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ON THE REGULARIZING POWER OF MULTIGRID-TYPE
ALGORITHMS∗

MARCO DONATELLI† AND STEFANO SERRA-CAPIZZANO†

Abstract. We consider the deblurring problem of noisy and blurred images in the case of known
space invariant point spread functions with four choices of boundary conditions. We combine an alge-
braic multigrid previously defined ad hoc for structured matrices related to space invariant operators
(Toeplitz, circulants, trigonometric matrix algebras, etc.) and the classical geometric multigrid stud-
ied in the partial differential equations context. The resulting technique is parameterized in order
to have more degrees of freedom: a simple choice of the parameters allows us to devise a quite pow-
erful regularizing method. It defines an iterative regularizing method where the smoother itself has
to be an iterative regularizing method (e.g., conjugate gradient, Landweber, conjugate gradient for
normal equations, etc.). More precisely, with respect to the smoother, the regularization properties
are improved and the total complexity is lower. Furthermore, in several cases, when it is directly
applied to the system Af = g, the quality of the restored image is comparable with that of all the
best known techniques for the normal equations ATAf = AT g, but the related convergence is sub-
stantially faster. Finally, the associated curves of the relative errors versus the iteration numbers are
“flatter” with respect to the smoother (the estimation of the stop iteration is less crucial). There-
fore, we can choose multigrid procedures which are much more efficient than classical techniques
without losing accuracy in the restored image (as often occurs when using preconditioning). Several
numerical experiments show the effectiveness of our proposals.
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1. Introduction. We consider the classical deblurring problem of noisy and
blurred images in the case of space invariant point spread functions (PSFs). More
precisely the problem is described by the following discrete problem (possible infinite)
with shift invariant kernel, which leads to a system whose ith equation is given by

g(i) =
∑
j∈Z2

hi−jf(j) + ν(i), i ∈ Z2.(1.1)

Here the mask H = (hs)s∈Z2 represents the blurring operator; ν(s), s ∈ Z2, is the
noise contribution; and g(s), s ∈ Z2, is the blurred and noisy observed image; the
problem is to recover the unknown true image f(s) in the window of observation
described by s ∈ {1, . . . , n}2. We assume that H is known, e.g., through experimental
measurements.

It is clear that the system described by (1.1) is underdetermined since we have n2

equations and (n + m)2 unknowns involved when the support of the PSF is a square
of size m ×m. In general, if the support of the PSF contains more than one point,
then the number of unknowns exceeds the number of equations by at least n. In order
to take care of this problem we can compute a least square solution or use appropri-
ate boundary conditions (linear or affine relations between the unknowns outside the
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window of observation and the unknowns inside the windows of observation) leading
to a square linear system. The least square solution in principle is computationally
very expensive even though recently a clever trick for reducing the related cost has
been devised (see [4, 31]). The use of the boundary conditions (BCs) approach is
usually preferred by practitioners. Among the BCs we count zero Dirichlet, periodic,
reflective or Neumann, and antireflective. As proved in [19, 25], the last two BCs
provide much more precise results with respect to the classical zero Dirichlet and pe-
riodic BCs. Moreover, in the noise-free case [25], the antireflective BCs improve by
one order of approximation the restoration of the true object when compared with the
reflective BCs. Indeed, the reflective and antireflective BCs have been introduced in
order to reduce or eliminate some artifacts located close to the borders of the image
and called ringing effects. These results are confirmed in the presence of noise also
when the use of regularization methods is highly recommended: in [10] we applied
Tikhonov-like methods and conjugate gradient (CG) with optimal parameters for a
slight modification of the linear system called reblurred linear system. When using
antireflective BCs, these techniques work better than the classical Tikhonov method
(see [28]) and CG for normal equations with optimal parameters, while for the re-
maining BCs the reblurred modification and the classical methods coincide when the
PSF is symmetric.

In this paper we propose the use of multigrid methods as regularizing procedures
(for the notion of regularization, see [3, 11, 28]): in order to gain in efficiency, the
multigrid methods that we consider are designed ad hoc for the structured linear sys-
tems arising from the various BCs. We observe two-level Toeplitz structures when
applying zero Dirichlet BCs, we have two-level circulant matrices when applying pe-
riodic BCs, and we find two-level matrices from the DCT-III algebra and from the
DST-I algebra when enforcing reflective and anti-reflective BCs, respectively. The
good news is that for all these structured matrices very efficient multigrid methods
have been devised [13, 26, 8]. When the two-level matrices are also banded at each
level, then the related overall cost is of the order of O(n2) arithmetic operations; if the
matrices considered are dense, then the cost is of the order of O(n2 log(n)) arithmetic
operations (for the algorithmic proposals see [13, 26, 8], and for the theoretical cost
and convergence analysis see [1, 24]). In conclusion, we can assume that from the
viewpoint of the complexity the multigrid proposal is a very good one. Here, taking
into account the presence of noise, we discuss how to modify the method in order to
introduce proper regularization features; in fact, this is the main aim of the paper.

In part of the numerical experiments we will assume that the image is located in
a uniform background (but this requirement is not absolutely essential as shown by
the example in section 5.1, and our proposal works essentially unchanged with general
images where we are forced to use a more precise BC such as the reflective or anti-
reflective). Under these special assumptions (often fulfilled in astronomical imaging),
the four mentioned BCs are equivalent from the model viewpoint, and indeed we do
not observe ringing effects. Therefore, in this ideal setting we can concentrate on
checking the quality of the reconstruction with respect to the deblurring/denoising
procedure.

To this end many techniques have been proposed: Tikhonov’s method, Riley’s
method (a variant of the Tikhonov technique when the blurring matrix is symmet-
ric and close to positive definite), Landweber, CG and its version applied to normal
equations (CGNE) with early stopping, and so on. Here we propose a new itera-
tive technique with early stopping of the iterations, which is of multigrid type. We
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combine an algebraic multigrid previously defined ad hoc for structured matrices re-
lated to space invariant operators (Toeplitz, circulants, trigonometric matrix algebras,
etc.) and the classical geometric multigrid designed for discretized partial differential
equations (PDEs). In particular the reduction to lower dimension is made by using
the Galerkin approach (without rediscretization); the structure of the prolongation
operator and of the restriction operator or projector (essentially the transpose of the
prolongation operator) is that of the algebraic multigrid indicated in [1] in order to
maintain the structure of the problem at each level; and finally, from the viewpoint of
the compact Fourier analysis [29], the prolongation operator is that of the classical ge-
ometric multigrid, i.e., the one representing the linear interpolation (a low-pass filter).
The resulting technique is parameterized in order to have more degrees of freedom. A
simple choice of the parameters allows one to devise a powerful regularizing method
whose features are the following:

(a) It is used with early stopping (as in CG, CGNE, and the Landweber method),
and its cost per iteration is about 1/3 of the cost of the method used as a
smoother (CG, Landweber, CGNE);

(b) it can be adapted to work with all the BCs used in the literature (Dirich-
let, periodic, Neumann/reflective or antireflective) since the basic algebraic
multigrid considered in [1] is an optimally convergent method for any of the
involved structures (Toeplitz, circulant, cosine-algebra, or sine-algebra) which
naturally arise from the chosen BCs;

(c) the minimal relative error with respect to the true image is significantly lower
with regard to all the best known techniques directly applied to the system
Af = g (Riley, CG, preconditioned CG, etc.), with optimal parameters, and
the associated curve of the relative errors with respect to the iterations is
“flatter” (at least in our set of experiments);

(d) when the smoothing step is applied to the normal equations ATAf = ATg we
observe that the minimal relative error and the total complexity are slightly
lower in comparison with all the best known techniques (Tikhonov, CGNE,
Landweber, etc.) with optimal parameters, and the associated curve of the
relative errors versus the iterations number is, at least in our set of experi-
ments, “flatter” (therefore, the quality of the reconstruction is not critically
dependent on the choice of iteration at which to stop);

