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We implemented the heterodyne near-field scattering(HNFS) technique[D. Brogioli et al., Appl. Phys. Lett.
81, 4109(2002)], showing that it is a fairly valid alternative to traditional elastic low-angle light scattering and
quite suitable for studying complex fluids such as colloidal systems. With respect to the original work, we
adopted a different data reduction scheme, which allowed us to improve significantly the performance of the
technique, at levels of sensitivity and accuracy much higher than those achievable with classical low-angle
light scattering instrumentation. This method also relaxes the requirements on the optical/mechanical stability
of the experimental setup and allows for a real time analysis. The HNFS technique has been tested by using
calibrated colloidal particles and its capability of performing accurate particle sizing was ascertained on both
monodisperse and bimodal particle distributions. Nonstationary samples, such as aggregating colloidal solu-
tions, were profitably studied, and their kinetics quantitatively characterized.
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I. INTRODUCTION

Near-field scattering(NFS) is a family of techniques re-
cently introduced[1–4] in the field of laser light scattering as
alternative methods for the measurement of the low-angle
scattered intensity distribution. While the traditional low-
angle scattering techniques[5,6] collect the scattered light in
the far field of the sample and adopt an optical configuration
in which there is a one-to-one mapping between the sensor
position and the scattering angle, NFS works by collecting
the scattered light in the near field of the sample, without any
angle-resolved detection scheme. NFS requires a remarkably
simple optical setup, in which a large collimated beam is sent
onto a square cell containing the sample and the scattered
light is detected at a close distance by using a charge-coupled
device(CCD) sensor. In this way, each pixel of the sensor is
reached by the light scattered at all the angles the system can
scatter at, and the angular scattered intensity distribution is
retrieved by properly analyzing the statistical properties of
the recorded images.

There are three different configurations under which NFS
can be realized:(i) a homodyne layout[1,2], in which the
transmitted beam is stopped and only the scattered light can
reach the sensor;(ii ) a heterodyne layout[3] (HNFS) where
the transmitted beam is superimposed to the(much weaker)
scattered light and the resulting interference pattern is then
detected by the sensor;(iii ) a Schlieren layout[4] (SNFS), in
which the interference between the transmitted beam and the
scattered light takes place after a Schlieren-like spatial filter
[7] has removed the half plane of the interfering wave vec-
tors. In all these configurations, due to the stochastic inter-
ference associated with the scattering waves, the recorded
images have a speckled appearance, and, at variance with
what happens in the far field, the size of the speckles is
independent of the distance between the sample and the sen-

sor and from the wavelength of the incident radiation, but it
is of the same order as the scatterers’ dimension[1,2]. Thus
the images contain information on the scatterer structure,
which is ultimately related to the scattered intensity distribu-
tion. The statistical analysis to be carried out on the recorded
images is quite different, depending whether homodyne- or
heterodynelike configuration is adopted. The latter(either
HNFS or SNFS) have been proved to be much more power-
ful because they are self-referencing methods, in which the
static intense transmitted beam acts as a local oscillator that
amplifies the weak fluctuating scattering signal(heterodyne
signal), leading to a direct measurement of the scattered field
amplitude and allowing intrinsic absolute cross sections to be
measured. They also offer the possibility of rigorous stray
light subtraction without the necessity of any blank measure-
ment, a feature of fundamental importance when dealing
with low-angle scattered light. In the heterodyne-based con-
figurations the data analysis is also quite simple, and the
scattered intensity distribution can be recovered as the two-
dimensional power spectrum of the detected heterodyne sig-
nal.

In this article we will focus on the HNFS technique,
which exhibits the simplest and most compact optical setup,
almost free from any alignment requirements. However,
since HNFS is a heterodyne technique in which the level of
the signal(scattered light) is typically of the order of a few
percent with respect to the level of the local oscillator(trans-
mitted beam), the stability of the latter must be remarkably
high. This imposes a rather stringent requirement on the
optical/mechanical stability of the setup, which becomes
quite demanding when the overall measuring timeT is rela-
tively long (minutes). It is this stability that, ultimately, de-
termines the sensitivity and accuracy of the technique.

To overcome this limitation, we developed a procedure
for processing the data based on a double-frame differential
approach, in which the recovery and the analysis of the het-
erodyne signal are carried out by comparing two consecutive
frames taken at a temporal distanceDt. In this way, the sta-
bility requirements are restricted only to the time distance*Corresponding author. Email address: fabio.ferri@uninsubria.it
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Dt sDt!Td and the demands on the optical/mechanical sta-
bility of the apparatus are highly relaxed.

