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Nonlinear losses accompanying self-focusing substantially impact the dynamic balance of diffrac-
tion and nonlinearity, permitting the existence of localized and stationary solutions of the 2D� 1
nonlinear Schrödinger equation, which are stable against radial collapse. These are featured by linear,
conical tails that continually refill the nonlinear, central spot. An experiment shows that the discovered
solution behaves as a strong attractor for the self-focusing dynamics in Kerr media.
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One of the main goals of modern nonlinear wave
physics is the achievement of wave localization, statio-
narity and stability.While in a one-dimensional geometry
(e.g., in optical fibers), nonlinearity suitably balances
linear wave dispersion, leading to the soliton regime, in
the multidimensional case, nonlinearity drives waves
either to collapse or instability. In self-focusing of optical
beams, for instance, many stabilizing mechanisms, such
as Kerr saturation, plasma-induced defocusing, or stimu-
lated Raman scattering, have been explored, and are
being the subject of intense debate, mainly in the context
of light filamentation in air or condensed matter [1].
These mechanisms, however, are either intrinsically
lossy, or due to the huge intensities involved, are accom-
panied by losses, which lead ultimately to the termination
of any soliton regime. Similar pictures can be traced in all
phenomena commonly discussed in the context of the
nonlinear Schrödinger equation (NLSE), as Bose-
Einstein condensates or Langmuir waves in plasma [2].
Nonlinear losses (NLL) arise in Bose-Einstein conden-
sates from two- and three-body inelastic recombination,
and as the natural mechanism for energy dissipation in
Langmuir turbulence [3].

The question then arises of whether any stationary and
localized (SL) wave propagation is possible in the pres-
ence of NLL. The response, as shown in this Letter, is
affirmative. These SL waves cannot be ascribed to the
class of solitary waves, but are instead nonlinear conical
waves (as the nonlinear X waves [4]) of dissipative type,
whose stationarity is sustained by a continuous refilling of
the nonlinearly absorbed central spot with the energy
supplied by linear, conical tails. These waves are not
only robust against NLL, but find their stabilizing mecha-
nism against perturbations in NLL themselves.

Among the linear conical waves [5], the simplest one is
the monochromatic Bessel beam (BB) [6], made of a
superposition of plane waves whose wave vectors are
evenly distributed over the surface of a cone, resulting
in a nondiffracting transversal Bessel profile. Despite the
0031-9007=04=93(15)=153902(4)$22.50
ideal nature of BBs (they carry infinite power), they not
only have revealed to be a paradigm for understanding
wave phenomena, but also have found applications as
diverse as in frequency conversion, or in atom trapping
and alignment [7]. Of particular interest for us is the
finding [8] that the BB is describable in terms of the
interference of two conical Hankel beams [5], carrying
equal amounts of energy towards and outwards the beam
axis, and yielding no net transversal energy flux in the
BB.

What we demonstrate here is that a superposition of
inward and outward Hankel beams with unequal ampli-
tudes, i.e., an ‘‘unbalanced’’ Bessel beam (UBB), de-
scribes the only possible asymptotic form of the SL,
nonsingular solutions of the 2D� 1 NLSE with NLL.
For this reason, we call the solution ‘‘nonlinear UBB’’
(NL-UBB). We then show that NLL-UBB solutions do
exist and are stable against radial perturbations, in the
important case of Kerr nonlinearity with NLL. Unbal-
ancing, that manifests as a reduced visibility of the radial
Bessel oscillations, creates the required inward radial
energy flux from the conical tails of the beam to refill
the nonlinearly absorbed central spot, whose transversal
pattern depends on the specific nonlinear phase (non-
dissipative) terms included in the NLSE. Contrary to
linear conical waves, achievement of stationarity by re-
filling imposes generally a lower bound to the cone angle
of the UBB.

In a self-focusing experiment in water, we demonstrate
the self-generation of a NL-UBB from a Gaussian wave
packet, which evidences that the NL-UBB acts as a strong
attractor in the self-focusing dynamics, and hence a
significant role of NLL in light filamentation.

To start with, we consider the 2D� 1NLSE
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for the propagation of a light beam E�Aexp��i!t� ikz�
of frequency ! in a Kerr medium (other nonlinear phase
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terms could be included as well) with NLL. In (1), r? 	

