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JORDAN CANONICAL FORM OF THE GOOGLE MATRIX: A
POTENTIAL CONTRIBUTION TO THE PAGERANK

COMPUTATION∗

STEFANO SERRA-CAPIZZANO†

Abstract. We consider the web hyperlink matrix used by Google for computing the PageRank
whose form is given by A(c) = [cP + (1 − c)E]T , where P is a row stochastic matrix, E is a row
stochastic rank one matrix, and c ∈ [0, 1]. We determine the analytic expression of the Jordan form
of A(c) and, in particular, a rational formula for the PageRank in terms of c. The use of extrapolation
procedures is very promising for the efficient computation of the PageRank when c is close or equal
to 1.
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1. Introduction. We look at the web as a huge directed graph whose nodes are
all the web pages and whose edges are constituted by all the links between pages.
In the following deg(i) denotes the cardinality of the pages which are reached by a
direct link from page i. The basic Google matrix P is defined as Pi,j = 1/deg(i) if
deg(i) > 0 and there exists a link in the web from page i to a certain page j �= i;
for the rows i for which deg(i) = 0 we assume Pi,j = 1/n, where n is the size of the
matrix, i.e., the cardinality of all the web pages. This definition is a model for the
behavior of a generic web user: if the user is visiting page i, then with probability
1/deg(i) he will move to one of the pages j linked by i and if i has no links, then
the user will make just a random choice with uniform distribution 1/n. The basic
PageRank is an n-sized vector which gives a measure of the importance of every page
in the web: a simple reasoning shows that the basic PageRank is the left eigenvector
of P associated to the dominating eigenvalue 1 (see, e.g., [9, 6]). Since the matrix P is
nonnegative and has row sum equal to 1 it is clear that the right eigenvector related to
1 is e (the vector of all 1’s) and that all the other eigenvalues are in modulus at most
equal to 1. The structure of P is such that we have no guarantee for its aperiodicity
and for its irreducibility: therefore the gap between 1 and the modulus of the second
largest eigenvalue can be zero. This means that the computation of the PageRank by
the application of the standard power method (see, e.g., [3]) to the matrix A = PT

(or one of its variations for our specific problem) is not convergent or is very slowly
convergent. A solution is found by considering a change in the model: given a value
c ∈ [0, 1], from the basic Google matrix P we define the parametric Google matrix
P (c) as cP + (1 − c)E with E = evT and vi > 0, ‖v‖1 = 1. This change corresponds
to the following user behavior: if the user is visiting page i, then the next move will
be with probability c according to the rule described by the basic Google matrix P
and with probability 1 − c according to the rule described by v. Generally a value
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of c as 0.85 is considered in the literature (see, e.g., [6]). For c < 1, the good news
is that the PageRank(c), i.e., the left dominating eigenvector, can be computed in
a fast way since P (c) (which is now with row sum 1, nonnegative, irreducible, and
aperiodic) has a second eigenvalue whose modulus is dominated by c [4]: therefore the
convergence to PageRank(c) is such that the error at step k decays as ck. Of course
the computation becomes slow if c is chosen close to 1 and there is no guarantee of
convergence if c = 1. In this paper, given the Jordan canonical form of the basic
Google matrix P , we describe in an analytical way the Jordan canonical form of the
Google matrix P (c) and, in particular, we obtain that

PageRank(c) = PageRank + R(c)

with R(c) the rational vector function of c. Since PageRank(c) can be computed
efficiently when c is far away from 1, the use of vector extrapolation methods [1]
should allow us to compute in a fast way PageRank(c) when c is close or equal to 1
(see [2] for more details).

2. Closed form analysis of PageRank(c). The analysis is given in two steps:
first we give the Jordan canonical form and the rational expression of PageRank(c)
under the assumption that P is diagonalizable; then we consider the general case.

Theorem 2.1. Let P be a row stochastic matrix of size n, let c ∈ (0, 1), and
let E = evT be a row stochastic rank one matrix of size n with e the vector of all
1’s and with v an n-sized vector representing a probability distribution, i.e., vi > 0
and ‖v‖1 = 1. Consider the matrix P (c) = cP + (1 − c)E and assume that P is
diagonalizable. If P = Xdiag(1, λ2, . . . , λn)X−1 with X = [e|x2| · · · |xn], [X−1]T =
[y1|y2| · · · |yn], then

P (c) = Zdiag(1, cλ2, . . . , cλn)Z−1, Z = XR−1.

