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We present a theoretical study of ghost imaging based on correlated beams arising from parametric down-
conversion, and which uses balanced homodyne detection to measure both the signal and idler fields. We
analytically show that the signal-idler correlations contain the full amplitude and phase information about an
object located in the signal path, both in the near-field and the far-field case. To this end we discuss how to
optimize the optical setups in the two imaging paths, including the crucial point regarding how to engineer the
phase of the idler local oscillator as to observe the desired orthogonal quadrature components of the image. As
is well known, the near-field image resolution is inherently linked to the far-field bandwidth of the image,
determined by the bandwidth of the source of the correlated beams. We show how to circumvent this limitation
by using a spatial averaging technique which dramatically improves the imaging bandwidth of the far-field
correlations as well as speeds up the convergence rate. The results are backed up by numerical simulations
taking into account the finite size and duration of the pump pulse.
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I. INTRODUCTION

Ghost imaging relies on the spatial correlation between
two beams created by, e.g., parametric down-conversion
(PDC) [1–15]. Each of the correlated beams are sent through
a distinct imaging system called the test arm and the refer-
ence arm. In the test arm an object is placed and the image of
the object is then recreated from the spatial correlation func-
tion between the test and reference arm. A basic requisite of
the ghost-imaging schemes is that by solely adjusting the
reference arm setup and varying the reference pointlike de-
tector position it should be possible to retrieve spatial infor-
mation about the object, such as the object image(near field)
and the object diffraction pattern(far field).

Traditionally the studies devoted to ghost imaging have
considered PDC in the low-gain regime, where the conver-
sion rate of the pump photons to a pair of entangled signal-
idler photons is low enough for the detector to resolve them
one at a time. This leads to the so-called two-photon imaging
schemes investigated by Klyshko[1,2]. The recreation of the
object is then based on coincidence counts between the test
and reference arm, and the working principles have been
demonstrated experimentally[3–5]. Our group has focused
on generalizing the governing PDC theory to the macro-
scopic, high-gain regime where the number of photons per
mode is large[16–20]. Moreover, we generalized the theory
behind the two-photon imaging schemes[1,2,6–9] to the
high-gain regime[11–13] and also investigated the quantum
properties of the signal-idler correlations in that case
[17–20]. While coincidence detection is used for low gain, in
the high-gain regime the object information is extracted from
measuring pixel-by-pixel the signal-idler intensities and from
this forming the correlations.

Here we consider a setup where the PDC beams are mea-
sured with balanced homodyne detection by overlapping

them with local oscillator(LO) fields. A similar scheme was
studied previously by our group in the context of entangle-
ment of the signal-idler beams from PDC[18], where it was
used to show analytically that the entanglement is complete
since it encompasses both the amplitudes and the phases of
signal and idler. The initial motivation for using a homodyne
scheme for ghost imaging came from the need to circumvent
the problems related to information visibility in the macro-
scopic regime. Specifically, when intensity detection is per-
formed a homogeneous background term is present in the
measured correlation function[11,12,20]. This term, which
can be rather large, does not contain any information about
the object and lowers the image visibility. Instead, by using
homodyne detection the signal-idler correlation becomes
second order instead of fourth order, and hence this back-
ground term is absent. Another advantage of homodyne de-
tection is that arbitrary quadrature components of the test and
reference beams can be measured, which means that the ho-
modyne detection scheme allows for both amplitude and
phase measurements of the object. We will show detailed
analytical calculations which demonstrate that this is indeed
possible, both for the object image(near field) as well as its
diffraction pattern(far field). It is possible to reconstruct
even a pure phase object when a bucket detector is used in
the test arm(in contrast to when intensity measurements are
done, as it was shown for the coincidence counting case
[14]).

We will present a technique that implements an average
over the test detector position. This turns out to strongly
improve the bandwidth of the reconstructed far-field pattern.
Instead, in the traditional scheme where a fixed test detector
position is used, the imaging bandwidth is limited to the
far-field bandwidth of PDC. Additionally the method sub-
stantially speeds up the convergence rate of the far-field cor-
relations. This implies that even complex diffraction patterns
with high-frequency Fourier components can be recon-
structed in a low number of pump pulses.

The suggested homodyne detection scheme is fairly com-
plicated to implement experimentally, since it involves car-*Corresponding author: morten.bache@uninsubria.it
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rying out two independent homodyne measurements of fields
that are spatially and temporally multimode(with pulse du-
rations on the order of ps). Even a single homodyne mea-
surement of spatially multimode light has not previously
been investigated in details to our knowledge(not even in
the continuous-wave regime where the field is temporally
single-mode). However, a dual homodyne measurement has
been done in the case of spatially single-mode light[21,22].
In general, homodyne experiments of temporally multimode
light have pointed out the importance of a proper overlap
between the LO and the field[23,24], and alternative ways of
producing the LO has been implemented[25] leading to a
better overlap. An improper overlap leads to a degrading in,
e.g., the squeezing as it effectively corresponds to a drop in
the quantum efficiency[26]. In our case these problems are
presumably less severe since the quantum efficiency does not
play an important role. In fact, we will present numerical
simulations that confirm that homodyne measurement of spa-
tiotemporal multimode light can be done successfully, with
the strongest technical restriction concerning the engineering
of the phases of the local oscillators. It is worthwhile to
mention that the homodyne measurement protocol(no back-
ground term in the correlations) in combination with the spa-
tial averaging technique(increased spatial bandwidth) could
open for the possibility of using an optical parametric oscil-
lator below threshold for imaging. This would simplify a
possible experimental implementation.