�@x; @y�, k � n!=c is the propagation constant (with n the
refraction index and c the speed of light in vacuum), n2 is
the nonlinear refraction index, and 	�K� > 0 (K �
2; 3; . . . ) is the multiphoton absorption coefficient. For
the real amplitude and phase [A � a exp�i’�, a > 0], (1)
yields
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Stationarity of the intensity profile (@za2 � 0) requires,
from (2), ’ � ��x; y� � g�z�. Then (3) imposes the linear
dependence g�z� � ��z, where � is a constant wave
vector shift. Eqs. (2) and (3) then lead, for cylindrical
beams, to the eigenvalue problem
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[prime signs stand for d=dr, with r 	 �x2 � y2�1=2], with
boundary conditions a�0� 	 a0 > 0, a0�0� � 0, �0�0� �
0, and the requirement that a�r� ! 0 as r! 1 for local-
ization. Equation (5) establishes that in a SL beam, the
power (per unit propagation length) entering into a disk
of radius r must equal the power lost Nr within it. In
absence of NLL (	�K� � 0), this condition demands plane
phase fronts (�0 � 0) and no radial energy flux. This is
the case of the sech-type Townes profile in Kerr media
[9], associated to wave vector shift � < 0, and of weakly
localized Bessel beams in linear [6] or Kerr media [10],
with infinite power and wave vector shift � > 0.

With NLL, instead, the conditions of refilling (5) and
localization [a�r� ! 0 as r! 1] require an inward radial
power [lhs of (5)] that monotonically increases [rhs of
(5)] with r up to reach, at infinity, a constant value equal
to the total NLL, N1, assumed they are finite.
Stationarity with NLL is thus supported by the continu-
ous refilling of the more strongly absorbed inner part of
the beam with the energy coming from its outer part.
Phase fronts cannot be plane, since �0 ! �kN1=2�ra

2

as r! 1. As for the amplitude, the asymptotic value of
�0 and the change a�r� � b�r�=

���
r

p
in (4), lead, when

retaining only the slowest decaying contributions, to the
Newton-like equation b00 � �2k�b� k2N2

1=4�2b3, that
represents the ‘‘motion’’ of a particle in the potential
V�b� � k�b2 � k2N2

1=8�
2b2. Since bounded trajectories

b�r� [leading then to a! 0] under this potential can exist
only for strictly positive �, we conclude that SL waves in
media with NLL can only have positive wave vector shift,
� > 0. The solution of the Newton equation then yields
the asymptotic behavior a�r� � f�c1 � c2 cos�2
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c3��=rg1=2, with c1 > 0, c21 � c22 � kN2
1=8�2�, that repre-

sents radial oscillations of contrast C � jc2j=c1 about an
equilibrium point that approaches zero as 1=

���
r

p
. SL
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beams in media with NLL carry then infinite power,
and have superluminal phase velocity (� > 0). These
asymptotic features are more meaningfully expressed in
terms of the UBB
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formed by two nondiffracting Hankel beams of the first
and second kind [5], of same cone angle # �

�����������
2�=k

p
, but

different weights,  out and  in, that must be related by

a20�j inj
2 � j outj

2�=k � N1: (7)

The balanced superposition of Hankel beams (e.g., out �
 in � 1) just gives the original, nondiffracting Bessel
beam a0J0�

���������
2k�

p
r� exp��i�z�, with no net radial energy

flux, and with oscillations of maximum contrast C � 1.
Instead, unbalancing creates an inward radial power that
is manifested in a lowering of the contrast C � jc2j=c1 �
2j injj outj=�j inj

2 � j outj
2� of the Bessel oscillations,

reaching C � 0 (no oscillations) in a pure Hankel beam.
We stress that this analysis holds irrespective of the

nonlinear phase terms in the NLSE (Kerr nonlinearity,
Kerr saturation, . . .), since they rely on the only assump-
tion of finite NLL. We can therefore state that the conical
UBB represents the only possible asymptotic form of SL
waves in nonlinear media when the effects of NLL are
taken into consideration. Note that the case of linear
losses is excluded, since N1 � 1 for K � 1. It should
be also clear that the actual existence of a SL solution of
the NLSE, and the characteristics of its linear asymptotic
UBB (cone angle,  in and  out), depends on the particular
nonlinear phase terms in the NLSE.

We first solved numerically (4) and (5) without the Kerr
term, to appreciate the effects of pure NLL [Fig. 1(a)],
and found that SL solutions [a�r� ! 0] exist indeed with
any peak intensity I0 � a20 and wave vector shifts

� > gK	�K�IK�1
0 ; (8)

where gK � 1.67, 0.27, 0.19, 0.16... for K � 2, 3 ... As seen
in Fig. 1(a), shortly away from the central peak, the radial
profile becomes undistinguishable from that of the UBB
of same �, matched NLL N1 and contrast C. Moreover,
pure NLL creates a gap in the allowed UBB cone angles
# �

�����������
2�=k

p
that increases with intensity [Fig. 1(b)], and

that becomes significant at intensities comparable to the
characteristic intensity �k=	�K��1=�K�1�. Intuitively, this
gap originates from the fact that the SL profiles widen
and delocalize [Fig. 1(a)] as the cone angle diminishes.
This causes the total NLL, N1, to increase, a situation
that cannot be sustained down to the limit of zero cone
angle (�! 0), which would not allow for any radial
energy flux.