We have successfully applied this method to the study of
colloidal systems, showing that the technique is quite ad-
equate for performing accurate particle sizing, with a sensi-
tivity much higher than that achievable with traditional low-
angle light scattering instrumentation. Moreover, since this
method allows for a faster(real time) data analysis, we have
also shown that the technique is fairly suitable for studying
the kinetics of nonstationary systems, such as the aggregat-
ing colloids presented in this work.

II. THE HETERODYNE NEAR-FIELD SCATTERING
TECHNIQUE

In this section we recall the principles and the practical
aspects of the heterodyne near-field scattering technique. We
first (Sec. II A) describe the technique as it was originally
proposed by some of the authors[3], discussing its main
features and great advantages over other classical low-angle
scattering instrumentation, but also pointing out some of its
limitations, in part associated with the experimental proce-
dure outlined in the original work. Then in Sec. II B we
propose a different method of processing the data based on a
double-frame differential approach, which relaxes the re-
quirement of stability on the experimental apparatus, allows
for a faster(almost real time) data analysis, and improves the
overall quality of the data.

A. HNFS, single-frame analysis

The HNFS techniques works by analyzing the intensity
distribution of the light passing through a scattering sample
and falling onto a plane located at a close distancez from the
cell, as schematically shown in Fig. 1.

In this configuration, the intense static electric fielde0sr d
associated with the transmitted beam plus stray light acts as
a reference beam(local oscillator) and is allowed to interfere
with the much weaker time-dependent fieldeSsr ,td scattered
in the forward direction. The resulting intensity distribution
fsr ,td is therefore composed of a strong static signal due to
the main beam intensity on which a weak time-dependent
fluctuating ripple, deriving from the interference between the

reference and scattered fields(heterodyne term), is superim-
posed. Any contribution associated with the interference be-
tween the scattered waves(homodyne term) is supposed to
be negligiblesueSu! ue0ud.

Thus, by dropping the termiSsr ,td= ueSsr ,tdu2, we can
write

fsr ,td = i0sr d + e0sr deS
* sr ,td + e0

*sr deSsr ,td s1d

where i0sr d= ue0sr du2. Notice that the static reference term
i0sr d depends onr , thus taking into account the spatial de-
pendence of the spurious stray-light contributions always
present in a light scattering system operating at low angle.
Conversely, the termseSsr ,td andeS

* sr ,td vary with time and
are zero average. Thus, the static contributioni0sr d can be
recovered as the time average

i0sr d = kfsr ,tdlt s2d

in which the average has to be carried out over a large num-
ber of independent sample configurations. Remarkably, Eq.
(2) shows that in HNFS a measure of the stray light can be
carried out without any effective blank measurement. By
subtracting Eq.(2) from Eq. (1), the fluctuating heterodyne
signal can be recovered,

dfsr ,td ; fsr ,td − kfsr ,tdlt = e0sr deS
* sr ,td + e0

*sr deSsr ,td,

s3d

and analyzed by computing its Fourier components. For this
purpose, let us adopt a notation in which a capital letter
represents the spatial Fourier transform(F) of a function in-
dicated with the same small letterfFhasr dj=Asqdg, whereq
;sqx,qyd , qx and qy being the Fourier vectors associated
with the spatial frequenciesfx and fysqx=2pfx,qy=2pfyd.
By recalling the Fourier convolution theorem,hsa·bd
=ApB, and the relationFsa* d=A* s−qd, theF transform of
Eq. (3) gives

dFsq,td = E0sqd p ES
* s− q,td + E0

*s− qd p ESsq,td s4d

wheredF=Fhd fj. Equation(4) shows that theq component
of the signal observed on the sensor plane is the result of two
contributions deriving from the interference between the ref-
erence beam and the three-dimensional plane waves scat-
tered with the two vectorskS