(e) when the smoothing step is applied to the system Af = g the minimal relative
error is comparable with regard to all the best known techniques for the
normal equations ATAf = ATg, but in this case the convergence is much
faster;

(f) it can be combined with nonnegativity constraints (by using a simple projec-
tion at every step); in that case we observed a substantial improvement in the
total cost and in the precision when compared with the very precise but ex-
tremely slowly convergent projected CGNE and Landweber. Furthermore, in
principle, it can be used in connection with edge preserving procedures such
as total variation, Bayesian methods, and deterministic strategies (see, e.g.,
[21, 18, 14, 5]). Indeed, the nonconvex optimization (which characterizes all
these quite expensive techniques) should be solved by some kind of iterative
method which uses linearization, and our multigrid procedure can be applied
at this level (instead of using preconditioning as suggested in [7, 2]). Finally,
a priori information on the statistical nature of the noise could also be ex-
ploited for defining more appropriate interpolation and smoothing operators.
All these issues will be investigated in future work.
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Due to the applications in astronomy, we preferred the use of periodic BCs and
therefore the version of an algebraic multigrid for two-level circulant matrices (see
[26, 1]). However, as clearly discussed in sections 3 and 4, the regularizing power of
our multigrid technique does not depend on the BCs (only the algebraic part of the
procedure has to be conveniently adapted). Indeed, with reflective BCs the structure
is related to the DCT-III algebra, with antireflective BCs the structure is related to
the DST-I algebra, and optimal algebraic multigrid methods have been devised for
both (see [8, 13, 1]). Extensive numerical experiments in this direction, in order to
check the regularizing features of our multigrid with all the BCs considered, will be
part of a future work. We tried several images and, concerning items (c) and (d), the
results of our reconstruction are uniformly better with respect to the classical methods
(Riley, CG, Richardson); moreover, the associated complexity is of the same order as
the usual techniques. Concerning items (e) and (f), the conclusions are in some sense
dual since the quality of our reconstruction is comparable to or slightly better than
the best methods (Tikhonov, CGNE, Landweber with optimal parameters), but our
procedure is much faster when compared with the classical iterative regularizers such
as CGNE and Landweber.

We stress that multigrid procedures have already been considered in the image
restoration literature by Chan, Chan, and Wan [6], Huckle and Staudacher [17], and
the first author [9]. However, these works represent only numerical linear algebra con-
tributions and do not concern regularization. The authors consider the regularized
system (by using total variation and standard Tikhonov approaches, respectively),
and then they use multigrid in order to obtain a fast convergence on the algebraic
system (and not for regularization purposes). Our approach tries to combine numer-
ical linear algebra requests (low complexity, exploitation of the structured matrices,
etc.) and regularization issues (a good precision at the optimal iteration). No explicit
comparison is made with the preconditioned conjugate gradient (PCG) and the PCG
for normal equation (PCGNE) methods since the quality of their reconstructions is
generally worse (see, e.g., [16, 12]) when compared with standard CG and CGNE
methods; consequently, in terms of quality reconstruction and numerical complexity,
a comparison with the latter two techniques is sufficient.

In summary, the main aim of this paper is to show that the proposed multigrid
method (MGM) is a general framework: it can be used to improve the quality of the
restored image and/or to reduce the computational cost of an iterative regularizing
method which is used as a smoother in the multigrid approach. Furthermore, it
inherits all the properties of the iterative regularizing methods; for instance, it can
be combined with nonnegativity constraints. Finally, we emphasize that usually it is
not strictly necessary to resort to a smoother applied to the normal equations since
the multilevel strategy performs a further filtering.

The paper is organized as follows: in section 2, we describe the classical (geomet-
ric) multigrid, while the algebraic multigrid for shift-invariant structured matrices
(belonging to trigonometric matrix algebras or to the Toeplitz class) is described
in section 3. In section 4 we adapt the algebraic multigrid algorithm to the image
restoration case: we essentially use projectors classically employed in the context of
PDEs but now interpreted in the language of signals and images; furthermore, we give
a theoretical explanation of why the technique is effective and furnish an analysis of
the arithmetic cost (per iteration). In section 5 we present a wide experimentation
with various choices of PSFs and signal to noise ratios (SNRs). Moreover, we compare
our proposal with other iterative regularizing methods like CG, CGNE, Richardson,



REGULARIZING POWER OF MULTIGRID-TYPE ALGORITHMS 2057

Landweber, and the Tikhonov technique in terms of both resulting accuracy and com-
plexity. In section 6 we show that the multigrid regularization is a general framework
which can lead to several generalizations. Section 7 is then devoted to discussing the
perspectives that such a class of multigrid-type algorithms offers in terms of regular-
izing features.

2. The multigrid algorithm. For solving the linear system Anxn = bn, the
two-grid method (TGM) refers to a smaller linear system Akxk = bk with k < n.
In its simpler version, the TGM is the combination of two fixed-point methods: the
smoother and the coarse grid correction (CGC). More precisely we have

yn := TGM(xn,bn, Sn, ν)

If (size(bn) ≤ c) Then yn = A−1
n bn

Else x̃ := Smooth
(
xn,bn, Sn, ν

)
bk := P k

n (bn −Anx̃n)
(P k

nbn in precomputing phase)
Ak:= P k

nAn(P k
n )T (in precomputing phase)

yk := A−1
k bk

yn := x̃n + (P k
n )

T
yk,

(2.1)

where c is a small constant dimension under which it is not useful to apply a two-
grid strategy. By Smooth

(
xn,bn, Sn, ν

)
we denote the application of ν steps of the

smoother method defined by the iteration matrix Sn. In this work we do not use
postsmoothing, so the presmoother is simply called the smoother. The smoother is a
fixed-point iteration of the kind

x(j+1)
n = Snx

(j)
n + cn,(2.2)

where cn is easily computable (low cost) and is implicitly defined as An(In−Sn)−1cn =
bn with In being the identity matrix of dimension n. Usually the smoother is a
method like damped Jacobi, Richardson, or Gauss–Seidel, which generally are slowly
convergent iterative solvers when applied to ill-conditioned linear systems. The CGC
operator projects the error equation into a subspace of dimension k (usually k ≈ n/2d

in d dimensional problems), solves the smaller system, and then interpolates the
solution to come back to the space of higher dimension n. Formally, the corresponding
iteration matrix is defined as

CGCn = In − Pn
k A

−1
k P k

nAn,(2.3)

where the full-rank P β
α ∈ R

β×α projects R
α into R

β and Ak ∈ R
k×k is the projected

version of An in the lower dimensional space. Following the Galerkin formulation,
we have Ak = P k

nAnP
n
k and Pn

k = c(P k
n )T with c constant and where, without loss

of generality, we take c = 1. We stress that CGCn defined in (2.3) is a projection
matrix having eigenvalues equal to zero or to one (it is a filter in the space spanned
by the columns of A−1

n P k
n ), and therefore it is not a convergent iterative method.

