the full analytic structure on X&
(c

and that the "real-time" counterparts of this class of
Euclidean equations must be written in terms of retarded

propagators. Moreover, as in the Minkowskian case these
convolutions are turned into ordinary products of the
corresponding Green functions G(v). It follows that one
can make the resummation of the self-energy graphs of
this class by geometrical series in the complex "mass"
variable p, and that the possible generation of poles is
still interpretable in terms of mass renormalization.

To conclude, we wish to stress the importance of global
analyticity properties in constructing QFT's on the dS
universe; these properties have appeared to be crucial
from both computational and conceptual viewpoints. All
the Ql 1's considered have a thermal interpretation in
view of the existence of a temporal curvature of a very
specific nature (as in the Unruh effect [13,16] and in
the black-hole evaporation [2,13]); in fact the existence
of complex hyperbolic trajectories on which maximal
analyticity properties hold consistently with locality is a
geometric criterion for QIT "vacua" in which thermal
effects are produced, the temperature being proportional
to the curvature of these trajectories. This geometrical
property, which replaces the spectral condition of the Aat

case, should be implementable on a wider class of space-
time manifolds admitting a global complexioned structure.
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