Recently a debate has been going on whether entangle-
ment is necessary for extracting the information in ghost
imaging [8,11–15,27]. In particular, our group has pointed
out that the output beams obtained from impinging a
thermal-like field on a beam splitter can be used in the same
way as the entangled beams in a PDC setup[12], and this
result was used in Ref.[27] for proposing a lensless x-ray-
diffraction scheme. However, using a thermal-like source
makes it difficult to do homodyne measurements since there
seems to be no fixed reference phase of the thermal-like
field. Thus it seems that the homodyne technique does re-
quire a PDC setup to work, since this setup offers a fixed
reference phase(that of the pump beam) which enables us to
make averages over repeated pump shots.

The paper is structured as follows: In Sec. II the model for
PDC is presented, and the optical setup of the imaging sys-
tem is described in Sec. III. In Sec. IV we discuss the case
where pointlike detectors are used in the test arm, while in
Sec. V the bucket detector case is discussed. Both cases
show analytical results in the stationary and plane-wave
pump approximation concerning the retrieval of the image
information of both the far and the near field, as well as
numerical results that include the Gaussian profile of the
pump. Besides confirming the analytical results these serve
as examples for discussion and demonstration of the imaging
performances of the system. In Sec. VI we draw the conclu-
sions. Appendix A contains the explicit expressions of the
PDC gain functions and shows a quadratic expansion of the
gain phase, while Appendix B shows how to treat the tem-
poral part of the analytical correlations.

II. MODEL

We use a general model describing the three-wave quan-
tum interaction of PDC inside the nonlinear crystal[19,20],

which includes the effects of finite size and duration of the
pump and the effects of spatiotemporal walk-off and group-
velocity dispersion. We consider a uniaxialxs2d nonlinear
crystal cut for type-II phase matching. The injected beam at
the frequencyv0 (pump beam) is sent into the crystal in the
z direction, and the pump photons can down-convert to sets
of photons at the frequenciesv1 (signal photon, ordinarily
polarized) andv2 (idler photon, extraordinarily polarized).

The model consists of a set of operator equations describ-
ing the evolution of the quantum-mechanical boson operators
for the signal and idler fieldsajsxW ,z,td obeying at a givenz
the commutator relationsfaisz,xW ,td ,aj

†sz,xW8 ,t8dg=di jdsxW
−xW8ddst− t8d, i , j =1,2, while all other combinations com-
mute. The pump field is treated classically and taken as un-
depleted(the parametric approximation). Treating the opera-
tors in Fourier space ajsz,qW ,Vd=esdxW /2pdesdt/
Î2pdajsz,xW ,tde−iqW·xW+iVt, j =1,2, thesignal equation of evolu-
tion is then

L1sz,qW,Vda1sz,qW,Vd = se−iD0zE dqW8

2p
E dV8

Î2p
A0sz,qW − qW8,V

− V8da2
†sz,− qW8,− V8d, s1d

while the idler equation can be found by exchanging sub-
scripts 1↔2. s is the strength of the nonlinearity, while
D0;k1+k2−k0 denotes the collinear phase mismatch be-
tween the three waves along thez axis. The linear propaga-
tion operator is defined asL jsz,qW ,Vd;] /]z− id jsqW ,Vd,
where

d jsqW,Vd = kj8V +
1

2
kj9V

2 + r jqx −
1

2kj
uqW u2. s2d

kj =njv j /c is the wave number of fieldj inside the crystal,
and kj8=]kj /]vuv=v j

describes temporal walk-off whilekj9
=]2kj /]v2uv=v j

describes group velocity dispersion.r j

=]k/]qxuqW=0 is the walk-off angle. The classical pump is in
the numerics taken as being Gaussian in both time and space

A0sz=0,xW ,td~Ape
−uxWu2/w0

2−t2/t0
2
, wherew0 andt0 are the pump

waist and duration time, whileAp is the pump amplitude. For
additional details about the origin of the model see, e.g., Ref.
[20].

In the stationary and plane-wave pump approximation
(SPWPA) the pump is taken as translationally invariant as
well as continuous wave. Under this condition Eqs.(1) can
be solved analytically. Thus the unitary input-output transfor-
mations relating the field operators at the output face of the
crystal aj

outsqW ,Vd;ajsz= lc,qW ,Vd to those at the input face
aj

insqW ,Vd;ajsz=0,qW ,Vd then take the following form:

ai
outsqW,Vd = UisqW,Vdai

insqW,Vd + VisqW,Vdaj
in†s− qW,− Vd,

i Þ j = 1,2. s3d

The gain functionsUj andVj are given in Appendix A.