However, its combination with the smoother is the TGM whose iteration matrix is
TGMn = CGCn ·Sν

n: if we choose the projector Pn
k and/or the smoother Sn

k in such a
way that CGCn and Sν

n have spectral complementary behavior [23], then the resulting
TGM can be very effective for the solution of linear systems arising from elliptic
PDEs [15] or with structured coefficient matrices related to space invariant operators
[1, 13, 8]. More precisely, from an algebraic point of view [22, 23], in order to obtain
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an effective method the smoother and the CGC must bring down the error in two
orthogonal subspaces. Therefore, we can freeze CGCn and then choose the smoother
appropriately as in the geometric multigrid, or we can consider a fixed smoother and
then choose the projector appropriately for the CGC as in [22, 1]. Now we are ready
to introduce and describe a true multigrid method. In fact, the main difference with
respect to the TGM is as follows. Instead of solving the linear system directly with
coefficient matrix Ak, we can apply recursively the projection strategy obtaining an
MGM: in this case the CGC operator CGCn is replaced by an approximation, since
the matrix A−1

k is approximated by (Ik −MGMγ
k )A−1

k as implicitly described in (2.5)
with k = nl−1. Concerning notation, we will emphasize the recursion levels. If l is
the maximal number of recursive calls, then MGMi, i = 1, . . . , l, denotes MGMni

with 0 < n0 < n1 < · · · < nl = n and nj being the real matrix sizes. In this way

MGMl = MGMnl
= MGMn, Sl = Snl

= Sn, bl = bnl
= bn, x

(j)
l = x

(j)
nl = x

(j)
n ,

and the smaller dimension k of the TGM method will become the dimension after
the first recursive call, i.e., k = nl−1. Let γ be the number of recursive calls at each
level, let ν = (∗, ν1, ν2, . . . , νl) with νi being the number of smoothing steps at level i
(at level zero, of course, ν0 = ∗ means that no smoothing is applied), and let us use
the Galerkin formulation. Then the corresponding multigrid algorithm generates the

approximate solution x
(j+1)
n = MGM(l,x

(j)
n ,bn, Sn,ν, γ) according to the following

rule:

yi := MGM(i,xi,bi, Si,ν, γ)

If (i = 0) Then Solve(A0y0 = b0)
Else x̃i := Smooth

(
xi,bi, Si, νi

)
bi−1 := P i−1

i (bi −Aix̃i)

(P i−1
i bi in precomputing phase)

Ai−1:= P i−1
i Ai(P

i−1
i )T (in precomputing phase)

yi−1 := 0i−1

for k = 1, γ
yi−1 := MGM(i− 1,yi−1,bi−1, Si−1,ν, γ)

yi := x̃i + (P i−1
i )

T
yi−1.

(2.4)

Since the multigrid is again a fixed-point method, we can express x
(j+1)
n as MGMlx

(j)
n

+(In − MGMl)A
−1
n bn, where the iteration matrix MGMl is recursively defined as

follows [29]:

⎧⎨
⎩
MGM0 = O,

MGMi =
[
Ini−(P i−1

i )T
(
Ini−1−MGMγ

i−1

)
A−1

i−1P
i−1
i Ai

]
· Sνi

i , i = 1, . . . , l.

(2.5)

For γ = 1 and γ = 2 we have the V -cycle and the W -cycle, respectively, and for
γ = 1 and l = 1 we obtain the TGM algorithm if Solve(A1y1 = b1) is y1 = A−1

1 b1.
When considering the classical geometric multigrid, (P i−1

i )T is fixed and usually
represents the linear interpolator, while the smoother is a simple iterative method
(usually damped). For the algebraic multigrid described in [1], the smoother is a
priori decided to be the damped Richardson, while P i−1

i is a function of the entries
of the coefficient matrix.
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3. A multigrid scheme for shift invariant operators. As already mentioned
in the introduction, the use of BCs leads to linear systems with coefficient matrices
belonging to the two-level Toeplitz class or to two-level matrix algebras:

BCs An essentially is a
Dirichlet two-level Toeplitz
periodic two-level circulant

reflective (Neumann) two-level DCT-III
antireflective two-level DST-I.

More specifically, when considering the first three choices of the BCs, the related
structure is exact while, in the case of antireflective BCs, we do not find exactly a
DST-I matrix. However, the solution of the associated linear system can be reduced
to the solution of a linear system with a coefficient matrix belonging to the two-level
DST-I algebra (see [25]).

As briefly observed in the introduction, the choice of the BCs is relevant for
the precision of the restored image. In particular, when inappropriate BCs are em-
ployed, some artifacts appear close to the borders of the image and often, due to
the ill-conditioning of the discrete blur operator, they spread throughout the image.
More precisely, these artifacts, called ringing effects, come from artificial discontinu-
ities introduced in the image by the imposed BCs. In this respect and with regard
to computational requirements, a simple classification can be made. Zero Dirichlet
BCs impose an artificial discontinuity at the borders, and the resulting structure is
two-level Toeplitz (i.e., block Toeplitz with Toeplitz blocks); periodic BCs can again
impose an artificial discontinuity at the borders and the resulting structure is two-level
circulant (i.e., block circulant with circulant blocks). Symmetric or reflective or Neu-
mann BCs preserve the continuity of the image but not the continuity of its normal
derivative; as a consequence the ringing effects are significantly reduced (by one order
of magnitude), and the resulting structure is two-level Toeplitz + Hankel. Finally,
antireflective BCs preserve the continuity of the image and of its normal derivative,
and the resulting structure is two-level Toeplitz + Hankel + low rank correction.
From a linear algebra viewpoint, for two-level circulant matrices both solution of a
linear system and matrix-vector product can be achieved in O(n2 log n) complex op-
erations by fast Fourier transforms (FFTs); for two-level Toeplitz or Hankel matrices
the multiplication by a vector can be done in O(n2 log n) complex operations by using
FFTs, while the solution of an associated linear system is extremely costly in general.
However, if the PSF is doubly symmetric for reflective and antireflective BCs, the
matrix-vector multiplication and the solution of a linear system can be obtained in
O(n2 log n) real operations by fast cosine transforms (DCT-III) [19] or by fast sine
transforms (DST-I) [25], respectively.

The rest of the section is devoted to the definition of the relevant matrix classes
(circulants, DCT-III and DST-I algebras, Toeplitz structures) and to a brief descrip-
tion of the essentials of the related multigrid procedures.

3.1. Matrix algebras and Toeplitz matrices. We introduce the matrix alge-
bras by following a unifying approach first in the one-dimensional (1D) case (signals)
and then in the 2D case (images). Therefore, we denote with the multi-index n the
size of the problem, which is n = (n(1), n(2)) in the 2D case for an n(1) ×n(2) problem
with algebraic size N = n(1) · n(2), while in the 1D case it is simply n = n(1) = N .

In the 1D case let f : R → R and let Qn be the unitary matrix (i.e., Q−1
n =

QH
n ) related to our matrix algebras. We can define the Hermitian matrix An =

QH
n · Diagf(w[n]) · Qn, where w[n] is a fixed vector of R

n and f(w[n]) denotes the
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vector whose components are f(w
[n]
i ), i = 1, . . . , n. As a consequence q

[n]
i = QH

n ei

is a unitary eigenvector of An related to the eigenvalue f(w
[n]
i ). Furthermore, the

generating function f defines An univocally, and hence we can denote An by An(f),
where A ∈ {C,N ,S}, which means that Cn(f) is circulant, Nn(f) is DCT-III, and
Sn(f) is DST-I. For any of the considered algebras, the mathematical objects Qn and
w[n] are defined in Table 3.1.

Table 3.1

Matrix algebras in the 1D case.

Algebra A In [w[n]]i∈In [Qn]i,j∈In

Circulant C 0, . . . , n− 1 w
[n]
i = 2πi

n
1√
n

[
eijw

[n]
i

]

DCT-III N 0, . . . , n− 1 w
[n]
i = πi

n

√
2−δj,1

n

[
cos

(
(j + 1

2
)w

[n]
i

)]
δ1,1 = 1, δj,1 = 0 for j �= 1

DST-I S 1, . . . , n w
[n]
i = πi

n+1

√
2

n+1

[
sin

(
jw

[n]
i

)]

In the 2D case, a two-level matrix of partial dimensions n = (n(1), n(2)) and
true dimension N = n(1) · n(2) can be described as an n(1) × n(1) block matrix whose
elements are n(2)×n(2) block matrices. The two-level Toeplitz matrix Tn(f) is defined
as

Tn(f) = Tn(1),n(2)(f) =
∑

|j1|<n(1)

∑
|j2|<n(2)

a(j1,j2)J
[j1]

n(1) ⊗ J
[j2 ]

n(2)

by means of the Fourier coefficients of f

a(j1,j2) =
1

4π2

∫
[−π,π]2

f(x, y)e−i(j1x+j2y)dxdy, i2 = −1.