+=sq ,kzd and kS
−=s−q ,kzd and

amplitudesESsq ,td andESs−q ,td, respectively.
Equation(4) shows also thatdFsq ,td carries the informa-

tion on the scattering field amplitudes only through the con-
volution withE0sqd. However, since we expect that the stray-
light contributions are definitely smaller than the amplitude
of the transmitted beam and constantly increasing at lower
and lowerq, we can reasonably assume that the spectrum
E0sqd is much narrower than the spectrum of the scattered
light ESsqd [an assumption rigorously satisfied for the case of
an ideal plane-wave local oscillator, for whichE0,dsqd].
Thus, the convolution appearing in Eq.(4) does not affect
significantly the spectra of the scattering fields and we can
simplify Eq. (4), obtaining

dFsq,td , ES
* s− q,td + ESsq,td. s5d

FIG. 1. Schematic diagram of the HNFS setup. The sample is
illuminated with a large collimated beam of sizeD and the trans-
mitted plus scattered light is collected at the sensor plane located at
a distancez from the cell. The lensL (a microscope objective)
realizes a magnifiedsM =b/ad image of the sensor plane onto the
CCD, which is placed slightly off axis for reducing stray light.D*
represents the sample region from which the scattered light is ef-
fectively collected.
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Equation (4) or (5) holds under the so-called near-field
condition [3,4], i.e., when, for any givenq, the sensor re-
ceives light from a regionD* smaller than the illuminated
region D (see Fig. 1). Let us denote byqmax the maximum
Fourier vector for which we want Eqs.(4) and (5) to be
valid. Thus, the conditionD* ,D leads to the constraint for
the distancez between the sensor and the sample

z, D/2umax s6d

in which umax is the scattering angle associated withqmax.
Practically,umax or qmax is determined either by the(imaged)
pixel size of the CCD sensor, or by the numerical aperture
(NA) associated with the objective used for collecting the
scattered light, whichever is smaller. In the case of a typical
HNFS, the bottleneck is usually represented by the objective
NA. For example, for the case of the 203 objective used in
this work (see next section), the numerical aperture was
NA=0.50 corresponding toumax=30°. The corresponding
maximum allowed distance was thereforez,10 mm.

The power spectrum of the heterodyne signal is obtained
by squaring Eq.(5), giving

udFsq,tdu2 , uESsq,tdu2 + uESs− q,tdu2 + ESs− q,tdESsq,td

+ ES
* s− q,tdES

* sq,td. s7d

The first two terms of Eq.(7) are identical to each other and
can be directly related to the scattered intensity distribution
to be recovered(see below). The last two terms are the so-
called shadowgraph terms[8], and are responsible for deep
oscillations appearing in the low-q region of the spectrum.
These oscillations arise from the fact that the waves scattered
with q and −q may be partially correlated, with the phase
difference depending on bothq= uqu and z. It is beyond the
purpose of this paper to discuss this effect in somewhat more
detail and we refer the reader to Ref.[3,9]. It is here suffi-
cient to mention that, whenz and/orq are large enough, the
phase difference of theq and −q waves becomes random,
and the two correlation terms appearing in Eq.(7) vanish
when averaged over time. In the framework of this article we
will always neglect such terms.

For stationary isotropic samples we can average Eq.(7)
and obtain the mean spectrum

Ssqd = kudFsq,tdu2lt,q s8d

in which thet average has to be carried out over a time long
enough to accumulate a large number of independent sample
configurations, while theq average is performed over all the
vectorsq such thatÎqx

2+qy
2=q.

The final step in the HNFS procedure is to recall the re-
lation between the spectrumSsqd and the scattered intensity
distribution ISsQd, which is customarily reported as a func-
tion of the modulus of the transferred wave vectorQ, defined
as the difference between the scattered wave vectorks and
the incident wave vectork0, i.e., Q=ks−k0. Since the scat-
tering is elasticsuksu= uk0u=kd, we haveQ=2k sinsu /2d ,u be-
ing the scattering angle. The vectorQ is simply related toq
and, with the help of Fig. 2, it is immediately easy to work
out that

Q = Î2kf1 −Î1 − sq/kd2g1/2, s9ad

q = QÎ1 − sQ/2kd2, s9bd

which reduces toQ,q in the limit u→0.
By using Eq.(8) it is now possible to express the scattered

intensity distribution as

ISsQd , SfqsQdg, s10d

the same recovered with a traditional low-angle scattering
apparatus.