III. SYSTEM SETUP

Ghost imaging is characterized by its two-arm configura-
tion, with an unknown object placed in the test arm. The
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information about the object is retrieved from the cross cor-
relations of the fields recorded in the test and reference arms
as a function of the reference arm pixel position; see Fig. 1.
By simply changing the optical setup in the reference arm,
information about both the object image(near field) and the
object diffraction pattern(far field, i.e., the Fourier trans-
form) can be obtained. There are two main motivations for
using such an imaging configuration. First, this configuration
makes it possible to do coherent imaging even if each of the
two fields are spatially incoherent(and thus recording the
far-field spatial distribution in the test arm does not give any
information about the object diffraction pattern). Second, the
configuration allows for a simple detection protocol in the
test arm even without measuring spatial information, and still
the spatial information can be retrieved from the correlations.
Thus a simple bucket detector setup can be used that collects
all photons, or alternatively using a single pixel detector
(pointlike detector). This is advantageous when the object is
located in a environment that is hard to access making it
difficult to place an array of detectors after the object, or if
the stability of the test arm is an issue making a simple setup
crucial.

We now show how to evaluate the signal and idler fields
as they propagate through the two-arm configuration, and
how to evaluate the resulting correlations between them. The
type-II phase matching conditions of the crystal ensure that
the signal and idler have orthogonal polarizations and there-
fore at the exit of the crystal they can be separated by a
polarizing beam splitter(PBS). We will neglect the distance
between the crystal and the PBS. The fieldscjsxW ,td at the
measurement planesPj8 are connected to the output fields at
the crystal exit planeP by a Fresnel transformation formally
written as

cjsxW j,td =E dxW8hjsxW j,xW8daj
outsxW8,td + LjsxW jd, s4d

wherehjsxW j ,xW8d are kernels related to the optical path fromP
to Pj8. LjsxW jd accounts for losses in the imaging system that
are linearly proportional to vacuum field operators and there-
fore uncorrelated to the PDC fields.

The object is described by a transmission functionTobjsxWd,
and is set in the signal arm. Besides the object the signal arm
is set in the so-calledf-f imaging scheme, consisting of a
lensL with focal lengthf located at a distancef from both
the crystal exit and from the detection planeP18. It will
emerge from our analysis that when a pointlike detector is
used the object must be placed atP, as shown in Fig. 1(a).
Conversely, when bucket detectors are used the object must
be placed atP18, as shown in Fig. 1(c). Consequently, the
signal Fresnel kernels are

h1sxW1,xW8d = sil1fd−1e−is2p/l1fdxW1·xW8TobjsxW8d, s5ad

h1
bsxW1,xW8d = sil1fd−1e−is2p/l1fdxW1·xW8TobjsxW1d, s5bd

for the pointlike and the bucket detector case, respectively,
and the superscript “b” denotes bucket.l1 is the wavelength
of the signal field. Note that the lens in the signal arm could
actually be removed and substituted by a propagation over a
distance long enough to be in the Frauenhofer regime. How-
ever, the phase of the signal field could be difficult to control
in that case.

We will fix the setup of the signal arm once and for all.
We may then adjust the idler arm to retrieve the desired kind
of information through the signal-idler correlations. In one
setup the idler lens system also consists of a lensL of focal
length f, placed a distanced1 from P and d2 from P28 [see

FIG. 1. The system setup. Sketch(a) shows
the general setup where a pointlike detector(or a
pixel array) is used in the test(signal) arm.
Sketch(b) shows the case of a telescope setup in
the reference(idler) arm. Sketch(c) shows the
test arm setup when bucket detectors are used for
the measurements there. See the text for more
details.L, lens of focal lengthf; PBS, polarized
beam splitter; BS, beam splitter;P, crystal plane;
P18, signal measurement plane;P28, idler measure-
ment plane.
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Fig. 1(a)]. If d1 andd2 are identical and both equal to the lens
focal length,d1=d2= f, we have anf-f setup as also used in
the signal arm. As we will show, with this setup the correla-
tions in the pointlike detector case give information about the
object far field, while in the bucket detector case they give
information about the object near field.

In another setup the idler arm consists of a telescopic
system made of two identical lensesL swith focal lengthf,
each placed a distance 2f from P and P28, respectively, and
with a distance 4f between them, see Fig. 1(b). This setup
images point by point the near field at the planeP to the
planeP28. As we will show, with this configuration the cor-
relations provide information about the object near field for
the pointlike detector case, while the object far field can be
retrieved in the bucket detector case.

For these two chosen setups in the reference arm, the field
at the reference detection planeP28 is then given by the
Fresnel transformation(4) with the kernels

h2,fsxW,xW8d = sil2fd−1e−is2p/l2fdxW·xW8, s6ad

h2,TsxW,xW8d = dsxW − xW8d, s6bd

for the f-f setup and the telescope setup, respectively. Note
that a 2f-2f setup — obtained by settingd1=d2=2f in Fig.
1(a)—would also provide an image plane atP28. We choose
to work with the telescope setup with respect to such a
2f-2f setup in order to avoid the introduction of a wave-front
curvature which could be a nuisance in a phase sensitive
measurement.