Here J
[j ]
m ∈ R

m×m is the matrix whose entry (s, t) equals 1 if s − t = j and is
0 elsewhere. The circulant, DCT-III, and DST-I two-level matrix algebras can be
defined as the matrix algebras generated from Qn(1) ⊗ Qn(2) , with Qn(1) and Qn(2)

selected in the same row of Table 3.1. Of course we can associate multilevel matrices
Cn(f), Nn(f), and Sn(f) to every bivariate function f : R

2 → R. Therefore, An(f) =

An(1),n(2)(f) = (Qn(1) ⊗ Qn(2))TDiagf(w[n])(Qn(1) ⊗ Qn(2)), where w[n] = w[n(1)] ×
w[n(2)] and w[nj ], j = 1, 2, are the same as w[n] in Table 3.1.

It is known (see, e.g., [25, 19]) that if f is a nonnegative trigonometric polynomial,
all the matrices An(f), A ∈ {C,N ,S, T}, are (essentially) banded and, whenever f
takes the zero value, they are ill conditioned. Furthermore, we require f even (with
respect to each variable) in the DCT-III and DST-I cases.

3.2. A multigrid algorithm preserving the structure. We define a multi-
grid algorithm for two-level Toeplitz, circulant, DCT-III, and DST-I matrices using
the Galerkin formulation. The algebraic requirement to define an MGM is that, for
each recursion level i = 1, . . . , l, the coefficient matrix Ai has to belong to the same
matrix class (Toeplitz, circulant, DCT-III, or DST-I) allowing the recursive applica-
tion of the algorithm. Let Ni be the dimension of the problem at the level i (Nl = N);
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Table 3.2

Dimensions and cutting operators in the 1D case for i = 1, . . . , l.

Circulant Toeplitz & DST-I DCT-III

nl 2k 2k − 1 2k

ni−1
ni
2

ni−1
2

ni
2

Kni ∈ R
ni−1×ni

[
1 0

1 0 ... ...
1 0

] [
0 1 0

0 1 0... ... ...
0 1 0

] [
1 1 0

1 1 0... ... ...
0 1 1

]

the algebraic requirement is fulfilled with an appropriate choice of the projector
P i−1
i : R

Ni → R
Ni−1 . More precisely, in the 1D case we have P i−1

i = KniAni(pi)
for i = 1, . . . , l, where Ani

(pi) belongs to the same class as Ani
(fi) and Kni

is the
cutting matrix defined in Table 3.2 that preserves the same structure at each level (pi
is a trigonometric polynomial whose choice will be discussed a bit later).

We stress that in the algebraic case we have Ani
(pi)Ani

(fi) = Ani
(pifi), while

for the Toeplitz class the structure is preserved at each level only if pi has degree at
most one (for pi of greater degree we can change Kni , adding some zero columns at
the beginning and at the end; see [1]). The choice of pi is a technical task and, in
order to obtain a fast solver which converges within a constant number of iterations
independent of the size of the problem, it has to satisfy two analytic conditions for
which we refer to [24, 1, 8]. In the present work we need only a simple projector,
which is the classic linear interpolation used in the geometric multigrid and such
that it preserves the structure of the matrix at each level. Therefore we take P i−1

i

associated with the related BCs generated by pi(x) = (1 + cos(x)), which maintains
also the Toeplitz structure in the case of Dirichlet BCs.

In the 2D case we have Ni = n
(1)
i n

(2)
i , where the dimensions n

(1)
i and n

(2)
i evolve

as in the Table 3.2. Moreover, P i−1
i = (K

n
(1)
i

⊗K
n

(2)
i

)A
n

(1)
i ,n

(2)
i

(pi), with pi being a

bivariate trigonometric polynomial. In this work, extending the 1D choice, we take

pi(x, y) = (1 + cos(x))(1 + cos(y)),(3.1)

that is, bilinear interpolation.
When damped Richardson (iteration matrix given by Si = Ii − ωiAi(fi)) is used

as the smoother for Ai = Ai(fi), the relaxation parameter ωi has to be in [0, 2/‖fi‖∞].
In our experimentation we take ωi = 1/‖fi‖∞ (classical Richardson without damping)
according to the choice performed in [1], but, of course, different values of ωi can be
explored.

From a computational cost point of view, the assembling of Ai = Ai(fi), for
i = 0, . . . , l − 1, does not increase the cost of the whole iterative method since the
number of nonzero entries of P i−1

i in the 1D case is less than 3Ni and in the 2D case
is less than 5Ni for i = 1, . . . , l. Therefore, Ai−1 can be computed within a number
of operations substantially lower than the matrix-vector product which involves the
matrix Ai. Furthermore, all the matrices Ai can be formed in a setup phase before
starting the MGM and with a total computational cost lower than the matrix-vector
product with the matrix Al. Indeed, the considered precomputing phase cost is of
O(log(N)) if f is a trigonometric polynomial with few nonzero entries with respect
to N (Al sparse), and it is of O(N log(N)) if Al is a dense matrix.
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Concerning the arithmetic cost of one multigrid iteration, for a PSF with small
support (sparse linear systems), up to constant order terms, and without considering
the recursive calls, the computational cost at each level i is lower than cNi with c con-
stant. Therefore, the total computational cost C(MGMn) of one complete multigrid
cycle in 2D is

C(MGMn) ≤

⎧⎪⎪⎨
⎪⎪⎩

4
3cN + O(log(N)), γ = 1,
2cN + O(log(N)), γ = 2,
4cN + O(log(N)), γ = 3,
O(N log(N)), γ = 4

(3.2)

(see [29] for further details).

4. A multigrid algorithm with regularizing properties. In this section we
describe a multigrid algorithm which is able to improve the regularizing properties
of the iterative method used as a smoother. The considered feature derives from a
particular choice of the projector which is obtained by linking the geometric multigrid
with its interpretation in terms of algebraic multigrid. First we give the idea behind
the regularization through projection and we explain why it works, and then we use
it to define a multigrid regularizing strategy.

4.1. Regularization through projection. We give some arguments to explain
why MGM can improve the regularization property of iterative methods like CG,
Richardson, CGNE, or Landweber. For the sake of simplicity, the description is
provided in the 1D case, but the same analysis works in the multidimensional case as
well.

When the PSF is space invariant and we impose BCs the coefficient matrix is gen-
erated by a function that is zero or close to zero in a (possibly large) neighborhood of
π and reaches the maximum value (which is 1, thanks to the normalization condition)

at zero. For instance, in Figure 4.1 a Gaussian PSF with mask a = [e−x2

]/c and its

generating function z(y) =
∑50

i=−50 aie
−iy are shown. Here x is an equispaced sam-

pling of 101 points in [−10, 10], and c is a normalization constant such that
∑

i ai = 1.
Let An(z) be Toeplitz, circulant, DCT-III, or DST-I; then its eigenvalues are about
an evaluation of z(y) over a uniform sampling of y in [0, π], and the eigenvectors are
discrete frequency vectors whose frequency is about yn

2π (see [25, 30]). Therefore, since
the ill-conditioned subspace is associated with small eigenvalues, from Figure 4.1 we
can see that this degenerating subspace has very large dimension (this characterizes
the discretized ill-posed problems) and it essentially contains the high frequencies
subspace where the noise usually lives. Classical iterative methods like CG and
Richardson first reduce the error in the well-conditioned subspace, low frequencies in
our case [1, 6, 26]. For instance, using the previous PSF and the original signal f
defined as a uniform sampling of f(x) = sin(x) in [0, π], we create the observed signal
g as g = An(z)f . Solving the linear system An(z)x = g with Richardson, taking an
initial error which has components in low and high frequencies, the low frequencies are
reduced after a few iterations, while the high frequencies are still almost unchanged
after 10 iterations (see Figure 4.2). Therefore, the error has the usual semiconvergence
property: it decreases while we are working in the low frequencies subspace, reaches
a minimum, and then increases again when we arrive to work in the (unfortunately
large) ill-conditioned subspace (high frequencies in our case).
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Fig. 4.1. Gaussian PSF normalized with a constant c and its generating function.
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Fig. 4.2. Components of the restoration error.