As already mentioned in the Introduction, HNFS is a
powerful technique which exhibits many remarkable features
like a rigorous subtraction of the stray light, almost no re-
quirement on the optical alignment, and simplicity and com-
pactness of the setup. However, there are also some nonsec-
ondary limitations which may hamper the actual applicability
of the technique. The most important one is related to the
requirements on the optical/mechanical stability of the setup.
Since typically the rms level of the signal fluctuations is of
the order of 1% with respect to the static background, and
the overall measuring time can be as long as several minutes,
we are imposing a rather stringent requirement on the stabil-
ity of the reference termi0sr d. A slow drift of the laser
power, or a slight change in the alignment induced by
mechanical/thermal relaxations, or any other reason causing
a change of the optical background during the measuring
time, could produce variations ofi0sr d stronger than or com-
parable with the weak intensity fluctuations we want to mea-
sure. Thus, Eq.(2) does not hold anymore, and the technique
may become highly inaccurate. An example of that will be
given in Fig. 4, which will be discussed at the end of Sec.
II B. Another limitation is the off-line analysis associated
with the procedure. First, many independent frames must be
acquired and stored, and only afterward can the analysis be
carried out.

B. HNFS, double-frame analysis

The limitations associated with the single-frame analysis
discussed above can be removed by adopting adifferential
double-frame analysis. Suppose that we acquire a set of dif-
ferent frames corresponding to many independent sample
configurations, and letDt be the temporal distance between
each frame. Thus, indicating withf1 and f2 the frames taken
at timet andt+Dt, respectively, under the same assumptions
of Eq. (1), we can write

f1sr ,td = i0sr d + e0sr de1
*sr ,td + e0

*sr de1sr ,td, s11ad

FIG. 2. Vectors and angles involved in the HNFS technique.k0,
incident wave vector;kS, scattered wave vector;Q, transferred
wave vector;q, Fourier vector;u, scattering angle.
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f2sr ,t,Dtd = i0sr d + e0sr de2
*sr ,t + Dtd + e0

*sr de2sr ,t + Dtd
s11bd

and their difference

dfsr ,t,Dtd = f2sr ,t + Dtd − f1sr ,td

= e0sr de2
*sr ,t + Dtd + e0

*sr de2sr ,t + Dtd

− e0sr de1
*sr ,td − e0

*sr de1sr ,td s12d

is clearly independent ofi0sr d. By following the same analy-
sis outlined in Sec. II A, we obtain

dFsq,t,Dtd , fE2
*s− q,t + Dtd + E2sq,t + Dtdg

− fE1
*s− q,td + E1sq,tdg, s13d

and by squaring Eq.(13) we have

udFsq,t,Dtdu2 = ua1u2 + ua2u2 + a1a2
* + a1

*a2, s14d

where a1=E1
*s−q ,td+E1sq ,td and a2=E2

*s−q ,t+Dtd
+E2sq ,t+Dtd. Clearly, for a stationary sample, the terms
ua1u2 and ua2u2 are identical and equal to the expression re-
ported in Eq.(7), and are related in the same way to the
scattered intensity distributionISsQd [see Eq.(10)]. Con-
versely, the termsa1a2

* anda1
*a2 describe the spatial corre-

lations between the two frames taken at a temporal distance
Dt, and, for uncorrelated frames, they vanish. The latter point
is rather critical and consequently the frame distanceDt must
be tuned quite finely: on one hand it has to be large enough
so as to ensure decorrelation between the fluctuating compo-
nents of the two frames; on the other hand it cannot be too
large because, otherwise, we fall again into the framework of
Sec. II A, with its limitations arising from the long measur-
ing time.

It is worth mentioning at this time an important point
about future developments of the HNFS technique. WhenDt
is smaller than the correlation time between the two frames,
the termsa1a2

* anda1
*a2 do carry information on thedynam-

ics of the system. Thus, by properly analyzing such terms as
a function of the(lag) time Dt, one should be able to extract
the time-correlation function of the scattered intensity, simul-
taneously, at all theq vectors. Thus simultaneous measure-
ments of dynamic and static light scattering would became
feasible, greatly enlarging the potentialities of the HNFS
technique.

In conclusion, whenever the timeDt is much shorter than
the overall measuring timeT=NDt, with N@1 being the
number of independent frames, the double-frame procedure
is expected to work better that the single-frame method. A
quantitative comparison between the two procedures will be
reported in Sec. IV A.

III. OPTICAL SETUP

The measurements were performed by using the hetero-
dyne optical setup sketched in Fig. 1. A cw He-Ne laser
(wavelength in the vacuum 632.8 nm) was spatially filtered,
collimated to a diameterD,10 mm(at 1/e2 of the intensity)
and sent onto the sample, which was contained in a rectan-

gular quartz cell, 2 mm optical path, with walls 1 mm thick.
The collecting lens was a 203 Spindler & Hoyer microscope
objective with a numerical aperture NA=0.50, to which cor-
responds a maximum transferred wave vectorQmax
,4.5 mm−1. The objective was positioned at a distance from
the exit face of the cell of 1 mm, implying that the observa-
tion plane was at a distance from the center of the cell of
aboutz=1.4 mm, which is compliant with the near-field con-
dition Eq. (6).