The extension to include nonlinear phase terms in the
NLSE can be readily understood from the case of pure
NLL. Figure 1(b) shows the permitted cones angles in the
case of focusing Kerr nonlinearity (n2 > 0), obtained
153902-2
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from numerical integration of (4) and (5) with K � 4
(similar results hold for other values of K). The modifi-
cation of the allowed region of cone angles can be attrib-
uted to the nonlinear phase shift at the central spot. In
fact, assuming that the existence of a localized solution is
now determined by the effective wave vector shift �eff �
�� �nl, with �nl � kn2I0=n for Kerr nonlinearity, we
replace � with �eff in Eq. (8), to obtain

� >maxfgK	�K�IK�1
0 � kn2I0=n; 0g (9)

(where we set to zero negative values) as an accurate
expression for the allowed linear wave vector shifts in
Kerr media [see Fig. 1(b) for the associated cone angles
# �

�����������
2�=k

p
]. Similar expressions as (9) can be obtained

for other nonlinear phase effects.
When NLL dominate over Kerr nonlinearity [right

part of Fig. 1(b), or gK	�K�IK�1
0 � kn2I0=n2] the SL

profiles (not shown) do not substantially differ from the
case of pure NLL. For the Kerr-dominated case [left part
of Fig. 1(b), or gK	�K�IK�1

0 � kn2I0=n2], Fig. 1(c) shows a
representative SL profile. The central peak and inner rings
are nearly identical to the Kerr-compressed, Bessel-like
beam in lossless Kerr media [10], as seen in Fig. 1(c),
though the small NLL leads to a slight contrast reduction.
The central peak can be approached by the Bessel beam
a0J0�
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2k�eff

p
r� [10], and hence its width by 1=

�������������
2k�eff

p
.

Outer rings gradually shrink up to become phased with
the asymptotic UBB of wave vector shift � [Fig. 1(c)].
Note that, as opposed to the pure NLL regime, the beam
does not widen indefinitely as the cone angle diminishes
down to its lower bound (#! 0� in the Kerr-dominated
FIG. 1. (a) For pure NLL (K � 4), radial profiles a2=a20 of SL
beams with decreasing �=	�K�IK�1

0 � 1; 0:33; 0:25; 0:20 (from
lower to higher ones), and their asymptotic UBB. Normalized
radial coordinate is & �

���������
2k�

p
r (b) Allowed cone angles # ������������

2�=k
p

versus peak intensity I0 normalized to the intensity
�k=	�K��1=�K�1� in the cases of pure NLL, and NLL� Kerr
[numerically calculated and from Eq. (9)]. (c) For NLL+Kerr,
amplitude profile a=a0 for �=	�K�IK�1

0 � 0:24 and kn2I0=n� �
6:07, and its asymptotic UBB. The pure Kerr case is also shown.
(d) Eigenvalue spectrum of the perturbations withm � 0 to the
SL solutions with Kerr nonlinearity g � 1 and NLL (K � 4)
( � 0; 0:1; 0:2.
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case), but is limited to a maximum beam width
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p
. This fact entails, contrary to

the pure NLL regime, a limitation to N1 as #! 0�,
explaining why the unbalance mechanism for replenish-
ment can support stationarity at arbitrarily small, but
positive cone angles.

We also studied the stability of the NL-UBB solutions
against perturbations. With the dimensionless quantities
& �

���������
2k�

p
r, ' � �z and A � A=a0, we rewrite (1) as

@'A � ir2
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where r2
& � @2& � �1=&�@&, g � !n2a20=c� and ( �

	�K�a2K�2
0 =2�. Following a standard Bogoliubov-

deGennes procedure [11], we introduce a perturbed solu-
tion

A�A0�&;'�� �u�&�e�i�'�im#�v��&�ei�
�'�im#�e�i';

(11)
where A0�&; '� � a�&� exp�i��&�� exp��i'� is a SL so-
lution of (10), # is the polar angle, and m � 0; 1 . . . , into
(10), to obtain, upon linearization, the (non-self-adjoint)
eigenvalue problem

�u � Hu� iK(a2K�2u� ga2e2i�v

�i�K � 1�(a2K�2e2i�v

��v � Hv� iK(a2K�2v� ga2e�2i�u

�i�K � 1�(a2K�2e�2i�u; (12)

where H � �r2
& �m2=&2 � 1� 2ga2, with boundary

conditions u�&� ! 0, v�&� ! 0 as &! 1. The existence
of an eigenvalue � with Im�> 0 would render unstable
the SL solution A0. To obtain numerically the eigenval-
ues, we transform (12) into an algebraical eigenvalue
problem by introducing a mesh of small size s in the
range �& � 0; & � L� with large L, writing the differen-
tial operators as finite differences, and imposing the
boundary conditions u�L� � v�L� � 0. The numerical
diagonalization of the 2N � 2N matrix (N being the
number of mesh points) of the eigenvalue problem pro-
vides a set of 2N eigenvalues. The behavior of the con-
tinuous distribution of eigenvalues of (12) is inferred by
extrapolating the results to the limit s! 0 and L! 1.
We investigated increasing N up to 4000 (L � 400, s �
0:1), as limited by the accessible memory of our computa-
tional facility.