In order to obtain an effective and fast method according to the algebraic multi-
grid theory [1], the algebraic multigrid used in [9] projects the system in the high
frequencies subspace because this is the space where the smoother is ineffective and
where we would like to obtain a better approximation. Unfortunately, the high fre-
quencies not only contain fundamental parts of the image (e.g., the nonnegligible high
frequency portion of the edges) but also a substantial part of the noise. Therefore, as
already shown in [9], we obtain the noise explosion already after a few iterations, and
consequently we must resort to the Tikhonov regularization and apply the algebraic
multigrid to the regularized system. The good news is that we obtain a robust method
which, in some cases, shows a convergence speed independent of both the matrix size
and the regularization parameter (see [1, 26, 9]).

Here we would like to propose a different approach, that is, use the MGM directly
as a regularizer. Instead of projecting into the high frequencies subspace, the idea
is to project into a subspace where we would like to discriminate between the noise
contribution and the edges which are of great importance for identifying an image.
The latter important feature can be obtained via projection techniques employed in
the geometric multigrid. It is well known that the MGM is an optimal solver for PDEs,
where the ill-conditioned subspace is spanned by low frequencies. For instance, in the
Poisson problem we have as coefficient matrix Tn(z), where z(x) = 2 − 2 cos(x), x ∈
[0, π], that vanishes at zero and grows monotonically in [0, π], reaching its maximum
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at π. The simplest projector used for PDEs is the weighted average

P i−1
i =

1

4

⎡
⎢⎢⎢⎣

1 2 1
1 2 1

. . .
. . .

1 2 1

⎤
⎥⎥⎥⎦
ni−1×ni

,

while the interpolation operator is the simple linear interpolation 2(P i−1
i )T . We

observe that the jth column of the interpolation operator is given by

0.5 [ej−1 + 2ej + ej+1] , ek = kth canonical vector.

These vectors, looked at as samplings of functions, have nontrivial components in lower
frequencies, but their high-frequency contribution is not generic since it is associated
with the necessity of preserving the jumps which characterize the edges of an image.
Indeed the jth column of the interpolation operator can be seen as the sum of box
functions or can be interpreted as a local linear spline: note that it is reminiscent of
the basis functions in the wavelets theory. Of course in a real image restoration, 2D
case, the projector will be a tensor product of a given pair of functions having the
aforementioned shape.

We remark that P i−1
i is the same projector used in the algebraic multigrid when

considering Dirichlet BCs and with a related generating function having only one
zero at the origin with order almost two. More generally, the projection into the low
frequencies subspace can be obtained as P i−1

i = KiAi(p) with p(x) = 1 + cos(x),
where A ∈ {C,N ,S, T} according to the BCs used. Therefore, the latter is a good
choice since it allows one to project into the low frequencies subspace where there is
less noise explosion. In this way we force the smoother to better solve the problem
in the subspace where there is less noise. We remark that by projecting into the low
frequencies subspace we lose the optimality property of the algebraic multigrid, but
now the MGM is used as a regularizer and not as a fast solver for algebraic systems.
Finally, if we have a regularizing iterative method like CG, Richardson, CGNE, or
Landweber, we can include it as a smoother, thereby improving the quality of the
restored image.

From another point of view the effect of P i−1
i on the observed image g is like a

reblurring (see [3, 10]) obtained from a weighted average and after a down-sampling
by a factor of two as a compression operation. Moreover, the effect of the linear
interpolation (P i−1

i )T on the solution computed in the coarser grid is a smoothing
effect, since the linear interpolation can reproduce well only the smooth components;
it is unable to reproduce those highly oscillating components which contain the highest
percentage of noise.

4.2. Two-level regularization. Using the idea described in the previous sec-
tion we can define a two-level (TL) regularizing method with the following algorithm:

yn := TL(xn,bn, Sn, β)

bk := P k
n (bn −Anxn) (P k

nbn in precomputing phase)
Ak:= P k

nAn(P k
n )T (in precomputing phase)

yk := Smooth
(
0k,bk, Sk, β

)
yn := xn + (P k

n )Tyk.

(4.1)
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Here Sk is the same smoother as Sn but of different size (which has to be a regularizing
method) applied to Ak, and β is defined in order to reach the best restoration error
(instead of defining β, it is possible to apply an early stopping criterion to the coarser
system Akyk = bk). The TL looks like a TGM where at the finer level no smoother
is applied. But perhaps the main difference between TL and TGM is that, at the
coarser level, instead of solving the system directly, TL applies β iterations of the
smoother.

Moreover, employing a uniform multigrid language, the above algorithm belongs
to the classical multigrid scheme where, following the notation of section 2, it can be
formulated as

TL(xn,bn, Sn, β) = MGM(1,xn,bn, Sn, (∗, 0), 1), where
Solve(A0y0 = b0) → y0 := Smooth

(
00,b0, S0, β

)
.

(4.2)

Since at the finer level we do not apply any smoother, we can also interpolate the
solution obtained at each iteration and apply the early stopping criterion at the finer
level. This means that performing one iteration of TL and β iterations of smoother
is exactly the same as performing β iterations of TL and one of smoother.

Proposition 4.1. Let x
(j+1)
n = TL(x

(j)
n ,bn, Sn, 1), for j = 0, . . . , β − 1, and let

y
(β)
n = TL(x

(0)
n ,bn, Sn, β). Then x

(β)
n = y

(β)
n .

Proof. It is sufficient to prove the assertion for β = 2; indeed, for a generic β
the claim follows by induction. Furthermore, since TL is a fixed-point method and

since the starting point x
(0)
n is the same for the two iterations, it is sufficient to show

that the two methods which generate x
(β)
n and y

(β)
n have the same iteration matrix.

Recalling that the smoother is defined as in (2.2), it holds that

x(1)
n = TL(x(0)

n ,bn, Sn, 1) = (In −RnAn)x(0)
n + Rnbn,

Rn = (P k
n )T (Ik − Sk)A

−1
k P k

n ,

and therefore x
(2)
n = (In −RnAn)2x

(0)
n + (2In −RnAn)Rnbn. Furthermore,

y(2)
n = TL(x(0)

n ,bn, Sn, 2) = (In −QnAn)x(0)
n + Qnbn,

Qn = (P k
n )T (Sk + Ik)(Ik − Sk)A

−1
k P k

n ,

and we have only to prove that (In−RnAn)2 = (In−QnAn). Since Ak = P k
nAn(P k

n )T ,
we finally infer

(In −RnAn)2 = In − 2RnAn + RnAnRnAn

= In − 2(P k
n )T (Ik − Sk)A

−1
k P k

nAn + (P k
n )T (Ik − Sk)

2A−1
k P k

nAn

= In − (P k
n )T (Ik − Sk)(Ik + Sk)A

−1
k P k

nAn

= In −QnAn,

and the proof is concluded.
We remark that the latter proposition could be used for analyzing the convergence

features and the regularization effects of the TL. Indeed, informally speaking, if we
use an iterative regularizing method as smoother (let us say Richardson, CGNE, etc.),
then in our two-level algorithm we are anticipating or postponing a low-pass filter,
and therefore it is not possible that the global two-level iteration amplifies the noise
contributions.
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4.3. Multigrid regularization. According to the description in section 2, the
TGM leads to an MGM in a natural way. Similarly, the TL regularization previously
proposed can be applied recursively, obtaining a multigrid regularization. To this
end, the definition contained in (4.2) with β = 1 is especially useful. In terms of
regularization, this means that at the coarser level we apply a smoothing iteration
and then we project again into the well-conditioned subspace. This can be repeated
until we reach a small grid (e.g., 8 × 8), where the associated linear system can be
solved directly since the problem is computationally negligible, and the noise explosion
is easily controllable and avoidable. If the observed image is of size n(1) × n(2), then
we obtain a regularizing multigrid algorithm taking

1. l = min{log2(n
(1) − 8), log2(n

(2) − 8)},
2. ν = (∗, 1, . . . , 1, 0),
3. Solve(A0y0 = b0) → y0 = A−1

0 b0,
4. Sn = an iterative regularizing method.