The images were acquired by using a 12-bit digital CCD
camera (Vooskuhler CCD-1300, 128031024 pixel, pixel
size 6.7µm) interfaced to the PC by means of a digital frame
grabber(National Instrument, model PCI-1422). The camera
was positioned slightly off axis to reduce stray light. Only a
square portion 102431024 of the image was used in the
Fourier analysis(fast Fourier transform). The objective mag-
nification 203 ensures that the sizes of the speckles, being of
the order of the particle size, are larger than the dimensions
of the CCD pixels. The magnification determines also the
effective side of the sensorL=6.7 mm3 s1024/20d
,343 mm and, correspondingly, the minimum detectable
wave vectorQmin=2p /L,1.83310−2 mm−1.

IV. EXPERIMENTAL RESULTS

The performance of the HNFS technique was evaluated
by carrying out several tests on diluted solutions of cali-
brated, almost monodispersess / kdl,1%d, polystyrene
spheres(Duke Scientific Co.). We started by comparing the
single- and double-frame analysis(Sec. IV A); then we in-
vestigated how the sensitivity of the HNFS technique com-
pares with the one allowed by a standard low-angle light
scattering instrument(Sec. IV B); the next test was aimed at
ascertaining the accuracy of the HNFS technique and its ca-
pability of performing reliable particle sizing(Sec. IV C);
finally, we investigated the suitability of the technique for
studying nonstationary samples, such as aggregating colloids
(Sec. IV D).

A. Comparison between single- and double-frame analysis

A qualitative but striking difference between the single-
and double-frame analyses is illustrated in Fig. 3, which re-
fers to measurements taken on a sample of 5µm diameter
particles, after having accumulatedN=60 frames atDt=5 s.
In order to emphasize the differences, we intentionally
picked up a set of data that, once analyzed with the single-
frame procedure, turned out to be fairly noisy. This effect is
shown in the first row of Fig. 3(frames A,B,C) which reports
the average framekflt (A), the first framef1 (B), and their
differencekflt− f1 (C). Both the average and the single frame
exhibit evident spurious patterns and fringes due to stray
light, which remain(at a much lower rms level) in their
difference also. Conversely, in the double-frame procedure
(second row, D,E,F), the stray-light subtraction is very accu-
rate and the frame differencef2− f1 (F) appears to be a fairly
regular speckle field, with no reminiscence of the original
stray pattern and fringes.
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A much more quantitative comparison can be carried out
by plotting together the two recovered scattered distribu-
tions, as shown in Fig. 4 in which theISsQd associated with
single and double-frame procedures are represented as
squares and circles, respectively. Notice that the two analyses
were carried out on the very same set of data. The distribu-
tion derived from the double-frame procedure is much
smoother than the other one, and matches fairly accurately
the theoretical curve computed using the Mie theory.

B. Sensitivity of the HNFS technique

As explained in Sec. II A, the HNFS technique is based
on the interference between the static intense transmitted
beame0 and the weak fluctuating scattering fieldeS. Thus
ueSu! ue0u, and the interference between the two fields gives
rise to a heterodyne signal which is much stronger than the
corresponding homodyne signal. Notice that the latter is the
quantity that is measured in a standard light scattering instru-
ment.

We can quantify the relative strength between the hetero-
dyne and homodyne signals in the following way. Suppose
that the sample is a solution ofN identical particles con-
tained in a thin cell and letz be the distance between the
sensor plane and the cell(see Fig. 1). Thus, the scattered
field is the sum ofN contributions

eSsr ,td =
1

kz
o
i=1

N

aisr ,tde−jfisr ,tde0, s15d

in which ai and fi are the amplitude and the phase of the
scattered field associated with theith particle. Note that both
ai andfi are time dependent because of particle motion. By
using Eq.(15), we can rewrite Eq.(1) and, without dropping
the homodyne term, obtain

fsr ,td = i0sr dF1 +
2

kz
ReSo

i=1

N

aisr ,tde−jfisr ,tdD
+

1

k2z2Uo
i=1

N

aisr ,tde−jfisr ,tdU2G s16d

where the second and third terms in the square brackets are
the heterodyne and homodyne signals, respectively. If the
particles are randomly distributed inside the cell, the phases
fi vary stochastically, and, in the limit ofN@1, the sum
behaves as a two-dimensional random walk. Thus

FIG. 3. Comparison between the single-frame
(first row, A,B,C) and double-frame(second row,
D,E,F) data analyses. The sample was a 5µm
(diameter) particle solution and the data were ac-
cumulated for N=60 frames atDt=5 s. The
frame differencef2− f1sFd of the double-frame
analysis appears to be much more effective than
the corresponding differencef1−kflt (C) associ-
ated with single-frame analysis.