Moreover, the following facts hold true:
• 1 ≥ |λ2| ≥ · · · ≥ |λn| and λ2 = 1 if P is reducible and its graph has at least

two irreducible closed sets.
• We have

R = In + e1w
T , wT = (0, w2, . . . , wn),

wj = (1 − c)vTxj/(1 − cλj), j = 2, . . . , n.

Proof. From the assumptions we have P = Xdiag(λ1, λ2, . . . , λn)X−1, but Pe = e
(P has row sum equal to 1) and P is nonnegative; therefore X = [x1|x2| · · · |xn]
with x1 = e, λ1 = 1, and |λj | ≤ 1 = ‖P‖∞; moreover, λ2 = 1 if P is reducible
and its graph has at least two irreducible closed sets by standard Markov theory
(see, e.g., [4]). Consequently, [y1|y2| · · · |yn]TX = X−1X = In and, in particular,
[y1|y2| · · · |yn]Te = X−1e = e1 (the first vector of the canonical basis). We have

P (c) = cP + (1 − c)evT = Xdiag(c, cλ2, . . . , cλn)X−1 + (1 − c)evT ,

and hence

X−1P (c)X = diag(c, cλ2, . . . , cλn) + (1 − c)X−1evTX

= diag(c, cλ2, . . . , cλn) + (1 − c)e1v
TX

= diag(c, cλ2, . . . , cλn) + (1 − c)e1[v
Te,vTx2, . . . ,v

Txn].
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But vTe = 1 since v is a probability vector by the hypothesis. In conclusion we have

X−1P (c)X =

⎡
⎢⎢⎢⎢⎢⎣

1 (1 − c)vTx2 · · · (1 − c)vTxn−1 (1 − c)vTxn

cλ2

. . .

cλn−1

cλn

⎤
⎥⎥⎥⎥⎥⎦
.(2.1)

The last step is to diagonalize the previous matrix: calling R the matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

1 (1−c)vTx2

(1−cλ2)
· · · (1−c)vTxn−1

(1−cλn−1)
(1−c)vTxn

(1−cλn)

1
. . .

1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.2)

and taking into account (2.1), a direct computation shows that

R
[
X−1P (c)X

]
= diag(1, cλ2, . . . , cλn)R,

i.e.,

X−1P (c)X = R−1diag(1, cλ2, . . . , cλn)R,

and finally P (c) = Zdiag(1, cλ2, . . . , cλn)Z−1, Z = XR−1.
Corollary 2.2. With the notation of Theorem 2.1, the PageRank(c) vector is

given by

[PageRank(c)]T = yT
1 + (1 − c)

n∑
j=2

vTxjy
T
j /(1 − cλj),(2.3)

where yT
1 is the basic PageRank vector (i.e., when c = 1).

Proof. For c = 1 there is nothing to prove since P (c) = P and therefore
PageRank(c) = PageRank. We take c < 1. By Theorem 2.1 we have that PageRank(c)
is the transpose of the first row of the matrix Z−1 = RX−1.

Since X−1 = [y1|y2| · · · |yn]T , the claimed thesis follows from the structure of R
in (2.2).

We now take into account the case where P is general (and therefore possibly
not diagonalizable): the conclusions are formally identical except for the rational
expression R(c) which is a bit more involved. We first observe that if λ2 = 1, then,
as proved in [4], the graph of P has at least two irreducible closed sets: therefore the
geometric multiplicity of the eigenvalue 1 also must be at least 2. In summary in the
general case we have P = XJX−1, where

J =

⎡
⎢⎢⎢⎢⎢⎣

1
λ2 ∗

. . .
. . .

λn−1 ∗
λn

⎤
⎥⎥⎥⎥⎥⎦

(2.4)
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with ∗ denoting a value that can be 0 or 1.

Theorem 2.3. Let P be a row stochastic matrix of size n, let c ∈ (0, 1), and
let E = evT be a row stochastic rank one matrix of size n with e the vector of all
1’s and with v an n-sized vector representing a probability distribution, i.e., vi > 0
and ‖v‖1 = 1. Consider the matrix P (c) = cP + (1 − c)E and let P = XJ(1)X−1,
X = [e|x2| · · · |xn], [X−1]T = [y1|y2| · · · |yn],

J(c) =

⎡
⎢⎢⎢⎢⎢⎣

1
cλ2 c · ∗

. . .
. . .

cλn−1 c · ∗
cλn

⎤
⎥⎥⎥⎥⎥⎦
,

and

J(c) = D

⎡
⎢⎢⎢⎢⎢⎣

1
cλ2 ∗

. . .
. . .

cλn−1 ∗
cλn

⎤
⎥⎥⎥⎥⎥⎦
D−1, D = diag(1, c, . . . , cn−1),(2.5)

with ∗ denoting a value that can be 0 or 1. Then we have

P (c) = ZJ(c)Z−1, Z = XR−1,

and, in addition, the following facts hold true:

• 1 ≥ |λ2| ≥ · · · ≥ |λn| and λ2 = 1 if P is reducible and its graph has at least
two irreducible closed sets.