The fields atPj8 are measured using balanced homodyne
detection schemes, socjsxW j ,td is mixed with an LOa jsxW j ,td
on a 50/50 beam splitter, and after the beam splitter the two
fields arecj ,±sxW ,td=fcjsxW ,td±a jsxW ,tdg /Î2. The LO is treated
as a classical coherent field and therefore by measuring the
field intensities at the photodetectors and subtracting them
we obtain

ZjsxW,td ; cj ,+
† sxW,tdcj ,+sxW,td − cj ,−

† sxW,tdcj ,−sxW,td=ua jsxW,tdu

3fcjsxW,tde−if j
LOsxW,td + cj

†sxW,tdeif j
LOsxW,tdg. s7d

Here we have the well-known result that by properly adjust-
ing the local oscillator phasef j

LOsxW ,td one can measure a
particular quadrature component of the field.

We now consider the correlation between two particular
quadrature components of the signal and idler fields,Z1 and
Z2, integrated over a finite detection timeTd,

psxW1,xW2d =E
Td

dt1E
Td

dt2kZ1sxW1,t1dZ2sxW2,t2dl s8ad

=E
Td

dt1E
Td

dt2a1
psxW1,t1da2

psxW2,t2d

3kc1sxW1,t1dc2sxW2,t2dl + c.c. s8bd

The last line follows from adopting the parametric approxi-
mation as well as from the fact that the signal and idler are in
the vacuum state at the crystal entrance, since under these
assumptionskc1

†sxW1,t1dc2sxW2,t2dl=0. In most casesTdlltcoh so

the detector is too slow to follow the temporal dynamics of
the system.

The analytical calculations are based on the SPWPA, un-
der which we may evaluate the correlation(8b) using the
input-output relations(3). In the degenerate case the signal
and idler have identical wavelengthsl1=l2;l and hence
also vacuum wave numbersk1,v=k2,v;kv=2p /l. In order to
evaluate the correlation(8b) we note that Eq.(4) provides
the link between the detection plane and the exit of the crys-
tal, and there the correlations are the near field signal-idler
correlation which can be found from Eq.(A3b) as

ka1
outsxW1,t1da2

outsxW2,t2dl

=E dV

2p
e−iVst1−t2d E dqW

s2pd2eiqWsxW1−xW2dgsqW,Vd, s9d

where we have introduced the gain function

gsqW,Vd = ugsqW,VdueifgsqW,Vd ; U1sqW,VdV2s− qW,− Vd.

s10d

Appendix A shows an approximate quadratic expansion of
the gain phase that will become useful in the following.

We now use Eqs.(4) and (9) to obtain a more useful
notation for the signal-idler correlation at the detectors,

kc1sxW1,t1dc2sxW2,t2dl =E dV

2p
e−iVst1−t2d

3E dqWh1sxW1,− qWdh2sxW2,qWdgsqW,Vd,

s11ad

hjsxW,qWd ; E dxW8

2p
e−iqW·xW8hjsxW,xW8d. s11bd

By using Eq.(11a) we may evaluate the correlation(8b) for
Tdlltcoh. The details of this calculation are put in Appendix
B, and basically there are two limits to consider. First, for a
pulsed LO which has a duration much smaller thantcoh the
result is given by Eq.(B2). Second, for a continuous-wave
LO which has a duration much larger thantcoh the result is
given by Eq.(B3). Since we did not find substantial differ-
ences between the two cases, we decided to use Eq.(B3) in
the rest of the paper for the analytical part. It states thatin the
limit of a continuous-wave LO the signal-idler quadrature
correlation is

psxW1,xW2d =
Td

2p
a1

psxW1da2
psxW2d E dqWh1sxW1,− qWdh2sxW2,qWdgsqW,0d

+ c.c., s12d

wherea jsxWd;a jsxW ,t=0d.

IV. POINTLIKE DETECTORS IN THE TEST ARM

Using a pointlike detector setup in the test arm is the
typical configuration used in ghost imaging. Therefore the
results of this section are similar to those obtained previously
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using an intensity detection scheme, both by our group in the
high-gain regime[11–13], as well as those obtained by oth-
ers in the low-gain(two-photon) regime[1–3,5–10,15]. The
differences between the homodyne detection case, which we
will now show, and the papers mentioned above are that we
here do not have problems with visibility and that we can
access arbitrary quadrature components of the object distri-
bution function.

We use here the setup of Fig. 1(a), so the test arm we keep
fixed in thef-f setup with sthe object at the crystal exit. The
idler arm is then set in either thef-f setup[with d1=d2= f in
Fig. 1(a)] or the telescope setup[Fig. 1(b)]. The information
is extracted by fixing the signal detector positionxW1 and scan-
ning the idler detector positionxW2. This gives a simple, fixed
setup of the test arm. Alternatively, we may also scan the
signal detector position and thereby we can achieve an im-
proved imaging bandwidth and convergence rate for the dif-
fraction pattern(the spatial average technique).