FIG. 4. Comparison between the scattered intensity distributions
recovered by using the single-frame(squares) and the double-frame
(circles) analyses. Sample and raw data were the same as in Fig. 3
(5 µm particle,N=60 frames atDt=5 s). The two analyses have
been carried out on the same set of data. The distribution obtained
with the double-frame analysis is much smoother and matched ac-
curately the expected Mie curve(solid curve). The vertical dash-
dotted line indicates the maximum wave vector allowed by the nu-
merical aperture of the objectivesNA=0.5d.
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o
i=1

N

aisr ,tde−jfisr ,td , ÎNkale−jcsr ,td s17d

wherecsr ,td is a random phase varying between 0 and 2p
and kal is the average amplitude of the scattered field given
by

kal = kaisr ,tdlN = umax
−1 E

0

umax

asuddu, s18d

whereumax is the maximum scattering angle associated with
the optics. Note that, because of ergodicity,kal is indepen-
dent of both sensor position and time.

By using Eq.(1) and working out the last term of Eq.
(16), the heterodyne and homodyne signals become

fsr ,tdheter=
2ÎNkal

kz
cosfcsr ,tdg, s19ad

fsr ,tdhomo=
Nka2l
k2z2 +

2ka2l
k2z2 o

i. j

N

cosfDfi jsr ,tdg, s19bd

in which Dfi jsr ,td=fisr ,td−f jsr ,td. As expected both terms
fluctuate stochastically in time, but while the heterodyne sig-
nal is zero average, for the homodyne one the average value
is Nka2l /k2z2. Equation(19) shows the remarkable difference
between the strengths of these two terms: the rms amplitude
of the heterodyne signal scales as the square root of the av-
erage homodyne signal. Thus, since both terms are much
smaller than unity, and is the first one is much stronger than
the second one, characterized by a much more compressed
dynamics. This is the key point that makes the HNFS tech-
nique (heterodyne signal) much more sensitive than the tra-
ditional light scattering technique(homodyne signal).

We quantitatively compared the sensitivity of the HNFS
technique with the one associated with a classical low-angle
light scattering(LALS) apparatus by measuring the intensity
distribution ISsQd scattered by a solution of 3µm latex par-
ticles at increasingly lower concentrations. For the HNFS
technique we adopted the same parameters used in Sec. IV A
and processed the data following the double-frame analysis.
The LALS measurements were carried out by using a state of
the art instrument[5] and theISsQd distributions were recov-
ered by following the usual procedure in which ablankmea-
surement, taken with the cell filled only with solvent, is sub-
tracted from asample measurement taken with the cell
containing the scattering solution.

The sample concentrations were varied betweenf
,2310−5 and 6310−8 volume fractions, corresponding to
remarkably low beam attenuations(over a 2 mmoptical
path), of the order of,4310−2–10−4. For each concentra-
tion, the comparison was carried out on the very same
sample, i.e., by using the same scattering cell and taking the
LALS and HNFS measurements one immediately after the
other. The results are shown in Fig. 5, in which the solid
symbols refer to the LALS data, while the open symbols
describe the HNFS data. Next to each curve, the expected
values for the beam attenuations are also indicated. The fig-

ure shows clearly that the two techniques are comparable
only at higher concentrations, but as the concentration is re-
duced, the LALS data become progressively much noisier
than the corresponding HNFS data. In particular, while for
the LALS technique the minimum concentration at which
ISsQd can be reliably measured is the one corresponding to a
beam attenuation of,10−3, for HNFS, the sensitivity is
much higher and concentrations of about a factor of 10 lower
can be accurately recovered.