The choice of γ will be discussed in section 6: we notice that its value can be increased
in order to perform more work in the well-conditioned subspace. However, the V -
cycle (i.e., γ = 1) can be a good choice for every kind of problem (high or low
percentage noise, good or bad BCs, etc.). Therefore, in the following experimentation
we will use the notation MGM(Sn, γ) instead of MGM(min{log2(n

(1) − 8), log2(n
(2) −

8)},x(j)
n ,bn, Sn, (∗, 1, . . . , 1, 0), γ), because with the latter choices Sn and γ are the

only free parameters. For damped Richardson the relaxation parameter is chosen
according to section 3.2, and so Sn = In − An(f)/‖f‖∞ is briefly denoted by Sn =
Rich. The Landweber method is exactly the application of Richardson to the normal
equations, and hence it will be denoted by Sn = RichNE. The classical MGM theory
requires that the smoother be a stationary method even if better performances can be
observed when nonstationary methods are used, possibly with flexible preconditioning
(for the theory of flexible preconditioning, see, e.g., the very interesting paper [27]).
Here the point of view is different since we are interested in the regularization features
of the method, i.e., in its semiconvergence. We will denote the use of the CG method
as a smoother by Sn = CG, and when it is applied to the normal equations we write
Sn = CGNE. Since all the parameters of the problem are fixed, as for the MGM,
concerning the TL method we indicate only the smoother (i.e., TL(Sn)) since we
assume β = 1 to compute the restoration error at each iteration.

When the observed image has a high percentage of noise or the PSF is not positive
definite, it is necessary to resort to the normal equations, and usually the preferred it-
erative methods are CGNE or Landweber. These methods require only matrix-vector
products and thus they can be plainly applied to the normal equations without re-
quiring the effective computation of the matrix AT

nAn. When we use the Galerkin
formulation in the MGM, the coefficient matrix at each level is obtained through pro-
jections, and hence it is necessary to assemble the coefficient matrices AT

i Ai at every
level i. For Dirichlet BCs, this leads to a loss of the TL Toeplitz structure. When con-
sidering the remaining BCs, for which the related computations can be performed by
convolutions, we observe again computational problems. More precisely, the resulting
coefficient matrices at each level have a double block bandwidth, and each block has
a double bandwidth: therefore, every matrix-vector product is increased by a factor
of 4 instead of 2, as happens when applying CG to the normal equations (CGNE) or
Landweber. To avoid this kind of problem and to emphasize the robustness of the
proposed technique, we propose using the classic Galerkin formulation, projecting at
each level i only the matrix Ai, and applying as smoother an iterative method for
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normal equations like CGNE or Landweber. This choice follows the philosophy ac-
cording to which the proposed MGM is a framework for improving the regularization
properties of a classic regularizing method, and therefore it should be applied directly
to the original system with coefficient matrix An.

4.4. Computational cost analysis. In this section we analyze the computa-
tional cost of one iteration of the multigrid regularizing method MGM(Sn, γ). More
specifically, we will consider (3.2) by giving details on the constants involved and by
comparing the resulting cost with that of a single smoothing iteration.

For the sake of simplicity, we consider square images of size n × n, with n = 2l,
and therefore the algebraic size of the linear system at each recursion level is Ni = n2

i ,
with Ni−1 = Ni/4, i = 0, . . . , l, according to Table 3.2 (in the Toeplitz and DST-
I cases this is not exactly true since we work with odd dimensions, but the same
considerations hold). The computational cost of MGM(Sni

, γ) at a fixed level i is

C(MGM(Sni , γ)) = γC(MGM(Sni−1 , γ)) + P (ni) + W (ni), i = 1, . . . , l,(4.3)

where P (ni) is the projection cost and W (ni) is the cost of one smoother iteration
Sni

. Without loss of generality we assume C(MGM(Sn0 , γ)) = 1; indeed, in a practical
implementation we stop the recursion a little before, but for n large enough the direct
solution at the coarsest level is negligible.

The computational cost of the projection at the level i is the sum of two matrix-
vector products, one with P i−1

i and the other with (P i−1
i )T , since we take pi as in

(3.1)—the first one is 7/4Ni and the second one is 7/8Ni. However, more generally
(it will be useful later), we have

P (ni) = bNi,(4.4)

and in our case b = 21/8.
We consider a PSF with small support with respect to the size of the image,

obtaining W (n) = aN with a > b > 1. Usually a 	 b, especially if the smoother is
applied to the normal equations. From the analysis in [1], the bandwidth of Ai−1 is
about half of the bandwidth of Ai along both directions (at blocks and inside each
block); hence

W (ni) < aNi.

Since Ni−1 = Ni/4, i = 1, . . . , l, from (4.3) we have the following general behavior:

C(MGM(Sn, γ)) =

⎧⎨
⎩

O(N), γ < 4,
O(N log(n)), γ = 4,
O(N log4(γ)), γ > 4.

(4.5)

However, in the cases γ = 1, 2, 3 we can provide an explicit evaluation of the constants
involved as functions of a and b. Indeed, by applying relation (4.3) recursively and
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assuming W (nl) = 0, we infer

C(MGM(Sn, γ)) = γC(MGM(Sn2 , γ)) + P (n1) = · · ·

=

l−1∑
i=0

P (nl−i)γ
i +

l−1∑
i=1

W (nl−i)γ
i + γl

<

l−1∑
i=0

P (nl−i)γ
i +

l∑
i=1

W (nl−i)γ
i

< bN

l−1∑
i=0

(γ
4

)i

+ aN

l∑
i=1

(γ
4

)i

<
(4b + γa)N

4 − γ
,

which can be summarized as

C(MGM(Sn, γ)) <

⎧⎪⎪⎨
⎪⎪⎩

(4b

3
+

a

3

)
N, γ = 1,

(2b + a)N, γ = 2,

(4b + 3a)N, γ = 3.

Therefore, under the assumption a 	 b, which is usually satisfied in every practical
application, we deduce the following relationship between the computational cost of
MGM(Sn, γ) and that of the smoothing step:

C(MGM(Sn, γ)) ≈

⎧⎪⎪⎨
⎪⎪⎩

1

3
W (N), γ = 1,

W (N), γ = 2,

3W (N), γ = 3.

(4.6)

We emphasize that the case of the V-cycle (γ = 1) is very interesting since its
cost is about one third of a standard smoother applied to the finest grid. Moreover,
when the assumption about the small support of the PSF is not satisfied, then the
advantage of the multigrid algorithms with respect to the smoothers becomes even
stronger. More specifically, for a generic PSF, the matrix-vector product is computed
through fast discrete transforms and then W (ni) = O(Ni log(Ni)), while the projec-
tion is identical. Therefore, the computational cost of the smoother dominates the
computational cost of the projection, and the latter can be neglected. Consequently,
taking into account that the smoothers considered are extremely slow (see next sec-
tion), the conclusion is that in general the MGM(Sn, γ) algorithm is more efficient
than the smoother at the finest level alone.