A. Analytical results

In order to evaluate analytically the quadrature correlation
(12) for pointlike detectors in the test arm the kernel(5a)
must be used in the form of Eq.(11b). Then, as we shall now
show, using the kernels(6a) and (6b) gives either the object
far field or the object near field.

1. Retrieval of the object far field

The object far field can be retrieved from the correlations
by using thef-f scheme in the reference arm, implying that
we must use the kernel(6a) in the form(11b). By using these
in Eq. (12) the signal-idler quadrature correlation for re-
trieving the object far field is

pfsxW1,xW2d =
2Td

slfd2ugs− xW2kv/f,0da1sxW1da2sxW2duResT̃objfsxW1

+ xW2dkv/fgeiFfsxW1,xW2dd, s13ad

F fsxW1,xW2d ; fgs− xW2kv/f,0d − f2,f
LOsxW2d − f1

LOsxW1d + p,

s13bd

whereT̃objsqWd is the Fourier transform ofTobjsxWd.
We now discuss how to optimize the system for obtaining

the far-field image information. First of all we notice that we
need to keep the spatial dependence of the LO moduli as
constant as possible, effectively setting a limit on their spa-
tial waists. However, since the effect of the LO moduli is a
simple multiplication on the correlation it is easy to do a post
measurement correction of the correlations. This means that
matching the spatial overlaps of the LO moduli and the PDC
fields should be straightforward, while the phases of the
LO’s are more crucial, as discussed below. The same com-
ments turn out to hold for the other setups discussed in the
paper.

Second of all, whenxW2 is scanned the gain modulus comes
into play. We choose a noncollinear phase-matching condi-
tion (see Sec. IV B in whichugsqW =−xW2kv / f ,0du is a plateau
shaped function centered onqW =−qWC, with [20]

qWC =
1

2
rW2lcq0

2 = rW2s1/k1 + 1/k2d−1. s14d

Additionally, it is roughly constant over a finite region deter-
mined by the spatial bandwidthq0 defined by Eq.(A4a). This
sets a limit to the imaging bandwidth since the higher-order
spatial frequency components are cut off by the gain.That
the source of the correlated beams acts as a low-pass spatial
frequency filter is well known, but in Sec. IV B 3 we will
show how to circumvent this limitation using the spatial av-
erage technique.

Finally, the most crucial point is to control the LO phases
to observe the desired quadrature components of the object
far field. It is seen that the real part of the object far field is
obtained if we can makeF fsxW1,xW2d=0, while if we can make
F fsxW1,xW2d=−p /2 the imaginary part of the object far field is
obtained. This can be achieved by engineeringf2,f

LOsxW2d to
cancel the gain phase dependence onxW2 that appears in Eq.
(13b). The idler LO phase is in general composed as follows:

f2,f
LOsxW2d = c2,f

LO + qW2,f
LO ·xW2, s15d

where c2,f
LO is a controllable reference phase and the

wave numberqW2,f
LO may be applied to the LO by using a

grating. As a good approximationfgs−xW2kv / f ,0d is constant
because it is a slow function over a region determined byq0
(we should consequently evaluate the gain at its maximum,
i.e., at the gain center −xW2kv / f =−qWC). We may therefore take
f2,f

LOsxW2d constantsqW2,f
LO=0d, so to obtain the quadrature cor-

responding to the real part we should choose the reference
phase

c2,f
LO = fgs− qWC,0d − f1

LOsxW1d + p. s16d

The quadrature component corresponding to the imaginary
part of the object far field may consequently be observed by
addingp /2 to this value.

We can improve this result by using that, as shown in
Appendix A, the gain phase can be approximated with a
quadratic expansion inqW, i.e., fgsqW ,0d.fg

s0d+fW g,q
s1d ·qW

+fg,q
s2d uqW u2 [see Eq.(A8a)]. The linear termfW g,q

s1d can be com-
pensated for by making the idler LO a tilted wave, i.e.,
choosing

qW2,f
LO = − fW g

s1dkv/f = r2lcCgkv/feWx. s17d

The quadratic termfg,q
s2d may be cancelled by shifting the

focusing plane of the idlerf-f systemDz away from the
crystal planeP [20], since this gives(in Fourier space) a
Fresnel transformation contribution of exps−iDzuqW u2/2kvd on
the gain function in Eq.(9). By settingDz=fg

s2d2kv the qua-
dratic phase term is exactly cancelled. So we must image a
plane inside the crystal since this choice from Eq.(A8d)
implies

Dz= − s1/n1 + 1/n2dCglc, s18d

with Cg defined in Eq.(A7). Now all we need to do is to find
the overall reference phase. To observe the quadrature com-
ponent corresponding to the real part of the object far field
we should choose
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c2,f
LO = fg

s0d − f1
LOsxW1d + p, s19d

with fg
s0d given by Eq.(A8b). This result, the tilted wave LO

(17) and the shift of the focusing plane (18) represent the
optimized scheme for accessing the object far field.The ref-
erence phase without optimizing is given by Eq.(16).