It should also be pointed out that the LALS data reported
in Fig. 5 have been taken, in some sense, under ideal condi-
tions, in which the stray-light subtraction was extremely ef-
fective: the sample measurements were taken immediately
after the blank measurements, without moving the scattering
cell. The sample was loaded by adding a concentrated solu-
tion of colloids to the water already present in the cell(and
used for the blank measurement). When we adopted other
loading procedures which required moving and repositioning
the cell into the holder(which might be a typical situation),
the stray-light subtraction was less effective and the LALS
data became much noisier(data not shown in Fig. 5). As a
matter of fact, only theISsQd at the higher concentrations
sfù10−6d could be reliably recovered and, in some cases,
only for the larger angles.

Conversely, the limitation associated with the stray-light
subtraction, which is unavoidable in any LALS instrument,
is completely removed in HNFS, which indeed allows for a
rigorous subtraction of the stray light, without the necessity
of any blank measurement.

FIG. 5. Comparison between the scattered intensity distributions
recovered by HNFS technique(open symbols) and by a state of the
art low-angle light scattering apparatus(solid symbols). The sample
was a solution of 3µm diameter latex particles at different volume
fractions f. The number by each data set indicates the expected
beam attenuation.
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C. Particle sizing of stable colloids

The accuracy of the HNFS technique in recovering the
correct scattered intensity distributionISsQd was ascertained
by performing particle sizing on stable colloidal solutions
prepared by using almost monodispersess / kdl,1%d poly-
styrene spheres with certified diameters ranging between 1
and 10µm (Duke Scientific Co.). The solutions were diluted
to volume fractions ranging between,10−5 and 10−6, so to
have beam attenuations of the order of,1%. For this set of
measurements, the images were grabbed everyDt=5 s and
processed following the double-frame analysis. A total num-
ber ofN=60 images were taken, corresponding to an overall
measuring timeT=300 s.

For each sample, the measured scattered intensities were
processed by using an inversion algorithm that allows the
recovery of the sample radii distribution according to the
integral equation

ISsQd =E IMiesQ,RdfMsRdg−1WsRddR, s20d

where IMiesQ,Rd is the intensity scattered by a particle of
radiusR at the wave vectorQ, computed according to the
Mie theory,MsRd=s4/3drpR3 is the particle mass(r being
the density), andWsrddr is the mass of particles with radii
betweenr andr +dr. In Eq. (20) ISsQd represents the known
term (provided by the experiment), IMiesQ,RdfMsRdg−1 the
kernel, andWsRd the unknown distribution to be retrieved. A
detailed description of the algorithm and its application to

the inversion of low-angle scattering data can be found in
Refs.[10,11].

The experimental results are shown in Fig. 6, in which we
have reported, on the left column, as a function of the wave
vector Q the measured scattered intensities(open symbols)
together with the intensities reconstructed on the basis of the
recovered distributions(solid curves). The particle distribu-
tions are reported on the right column as weight fraction
density distributions. The data withQ,0.2 mm−1, where
shadowgraph oscillations are fairly evident, were not consid-
ered for the inversions. All the retrieved distributions are
peaked in correspondence with the expected nominal radii
(shown by the arrows in the figure, right column) and, with
the exception of theR=0.5 mm radius where some limita-
tions of the inversion algorithm show up, appear to be quite
narrow, as expected for almost monodisperse distributions.
The accuracies of the recovered average radii were of the
order of a few percent. Similarly, the reconstructed intensi-
ties ISsQd matched the experimental data, quite well with
deviations of a few percent(rms).

As a second test we considered two bimodal distributions:
the first one was a mix ofR1=5.0 mm andR2=2.5 mm par-
ticles, with corresponding weight fractionsW1=0.62 and
W2=0.38; the second distribution hadR1=2.5 mm and R2
=1.5 mm, andW1=0.80 andW2=0.20. The results are re-
ported in Fig. 7, following the same scheme adopted for Fig.
6. As evident, the reconstructed intensities are recovered
quite accurately and the retrieved distributions are fairly nar-
row and peaked at the right positions, as shown by the ar-
rows.

FIG. 6. Scattered intensities of stable mono-
disperse colloidal particles with diameters in the
range 1–10µm [left column(a)]. Particle size dis-
tributions expressed as weight fraction densities
[right column(b)] obtained by inverting the cor-
responding data of column(a). The arrows indi-
cate the values for the expected(certified) radii.
In the frames of column(a), the open symbols
represent the experimental data, while the solid
curves are the intensities reconstructed on the ba-
sis of the corresponding recovered distributions.
Data withQ,0.2 mm−1 are affected by shadow-
graph oscillations and were not considered in the
inversion.
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D. Kinetics of aggregating colloids