5. Numerical experiments. We present a wide experimentation in order to
show the regularization properties of the proposed technique. We consider periodic
BCs since they are widely used in astronomical imaging. However, similar results
can also be obtained by employing other BCs like Dirichlet, reflective, or antireflec-
tive since, as discussed in section 3, similar multigrid methods have been defined
also for linear systems arising from these types of BCs [1, 8]. Since we know the
true image x at each iteration j, we can evaluate and plot the relative error norm
ej = ‖x − x(j)‖2/‖x‖2 for each iterative regularization method. The algorithms are
implemented in Fortran 90 using double precision, while the images and the graphs
are made by using MATLAB.
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4
√

x2+y2 Observed image (128 × 128)

Fig. 5.1. Pictures of the airplane and of the PSF with SNR = 100.
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MGM(Rich,1) 0.1127 12
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Minimum error and related number of
iterations

Fig. 5.2. Airplane with SNR = 100: relative error norm versus number of iterations.

5.1. An airplane with periodic BCs. The PSF is created as a uniform sam-

pling of 51 points of e−
4
√

x2+y2
in [−20, 20] × [−20, 20], while for the noise we add a

random vector with uniform distribution and SNR equal to 100. The original airplane
image and its blurred and noisy version are shown in Figure 5.1 (the original picture
is a portion of a larger image from which the blurred one is obtained). The smallest
eigenvalue of the coefficient matrix is of the order of 10−3, and the matrix is positive
definite. As a matter of fact, it is not strictly necessary to apply CG or Richardson
to the normal equations, but it is recommended in order to obtain a good quality of
the deblurred image. It is interesting to observe that the proposed multigrid, with
the simple Richardson method as smoother, leads to a restoration error lower than
the one obtained by CGNE or Landweber (see Figure 5.2). In this example the TL
and MGM with a smoother for normal equations do not improve the quality of the
restored image, because the value 0.112 is about the minimum error norm from a
modelistic point of view. Indeed, by Tikhonov regularization, solving the linear sys-
tem (AT

nAn + μIn)xn = AT
nbn, and choosing μ as the experimental optimal value

(μ = 0.001), the minimum restoration error is 0.1127, which is essentially the same
value that we obtain by MGM(Rich, 1).

For higher levels of noise, e.g., SNR = 10, using CG or Richardson we observe noise
explosion already after very few iterations, and therefore it is necessary to resort to the
normal equations. In Figure 5.3, for SNR = 10 we can see that both the TL strategy
and the MGM regularization techniques, with CGNE or Landweber as smoother,
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Fig. 5.3. Airplane with SNR = 10: relative error norm versus number of iterations.

Table 5.1

Airplane with SNR = 10: minimum error and related number of iterations.

Method min
j=1,...

(ej) arg min
j=1,...

(ej)

CGNE 0.1625 30
RichNE 0.1630 59

TL(CGNE) 0.1611 48
TL(RichNE) 0.1613 97

MGM(RichNE,1) 0.1618 69
MGM(RichNE,2) 0.1621 26

MGM(Rich,1) 0.1648 3
MGM(Rich,2) 0.1630 1

show an error curve with a lower minimum and a flatter behavior with regard to
CGNE and Landweber alone. Of course, this is good news since the evaluation of the
early stopping criterion becomes much easier. Moreover, for MGM with Richardson
as smoother, we observe about the same restoration error norm as the one obtained
by CGNE or by Landweber, again without resorting to normal equations and with a
significantly smaller number of iterations (see Table 5.1).

This example clearly shows that the multigrid strategy not only improves the
regularization properties of the iterative method used as smoother, but usually it
does not require resorting to normal equations at all. In this way we obtain about
the same (or a slightly lower) restoration error as the best iterative regularization
methods applied to the normal equations, but with a measurable reduction in the
arithmetic cost.

5.2. An astronomical image with nonnegativity constraints. In this ex-
ample we use the PSF, the original 256 × 256 image of Saturn, and its blurred and
noisy (with Poisson noise) version in Figure 5.4. Since this is an astronomical image,
we consider a black extension outside of the image, and thus all the BCs are equivalent
and do not introduce any approximation error in the model. The PSF is created as a

uniform sampling of e−
√

x2+y2
of 101 points in [−5, 5] × [−5, 5]. Therefore, not only

is the coefficient matrix ill-conditioned in a subspace of very large dimension (it hap-
pens in the case of Gaussian-like blurs, as clearly shown in the second part of Figure
4.1), but it also has some small negative eigenvalues with magnitude of order of 10−4.
Regarding the noise, we add Poisson noise to the blurred image with SNR = 30.



REGULARIZING POWER OF MULTIGRID-TYPE ALGORITHMS 2071

Original image of Saturn PSF = e−
√

x2+y2
Blurred image + SNR = 30

Fig. 5.4. PSF and images of Saturn (Poisson noise).

From a practical point of view one should impose nonnegativity constraints. This
task can be accomplished by projecting into the convex set of nonnegative entries,
leading to a nonlinear operator. Despite its nonlinearity it can easily be implemented
by setting to zero the negative entries of the current approximation for each step of an
iterative regularizing method. A procedure of this kind widely used in astronomical
imaging is the projected Landweber method. Usually it converges very slowly, and
therefore it is often used in connection with accelerating techniques employing precon-
ditioning strategies (see [20]). However, while our multigrid accelerates the smoother
convergence by keeping the reconstruction error low, often the effect of the precondi-
tioning is to (partially) spoil the quality of the restored image (see, e.g., [12, 16]). In
this context our multigrid can be extended in two directions:

(1) projecting each approximation into the nonnegative cone (e.g., using Land-
weber as smoother and x(j+1) = P+MGM(x(j)) instead of x(j+1) = MGM(x(j)),
where P+ projects into the nonnegative cone),

(2) using a projected method as smoother (e.g., projected Landweber).
The first choice is the classic strategy for the projection into the nonnegative cone

for a generic iterative method. The second choice does not assure the nonnegativity:
the projection is a weighted average or a linear interpolation, so it preserves the
nonnegativity constraint of the smoother, but at the coarsest level the direct solution
destroys the nonnegativity. Therefore, the latter strategy has to be combined with
the previous one, or we have to project the coarsest level solution into the nonnegative
cone. Experimentally, we obtain better results by using the first proposal, that is, by
projecting both the smoother and every global iteration.

In the following the projected version of an iterative method will be denoted by
the plus symbol (e.g., the projected Landweber is denoted by RichNE+, and choice
(1) is denoted by MGM(·, ·)+). In Table 5.2 we report the minimal values reached
by every method and the corresponding iteration. We can see that the first choice
is uniformly better than the second (we recall that the latter does not preserve the
nonnegativity), and their combination gives the best results; furthermore, all these
strategies are much more effective than classic projected iterative methods (such as
CG and Richardson) when applied alone to the linear system Anx = b. Moreover,
a useful property of our method (e.g., MGM(Rich+, 2)+) is that the reconstruction
quality is similar to the one obtained by the projected Landweber or projected CGNE
but with the use of a much smaller number of iterations and without resorting to the
normal equations (see Figure 5.5). However, if the main wish is to further improve
the quality of the deblurred image, we can use projected Landweber or projected
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Table 5.2

Saturn: Minimum relative error norm and its number of iterations (projected methods).

Method min
j=1,...

(ej) arg min
j=1,...

(ej)

CG+ 0.3172 2

Rich+ 0.3176 2

MGM(Rich, 1)+ 0.2531 6

MGM(Rich+, 1) 0.2567 9

MGM(Rich+, 1)+ 0.2505 10

MGM(Rich+, 2)+ 0.2473 5

RichNE+ 0.2388 676

CGNE+ 0.2385 442

MGM(CGNE+, 1)+ 0.2351 337

MGM(CGNE+, 2)+ 0.2351 26

CG+ MGM(Rich+, 2)+ MGM(Rich+, 2)+

(2 iter.) (5 iter.) (α = 5 in 14 iter.)

CGNE+ MGM(CGNE+, 1)+ MGM(CGNE+, 2)+

(442 iter.) (337 iter.) (26 iter.)

Fig. 5.5. Restored images at the minimum relative error norm value.