2. Retrieval of object near field

The object near field can be observed by using the tele-
scope setup in the reference arm, thus using the idler kernel
(6b) in the form (11b). Then Eq.(12) becomes

pTsxW1,xW2d =
Tda1

psxW1da2
psxW2d

2pilf
e−ixW1·xW2kv/f

3E dqW

2p
e−iqW·xW2T̃objsqWdgsxW1kv/f − qW,0d + c.c.

s20d

The correlation is therefore an integral over the gain function
and the object far field. Since the gain modulus is a roughly
plateau-shaped function in a region determined byq0 that
acts as a cutoff of the higher values ofqW, and the gain phase
dependence is slow within this region, the gain can as a good
approximation be pulled out of the integration as a constant
evaluated at the center of maximum gainqW =−qWC. The re-
maining integral is merely the inverse Fourier transform of
the object far field, i.e., simply the object near field. Hence
the quadrature correlation for retrieving the object near field
is

pTsxW1,xW2d .
Tdugs− qWC,0da1sxW1da2sxW2du

plf

3 RefTobjsxW2deiFTsxW1,xW2dg, s21ad

FTsxW1,xW2d ; − xW2 ·xW1kv/f + fgs− qWC,0d − f1
LOsxW1d − f2,T

LOsxW2d

− p/2. s21bd

We stress that it is only an approximate result that neglected
a cutoff of the high-frequency components of the object Fou-
rier transform. Thusimage information that relies on large
spatial frequency components will not be reproduced by the
correlations.This is the well-known result that the near-field
resolution is limited by the far-field gain bandwidth.

The first step in engineeringFTsxW1,xW2d as to observe a
given quadrature component consists in taking care of the
linear contribution inxW2. In the spirit of Eq.(15), we take
f2,T

LOsxW2d=c2,T
LO+qWLO

2,T·xW2 and choose

qW2,T
LO = − xW1kv/f . s22d

Thus making the idler LO a tilted wave is crucial to observe
the near-field distribution. Moreover, in order to observe the
real part the overall constant reference phase must be chosen
to

c2,T
LO = fgs− qWC,0d − f1

LOsxW1d − p/2. s23d

We may reduce the approximation made in going from Eq.
(20) to Eq. (21a) by compensating the quadratic term of the

gain phase by taking the imaging plane inside the crystal by
the amount(18), in the same way as discussed in the previous
section.Thus when the setup is optimized the idler reference
phase should instead be

c2,T
LO = fg

s0d − f1
LOsxW1d + xW1 · fW g

s1dkv/f − p/2, s24d

with fg
s0d andfW g

s1d given in Eq.(A8).

B. Numerical results

In this subsection we show specific examples from nu-
merical simulations that support the analytical results ob-
tained in the pointlike detector case. Additionally we intro-
duce the spatial average technique.

1. General introduction

The numerical simulations presented in this paper take
into account the Gaussian profile as well as the pulsed char-
acter of the pump. They consisted of solving the Eqs.(1)
using the Wigner representation to write the stochastic equa-
tions. At each pump shot a stochastic field was generated at
the crystal input with Gaussian statistics corresponding to the
vacuum state, and quantum expectation values corresponding
to symmetrical ordering were obtained by averaging over
pump shots. See Ref.[20] for more details. The system we
have chosen to investigate is the setup of a current experi-
ment performed in Como[28,29]. Thus we consider a BBO
crystal cut for type-II phase matching. The pump pulse is at
l0=352 nm and has a durationt0=1.5 ps. The crystal length
is lc=4 nm and the dimensionless gain parametersplc=4.0.
Together with a pump waist ofw0=660mm it corresponds
roughly to a pump pulse energy of 200mJ. The crystal is
collinearly phase matched at an angleu=49.05° of the pump
propagation direction with respect to the opticalz axis [30].
We usedu=48.2° which givesD0,0 and a gain that is pla-
teau shaped over a large region centered on −qWC as given by
Eq. (14). With this setup the typical time and length scales
(A5) arexcoh=17 mm andtcoh=0.96 ps.

The correlations typically converged after a couple of
thousands repeated pump shots when no spatial information
was recorded in the test beam(i.e., using either bucket or
pointlike detectors there). For this reason it is very time con-
suming to do a fulls3+1dD simulation(xyt propagated along
z). Instead we chose to model as2+1dD system: a single
transverse dimensionx along the walk-off direction and the
temporal dimensiont with propagation along the crystal di-
rectionz. We will also show simulations where in addition to
averaging over shots, a spatial average overxW1 is also per-
formed. In thes2+1dD simulations this reduces the number
of shots needed by an order of magnitude, while ins3
+1dD it is possible to average over both transverse directions
and a diffraction image can be observed even with only a
few shots. Thus this method allows us to calculate the cor-
relations even from a fulls2+1dD simulation.