The suitability of the technique for characterizing nonsta-
tionary systems such as polymerizing or gelling solutions,
nucleation processes, or systems undergoing phase transi-
tions, was investigated by studying the kinetics of a typical
colloidal aggregation. The colloids were latex spheres 70 nm
in diameter(Duke Scientific Co.) at a number concentration
c0=5.631010 cm−3 (volume fraction 10−5), and the aggrega-
tion was induced by adding the divalent saltfMgCl2g
=15 mM. Under these conditions, the aggregation developed
rather slowly (several hours) following the modality of a
reaction limited aggregation(RLA), for which the mass frac-
tal dimension is expected to beDm=2.1 [12]. The scattered
intensities taken at different times after the addition of salt
are shown in Fig. 8(open symbols), in which for clarity we
have reported only theQ range not affected by the shadow-
graph oscillations. Each curve was obtained by processing an
adequate number of frames as outlined in Sec. II B. In order
to avoid correlations between consecutive frames, the tem-
poral distance between them was increased as aggregation
was going on, passing fromDt=5 s for the early times to
Dt=200 s for the final times. The figure shows the typical
behavior expected for the evolution of the scattered intensi-
ties in a colloidal aggregation experiment: a strong
s,3 decadesd increase of the zero-Q scattered intensity, ac-
companied by a remarkable change in the shape ofISsQd,
with the curve roll-off moving toward smallQ and the large
Q data lying on the same asymptote. The latter is the signa-
ture of the aggregate fractal morphology, and represents a
measure of their mass fractal dimensionDm, because asymp-
totically sq→`dIS,QS

−Dm. The data of Fig. 8 were fitted to
the so called Fisher-Burford function[13]

ISsQd =
ISsQ = 0d

f1 + s2/3DmdRG
2 Q2gDm/2 s21d

in which the fitting parameters were the zero-Q intensity
ISsQ=0d, the fractal dimensionDm, and the cluster gyration
radiusRG. The fittings, reported in Fig. 8 as solid curves, are
quite satisfactory and allowed us to estimateDm=2.1±0.1,
as expected for RLA.

Since the parameterISsQ=0d is proportional to the
(weight average) mass clusterMw, we can also probe the
relation betweenRG andMw for a fractal cluster, i.e.,

Mw , sRGdDm. s22d

The behavior predicted by Eq.(22) is confirmed by the
data shown in Fig. 9, in which the log-log plot ofISsQ=0d vs
RG shows a nice(asymptotic) scaling, characterized by the
expected exponentDm=2.1.

FIG. 7. Scattered intensities of stable bimodal
colloidal distributions with particles having diam-
eters different by a factor of about 2[left column
(a)] and corresponding recovered particle size
distributions[right column(b)]. Particle radii and
corresponding weight fractions are shown on col-
umn(a). Same considerations as those reported in
Fig. 6 apply.

FIG. 8. Scattered intensity distributions of aggregating colloids
(70 nm in diameter) at different times after destabilization with salt.
The solid curves represent the fitting of the experimental data to Eq.
(21). The dashed straight line shows the slope corresponding to a
mass fractal dimensionDm=2.1. For the sake of clarity, data af-
fected by shadowgraph oscillationssQ,0.2 mm−1d have not been
reported.
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V. CONCLUSIONS

In this paper we have reviewed the principles of the
HNFS technique and proposed a method of data analysis that
significantly improves its sensitivity and accuracy. The
method greatly relaxes the requirements on the optical/
mechanical stability of the instrumental setup, allowing the
technique to be profitably used for both particle sizing appli-

cations and characterization of nonstationary systems under-
going irreversible growth processes. When compared with
traditional low-angle light scattering methods, this technique
appears to be much more sensitive and accurate, free of all
the nasty problems associated with the stray-light subtraction
always present in traditional LALS.

The technique was tested by using calibrated colloidal
solutions, made of either stable or aggregating colloids. By
using an iterative inversion algorithm based on the Mie
theory, we have been able to recover with high accuracy the
size distributions of both monodisperse and bimodal samples
with particle diameters in the range 1–10µm. The floccula-
tion kinetics of small colloids undergoing a reaction limited
aggregation process was also successfully studied, obtaining
results quite consistent with the prediction expected for a
RLA process.

Finally we pointed out that the HNFS technique, in con-
junction with the new method of data analysis devised in this
work, is a potential method for carrying out also low-angle
dynamic light scattering. Thus simultaneous static and dy-
namic light scattering measurements would become feasible,
outstandingly increasing the potential of the technique.
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