• We have

R = In + e1w
T , wT = (0, w2, . . . , wn),

w2 = (1 − c)vTx2/(1 − cλ2),(2.6)

wj = [(1 − c)vTxj + [J(c)]j−1,jwj−1]/(1 − cλj), j = 3, . . . , n.(2.7)

Proof. From the assumptions we have P = Xdiag(λ1, λ2, . . . , λn)X−1, but Pe = e
(P has row sum equal to 1) and P is nonnegative: therefore X = [x1|x2| · · · |xn] with
x1 = e, λ1 = 1, and |λj | ≤ 1 = ‖P‖∞; moreover, λ2 = 1 if the graph of P has at least
two irreducible closed sets by standard Markov theory (see, e.g., [4]). Consequently,
[y1|y2| · · · |yn]TX = X−1X = In and, in particular, [y1|y2| · · · |yn]Te = X−1e = e1

(the first vector of the canonical basis). From the relation

P (c) = cP + (1 − c)evT = Xdiag(c, cλ2, . . . , cλn)X−1 + (1 − c)evT ,

we deduce

X−1P (c)X = cJ(1) + (1 − c)X−1evTX

= cJ(1) + (1 − c)e1v
TX

= cJ(1) + (1 − c)e1[v
Te,vTx2, . . . ,v

Txn].
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But vTe = 1 since v is a probability vector by the hypothesis. In summary we infer

X−1P (c)X =

⎡
⎢⎢⎢⎢⎢⎣

1 (1 − c)vTx2 · · · (1 − c)vTxn−1 (1 − c)vTxn

cλ2 c · ∗
. . .

cλn−1 c · ∗
cλn

⎤
⎥⎥⎥⎥⎥⎦
.(2.8)

The last step is to diagonalize the previous matrix: setting R the matrix

⎡
⎢⎢⎢⎢⎢⎣

1 w2 · · · wn−1 wn

1
. . .

1
1

⎤
⎥⎥⎥⎥⎥⎦
,(2.9)

with wj as in (2.6)–(2.7) and using (2.8), a direct computation shows that

R
[
X−1P (c)X

]
= J(c)R,

i.e.,

X−1P (c)X = R−1J(c)R,

and therefore P (c) = ZJ(c)Z−1, Z = XR−1. As a final remark we observe that the
identity in (2.5) can be proved by direct inspection.

Corollary 2.4. With the notation of Theorem 2.1, the PageRank(c) vector is
given by

[PageRank(c)]T = yT
1 +

n∑
j=2

wjy
T
j ,(2.10)

where yT
1 is the basic PageRank vector (i.e., when c = 1) and the quantities wj are

expressed as in (2.6)–(2.7).

Proof. By Theorem 2.3, the decomposition

P (c) = ZJ(c)Z−1, Z = XR−1,

with J(c) as in (2.5), is a Jordan decomposition where

diag(1, c−1, . . . , c1−n)Z−1

is the left eigenvector matrix. Therefore [PageRank(c)]T is the first row of the matrix

diag(1, c−1, . . . , c1−n)Z−1 = diag(1, c−1, . . . , c1−n)RX−1.

Since X−1 = [y1|y2| · · · |yn]T , the claimed thesis follows from the structure of R in
(2.9) and from the fact that the first row of diag(1, c−1, . . . , c1−n) is eT1 .
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3. Discussion and future work. The theoretical results presented in this pa-
per have two main consequences: (a) The vector PageRank(c) can be very different
from PageRank(1) since the number n appearing in (2.3) and (2.10) is huge, being
the whole number of the web pages. This shows that a small change in the value
of c (say from 1 to 1 − ε for a given fixed small ε > 0) gives a dramatic change in
the vector: the latter statement also agrees with the conditioning of the numerical
problem described in [5], where it is shown that the conditioning of the computation
of PageRank(c) grows as (1 − c)−1. In relation to the work of Kamvar and others,
it should be mentioned that the proof in [4] of the behavior of the second eigenvalue
of the Google matrix turns out to be quite elementary by following the argument in
part (b), exercise 7.1.17, of [8]. It is possible that a similar argument could help in
simplifying even more the proofs of Theorems 2.1 and 2.3. (b) A strong challenge
posed by the formulae (2.3) and (2.10) is the possibility of using vector extrapolation
[1] for obtaining the expression of PageRank(1) using few evaluations of PageRank(c)
for some values of c far enough from 1 so that the computational problem is well-
conditioned [5] and the known algorithms based on the classical power method are
efficient [6, 7]; this subject is under investigation in [2].