The integration along the crystal direction was done in
Nz=200 steps. In thes2+1dD simulations thext grid was
chosen toNx=512 andNt=32, while for thes3+1dD simu-
lations we choseNx=Ny=256 andNt=32. sxW ,td were scaled
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to xcoh and tcoh, respectively, as given by Eq.(A5), while z
was scaled to the crystal lengthlc.

We chose to investigate the quantitative behavior of the
imaging system with a transmitting double slit as the object,
defined in one transverse dimension as

Tobjsxd =50, ux − dxu .
a + d

2
, ux − dxu ,

d − a

2

1,
d − a

2
ø ux − dxu ø

a + d

2
,

s25d

whered is the distance between the slit centers,a is the slit
width, anddx is the object shift from origin. This object only
introduces amplitude modulations and does not alter phase
information. We takedxÞ0 in the numerics to compensate
for walk-off effects, so we must choose it properly in order
for each slit to see the same gain. The analytical Fourier
transform is

T̃objsqd = aÎ2/pe−idxqcossqd/2dsincsqa/2d, s26d

where sincsxd=sinsxd /x. The shiftdx alone introduces a non-
zero imaginary part, but even without such a shift the double
slit diffraction pattern contains phase information(it is both
positive and negative). Additionally we will present results
using a pure phase double slit[10]

Tobjsxd =5 1, ux − dxu .
a + d

2
, ux − dxu ,

d − a

2

− 1,
d − a

2
ø ux − dxu ø

a + d

2
.

s27d

This object does not alter amplitude information.
In homodyne detection the LO is typically taken from the

same source that created the pump. One would first generate
the pump through second-harmonic generation(SHG), and
before the laser light at the fundamental frequency enters the
SHG crystal some of the power is taken out using a beam
splitter, and this field is then used for the LO’s. The second
harmonic at the exit of the SHG process is then the pump for
the PDC process. Therefore the LO’s have more or less the
same energy, shape and duration as the pump pulse entering
the PDC setup. Through numerical simulations with Gauss-
ian LO’s we confirmed the results indicated in the analytical
sections, namely that the effect of a Gaussian shaped LO
appears trivially as a multiplication[see Eqs.(13a) and(21)].
Since broader LO’s can easily be achieved experimentally
using a beam expander, we decided to keep the LO’s as plane
waves in space. Also this allows to base the interpretation of
the results on the physics behind the PDC and keeping in
mind that the LO’s will only change the result with a multi-
plication of a Gaussian function. The temporal duration was
chosen identical to the pumps1.5 psd, which ensures a good
overlap between the pulses[26].

2. Averaging over shots

In this section we present numerical results from using
pointlike detectors in the test arm and averaging over re-

peated shots of the pump pulse. The optimization steps dis-
cussed in the analytical section were carried out(i.e., cancel-
ing the quadratic and linear phase terms of the gain). We also
present semianalytical calculations performed inMATH-

EMATICA, which take the analytical formulas from Sec. IV A
and carry out the optimization steps and in addition take
explicitly into account the finite gain. Thus theMATH-

EMATICA calculations serve as a bridge between the idealized
analytical results(assuming an infinite gain bandwidth) and
the numerics(containing finite gain bandwidth and Gaussian
pump), in that theMATHEMATICA results take into account the
finite gain but still are based on the SPWPA.

The fixed position of the signal detectorsxW1 must be cho-
sen with care. In the far-field case we must ensure that in Eq.

(13a) the object diffraction patternT̃objfsxW1+xW2dkv / fg is cen-
tered where the gain modulusugs−xW2kv / f ,0du has its maxi-
mum (which it has at −xW2kv / f =−qWC). Thus we must choose
x1kv / f =−qC=−8.69. As for the near-field setup Eq.(20) dic-
tates that also here this position should be used to center the

gain over the origin ofT̃obj. Thus the test arm detector posi-
tion is unchanged as we pass from the far field to the near
field.

Let us first take the case of anf-f setup in the idler arm.
Figure 2 displays the two quadrature components corre-
sponding to the real and imaginary parts, confirming that
with this setupwe can reconstruct the full phase and ampli-
tude information of the object diffraction pattern from the
signal-idler correlations.The open diamonds in the figure
are results from the numerical simulation, and they are com-
pared to the analytical result(26) shown with a thin line, as
well as aMATHEMATICA calculation(thick line) that effec-
tively plots Eq.(13a). Compared to the analytical object dis-
tribution, the numerical simulation shows that only the cen-
tral part of the image is reconstructed since the high-
frequency components die out,which is a consequence of the
finite gain bandwidth that acts as a low-pass spatial fre-
quency filter. This effect was predicted by Eq.(13a): the
MATHEMATICA calculation is based on this equation and it
almost coincides with the numerical results. An additional

FIG. 2. The reconstruction of the object far-field distribution
using the f-f setup in the idler arm. The numerical correlations
(open diamonds) were calculated using 2000 pump shots. In(a) and
(b) c2

LO was chosen as to observe the real and imaginary parts,

respectively. The thin line showsT̃obj from Eq.(26), while the thick
line is Eq.(13a) as calculated inMATHEMATICA . Slit parameters:a
=9 pixels, d=33 pixels, anddx=23 pixels, corresponding to 34,
123, and 86mm, respectively, forf =5 cm.xf = fq0/kv.
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conclusion can be made from this agreement: since the
MATHEMATICA result assumes that the pump is a stationary
plane wave this implies that the Gaussian profile in space
and time of the pump pulse in the numerics does not affect
the correlations significantly. This is because the object is in
this example very localized so the signal field impinging on
it is almost constant. At the end of the section we shall see an
example, the pure phase object, where this is not the case.