CGNE as the smoother in the MGM with a total computational cost which is again
significantly lower than for the standard projected methods. To reduce the error
to 0.238 the projected CGNE requires 442 iterations and the projected Landweber
requires 676 iterations, while MGM(CGNE+, 2)+ requires 26 iterations to reduce the
error to 0.235 (see Table 5.2). We emphasize that one W -cycle iteration requires
approximately the same arithmetic cost as one smoother iteration (see (4.6)): this
fact results in a huge saving in time (in addition to a slightly better reconstruction).
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Table 5.3

Minimum relative error norm for MGM(Rich+, 2)+ varying the degree α of the transfer grid
operator (α = 1 is the linear interpolation).

α min
j=1,...

(ej) arg min
j=1,...

(ej)

1 0.2473 5
2 0.2421 7
3 0.2408 9
4 0.2398 12
5 0.2392 14

Finally, we study the behavior of our MGM proposal by changing a different de-
gree of freedom. In particular we consider the choice of the multigrid transfer grid
operator in order to obtain approximately the best restored image without resorting
to the normal equations for the smoothing step. Here the PSF has a large sup-
port, and the periodic BCs are exact. As shown in Table 5.2, iterative methods for
the normal equations require an unacceptably large number of iterations, while the
MGM(Rich+, 2)+ loses some details (when compared to the projected CGNE) in the
reconstructed image (even if its quality is still reasonably good (see Figure 5.5)). In
order to overcome the problem without using a smoother for the normal equations,
we can improve the filtering properties of the multigrid transfer grid operator. In
fact, instead of employing linear interpolation, we choose cubic interpolation or, more
generally, an operator whose generating function is equal to (1+cos(x))α(1+cos(y))α

with α ∈ N
+ (the linear interpolation is recovered by setting α = 1). In Table 5.3 it

is shown that, using MGM(Rich+, 2)+ already for α = 4, 5, the minimum restoration
error norm is slightly greater than the one obtained by CGNE+. Indeed, in Figure
5.5 we can see that MGM(Rich+, 2)+ with α = 5 and CGNE+ produces images with
about the same level of detail. Furthermore MGM(Rich+, 2)+ with α = 5 is much
cheaper than CGNE+, since not only does it require 14 iterations instead of 442, but
one of its iterations has about the same computational cost as one Richardson itera-
tion. As a matter of fact, the value of b in (4.4) grows linearly with α. More precisely,
the size of the stencil related to ANi

(pi) is (2α + 1) × (2α + 1), and therefore, for
small values of α (let us say at most 5), a projection operation is again cheaper than
the matrix-vector product with Ai and hence favorable with respect to the normal
equation approach.

We remark that the improvement of the projector is an idea which has some
analogies with the reblurring proposed in [10]. Indeed, since Ai−1 = P i−1

i Ai(P
i−1
i )T

and since P i−1
i = KNi

ANi
(pi), before the application of the cutting matrices KNi

and KT
Ni

we perform a double reblurring to the left and to the right with matrices

ANi(pi) and (ANi(pi))
T
.

6. The γ regularization. As already observed, the proposed regularizing MGM
leads to several generalizations which show the great flexibility of a multigrid ap-
proach. For instance, by increasing the work in the projected subspace we obtain a
better deblurred image with fewer iterations. More precisely, we consider a bigger
value of γ and, as a result, the associated MGM is no longer of iterative type, but it
is a regularization direct method where the only parameter to be estimated is γ. We
are not able to define an optimal choice of γ, but this can be the subject of future
research.

As an example we consider the airplane deblurring described in section 5.1 with
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Table 6.1

Relative error norms varying γ in the case of the airplane image with SNR = 100.

γ e1 min
j=1,...

(ej) arg min
j=1,...

(ej)

1 0.1414 0.1127 12
2 0.1256 0.1129 5
3 0.1183 0.1134 4
4 0.1148 0.1139 2
5 0.1139 0.1139 1

6 0.1144 0.1144 1
7 0.1158 0.1158 1

1 2 3 4 5 6 7 8 9 10
0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126
γ = 2
γ = 3
γ = 4
γ = 5

Error norm vs. number of iterations

1 2 3 4 5 6 7 8
0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

Error at the first iteration e1 vs. γ

Fig. 6.1. Airplane with SNR = 100: relative error norm varying γ.

SNR = 100 (see Figures 5.1 and 5.2). Here we study the behavior of the relative error
norm after only one iteration of MGM(Rich, γ) when γ grows (as shown in Figure
6.1). By varying γ, the relative error norm at the first iteration e1 decreases, reaches
its minimum value for γ = 5, and then increases again; see also Table 6.1. We remark
that the optimal restoration error obtained in one iteration with γ = 5 (e1 = 0.1139)
is about the same optimal value obtained by CGNE or Landweber (that is, 0.1135).
However, the latter two methods require many more iterations (178 iterations for
CGNE and 352 iterations for Landweber) and are applied to normal equations.

In the case of SNR = 10, in Table 5.1 it was already shown that the minimum e1

is reached for γ = 2 and that it is the same value obtained by the Landweber method
in 59 iterations.

As already observed, for a PSF with a numerically small support, i.e., a TL banded
coefficient matrix with O(N) nonzero entries, the computational cost of MGM(Sn, γ)
grows with γ according to (4.5).

In conclusion, the considered extension of the regularization MGM is evidence
that the multigrid techniques can represent a general framework which is the basis
for further investigations. As an example, we should think about the optimal choice
of the projector, of the smoother, of ν (number of smoothing steps at the various
levels), and of course of the number γ of recursive calls.

7. Conclusions. In this work we have presented a class of regularizing multigrid
algorithms whose features are the following: if it is compared with other regularizing
procedures (CG, Richardson, Riley) applied directly to the system Af = g, then the
curve of relative errors is much flatter, the quality of the reconstruction is higher,
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and the total arithmetic costs are similar; if it is compared with the best regularizing
methods for the normal equations ATAf = ATg (CGNE, Landweber, Tikhonov), then
the accuracy of the restored image is similar (at most slightly better), the structure
of the error curve is essentially the same, but the cost is greatly reduced. In every
case, our multigrid can use normal equation methods only for the smoother, while
the projection to a coarser grid is done always on the original coefficient matrix; this
usually allows us to obtain a slightly better reconstruction and a lesser computational
time compared with the best regularizing methods for the normal equations.

Furthermore, we stress that the presented approach can be looked at as a general
framework which has the potential of leading to several extensions and improvements,
and, in this respect, a lot of analysis must still be done. For instance, open questions
concern the analysis of convergence and, more interestingly, the theoretical proof of
the regularizing effects of the proposed method or the choice of γ in order to obtain
a direct (one-step!) multigrid regularization.

Further observations could be considered. In the case where we apply a regular-
izing scheme directly to the original system, when the minimum reached is close to
that of other regularizing procedures, this is often due to border effects. Therefore, we
should also investigate a combination of our technique with recently defined BCs (e.g.,
reflective or antireflective BCs) or with the idea in [4, 31] in order to eliminate the
artifacts due to the so-called ringing effects. With the combination of these two ingre-
dients we have to expect that the ringing effects will also be noticeably reduced when
considering generic (not necessarily with uniform background) images. Consequently,
as in the cases previously considered in this paper, we believe that the proposed
multigrid-type procedures will perform better than classical regularizing methods in
terms of precision and/or computational cost.

Finally, we would like to investigate how our multigrid proposal can be used in
connection with edge preserving procedures such as total variation, Bayesian methods,
and deterministic strategies (see, e.g., [21, 18, 14, 5]). Indeed, the nonconvex opti-
mization (which characterizes all these quite expensive techniques) should be solved
by some kind of iterative method which uses linearization, and our multigrid proce-
dure can be applied at this level (instead of using preconditioning as suggested in
[7, 2]) not only for accelerating the procedures but also for regularizing purposes.
Also, a priori information on the statistical nature of the noise could be exploited,
specifically for defining more appropriate interpolation and smoothing operators: all
these issues will be considered in future work.

Acknowledgments. Warm thanks to the referees for very pertinent and useful
remarks.
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