Figure 1(d) shows a typical eigenvalue spectrum for
radial perturbations (m � 0) to three SL solutions with
same Kerr nonlinearity (g � 1) and increasing NLL.
Eigenvalues with Im� � 0 are not shown for clarity.
Clearly, the effect of NLL is to decrease the imaginary
part of the eigenvalues, driving the system towards
stability: The Bessel-like solutions in pure Kerr media
(squares) are unstable. At NLL strength ( � 0:1 (stars),
the positive imaginary parts are strongly reduced, and at
( � 0:2 (circles) no signs of instability are present. We
153902-3



FIG. 2. Measured fluence profile (dots), fitted UBB, and half
Bessel (left) and Airy (right) profiles.
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performed the same analysis for m � 1; 2; . . . For dipolar
perturbations (m � 1) no instability emerges neither in
the pure Kerr nor in the Kerr� NLL model. In contrast,
both systems turned out to be unstable for quadrupolar
and higher-order perturbations, a result that can be re-
lated to the fact these perturbations involve modulation
far from the central spot, where intensity is weak and so
NLL cannot play its stabilizing role.

The experiment that we present demonstrates that the
NL-UBB stationary solution indeed acts as strong attrac-
tor for the transient dynamics of light beam self-focusing
in (weakly dispersive) Kerr media. Recently [12] we have
shown that light filaments in water do not behave as
solitonlike beams, but they spread after being clipped
by an aperture and reconstruct themselves after being
blocked by a stopper, as expected for genuine conical
waves [13]. Here we concentrate our attention in the
beam-periphery structure in order to demonstrate that
filaments are indeed conical and, more precisely, NL-
UBB waves. To this end we modified the diagnostic by
adopting professional digital photo camera (Canon-EOS
D30), which has the unique advantage of permitting
strong local saturation (by the central spike) without
any blooming effect. The experiment was done by launch-
ing a spatially filtered, collimated, 200 fs, 0.1 mm,
1:5 .J, 527 nm Gaussian wave packet into a 31 mm
water-filled cuvette. By using an imaging spectrograph
we verified that, at the specified pump energy, no relevant
spectral broadening occurs, the self-phase modulation
occurring in the sole spatial domain. Figure 2 shows the
measured fluence profile at the output facet of the non-
linear sample, and a fitted UBB profile. BB and Airy
profiles (only one half, for clarity) are also shown for
comparison. One can appreciate: (i) The Bessel-like de-
cay ( � 1=r) of the measured profile in a fairly vast region
of the beam, which distinguishes it sharply from any
(Airy-type) aperture-diffraction pattern (with faster de-
cay �1=r2). (ii) The accurate fitting of the UBB radial
modulations to those of the measured profile in the full
recorded area, which even reproduces the increasing fre-
quency of the modulations (respect to a BB) towards the
beam center, attributable to Kerr self-focusing. (iii) The
reduction in modulation contrast (compared to a BB),
which is a signature of unbalance between inward and
outward conical power flows.
153902-4
In conclusion, we have reported on the existence, char-
acteristics, stability and experimental relevance of non-
linear unbalanced-Bessel-beams (NL-UBB), i.e., the
stationary and localized solutions of the 2D� 1 NLSE
in the presence of NLL. NL-UBB are asymptotically
linear conical waves, carrying a net inward power flux
that compensate for the NLL. We have shown that the
UBB asymptotics is the sole compatible with NLL, no
matter which are the specific nonlinear phase terms in the
NLSE. Therefore NL-UBB are possible solutions also of
nonintegrable NLSEs as well as of the Gross-Pitaevskii
equation for Bose-Einstein condensates. Owing to the
spatiotemporal analogy, the results directly apply to pulse
propagation in planar wave guides with anomalous dis-
persion. More generally, similar waves should exist also
in the case of 3D� 1NLSE with NLL, describing full
spatiotemporal localization in bulk media with NLL. The
unique property of long-range stationarity in the presence
of energy transfer to matter (or to other waves) makes
NL-UBB ideal for several applications including deep-
field nonlinear microscopy, laser micro machining, laser
writing of channel wave guides, charged-particle accel-
eration, creation of long and stable plasma channels in
atmosphere and, of course, energy transfer between dif-
ferent types of waves (e.g., optical ! X, or optical
! teraHertz).
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