Now we have to discuss a more philosophical question. We presented a potential
strategy (see [2] for more details) for the computation of PageRank=PageRank(1)
through a vector extrapolation technique applied to (2.10). A basic and preliminary
criticism is that in practice (i.e., in the real Google matrix) the matrix A(1) = A is
reducible: therefore the nonnegative dominating eigenvector with unitary l1 norm is
not unique, while the nonnegative dominating eigenvector PageRank(c) with unitary
l1 norm of A(c) with c ∈ [0, 1) is not only unique but strictly positive. Therefore, since
PageRank(c) is a rational expression without poles at c = 1, there exists (unique) the
limit as c tends to 1 of PageRank(c). Clearly this vector is unique and, consequently,
our proposal concerns a special PageRank problem. We have to face two problems:
how to characterize this limit vector and whether this special PageRank vector has a
specific meaning. To understand the situation and to give answers, we have to make a
careful study of the set of all the (normalized) PageRank vectors for c = 1. From the
theory of stochastic matrices, the matrix A is similar (through a permutation matrix)
to

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1,1 0 0
P2,1 P2,2 0 0
...

. . .
...

Pr,1 · · · · · · Pr,r 0 0
0 0 Pr+1,r+1 0 0
0 0 Pr+2,r+2 0 0
...

. . .
...

0 0 Pm,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Pi,i is either a null matrix or is strictly substochastic and irreducible for i =
1, . . . , r, and Pj,j is stochastic and irreducible for j = r + 1, . . . ,m. In the case of the
Google matrix we have m− r quite large. Therefore we have the following:

• λ = 1 is an eigenvalue of Â (and hence of A) with algebraic and geometric
multiplicity equal to m − r (exactly 1 for every Pj,j with j = r + 1, . . . ,m,
and every other eigenvalue of unitary modulus has geometric multiplicity
coinciding with the algebraic multiplicity);
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• all the remaining eigenvalues of Â (and hence of A) have modulus weakly
dominated by 1 since each matrix Pi,i for i = 1, . . . , r is either a null matrix
or is strictly substochastic and irreducible;

• the canonical basis of the dominating eigenspace is given by {Z[i] ≥ 0, i =
1, . . . , t = m− r} with

ÂZ[i] = Â

⎡
⎣

0
z[i]
0

⎤
⎦ =

⎡
⎣

0
Pr+i,r+iz[i]
0

⎤
⎦ =

⎡
⎣

0
z[i]
0

⎤
⎦ = Z[i]

and
∑n

j=1(Z[i])j = 1, (Z[i])j ≥ 0, for all j = 1, . . . , n, for all i = 1 . . . , t. In conclusion
we are able to characterize all the nonnegative normalized dominating eigenvectors of
the Google matrix as

v(λ1, . . . , λt) =

t∑
i=1

λiZ[i],

t∑
i=1

λi = 1, λi ≥ 0.

Now if we put the above relations into Corollary 2.4, we deduce that (2.10) can be
read as

[PageRank(c)]T = yT
1 + (vTx2)y

T
2 + · · · + (vTxt)y

T
t +

n∑
j=t+1

wjy
T
j ,

with wj = wj(c) and limc→1 wj(c) = 0. Therefore the unique vector PageRank(1) =
y1 +(vTx2)y2 + · · ·+(vTxt)yt that we compute is one of the vectors v(λ1, . . . , λt) =∑t

i=1 λiZ[i],
∑t

i=1 λi = 1, λi ≥ 0. The question is, which λ1, . . . , λt? By comparison
with Corollary 2.4, the answer is

λj =

t∑
i=1

(vTxi)αi,j ,

where α = (αi,j)
t
i,j=1 is the transformation matrix from the basis {Z[i] ≥ 0, i =

1, . . . , t} to the basis {yi, i = 1, . . . , t}, i.e., yi =
∑t

j=1 αi,jZ[j], i = 1, . . . , t. It
is interesting to observe that the vector that we compute, as limit of PageRank(c),
depends on v, and this is welcome since according to the model, it is correct that the
personalization vector v decides which PageRank vector is chosen.
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