In Fig. 3 we show that by merely exchanging thef-f setup
in the reference arm to the telescope setup as well as prop-
erly adjusting the idler LO phase,we can reconstruct the
complete object near-field distribution from the signal-idler
correlations.Figure 3(a) shows the real part, and the almost
zero imaginary part shown in 3(b) confirms that the object
does not alter phase information. The analytical SPWPA re-
sult usingMATHEMATICA is calculated from Eq.(20) [note
that it is the integral overqW that is calculated and not the
approximated version given by Eq.(21a)]. In comparison
with the analytical object[thin line, Eq.(25)] the numerics
are more “blurred,” while as before the numerics agree very
well with the analyticalMATHEMATICA result. It is worth-
while to point out that the results from the near-field and the
far-field scenarios are linked: the far field showed a cutoff at
high-frequency components due to finite gain. Exactly this
cutoff in Fourier space is what gives the blurred character of
the near-field image: as predicted by Eq.(20) the correlation
is an integral overqW of the gain multiplied with the object far
field, and because the finite gain bandwidth acts as a low-
pass filter then it is not possible to reconstruct the sharp
edges of the double slit.In other words, the near-field reso-
lution is determined by the far-field bandwidth.

The difference between the two-arm configuration of the
ghost-imaging schemes and the Hanbury-Brown–Twiss
(HBT) type schemes[31], in which the object is placed in
both of the correlated beams, is that the ghost-imaging
schemes are able to pertain phase information of the image
when reconstructing the diffraction pattern. Indeed, since in
the ghost-imaging schemes the object is only placed in one
of the beams one may reconstruct the Fourier transform of
Tobj. This holds both for PDC beams as well as for thermal
(or thermal-like) beams[12]. In contrast the HBT schemes
either lose or alter phase information since when operated
with thermal light the HBT technique can give information

about the Fourier transform ofuTobju2, while when operated
with PDC beams it can give information about the Fourier
transform ofTobj

2 [9,12].
We show here the results from using the pure phase

double slit (27) as an object, since for this object the HBT
scheme will not be able to provide information about the
diffraction pattern. Figures 4(a) and 4(b) show the far-field
reconstruction with thef-f system in the idler arm, and both
the real and imaginary parts follow closely the analytical
Fourier transform(thin line). Thus the scheme is able to re-
construct the diffraction pattern of a pure phase object.
There is a disagreement for the central peak in(a), corre-
sponding to the average value of the real part of the near
field: the analytical value actually goes out of the plot range
shown. This is due to the fact that ideally the Fourier trans-
form of the chosen phase object has ad-like behavior here
because all the photons are transmitted, whereas in the nu-
merics the signal field impinging on the object has a finite
extension. We accommodated for this in theMATHEMATICA

calculation by multiplying the phase double slit with a
Gaussian fitted to the near-field profile of the signal in the
numerics, and as can be seen(thick line) the agreement is
now very good. In Figs. 4(c) and 4(d) the near-field recon-
struction is shown with the telescope setup in the idler arm,
and as evidenced in the real part,(c), the phase object near-
field image can be successfully reconstructed(the imaginary
part is not shown since it was roughly zero). Also here the
MATHEMATICA calculations include the same finite size of the
signal field and match very well with the numerics. We
should stress that the blurred shape of the slits is due to the
finite gain bandwidth(as in Fig. 3), while the deviation away

FIG. 3. The reconstruction of the object near-field distribution
using the telescope setup in the idler arm. The parameters are iden-
tical to Fig. 2, except the thin line here showsTobj from Eq. (25)
swhile the thick line is Eq.(20) as calculated inMATHEMATICA .
xcoh=1/q0.

FIG. 4. The reconstruction of a pure phase double slit in(a) and
(b) the f-f setup case, and(c) and (d) the telescope case. The pa-
rameters are identical to Figs. 2 and 3, except 104 shots are used.
The MATHEMATICA results(thick) have been adjusted to take into
account the finite shape of the signal field.
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from the slits from the analytical result[thin line, Eq.(27)] is
due to the Gaussian profile of the signal[exactly this latter
behavior gives rise to a lower central peak in(a)]. Finally, we
also show the modulus of the reconstructed near field,(d), to
stress that it actually reveals some features of the double slit.
This is a consequence of the finite gain bandwidth of the
source which turns the signal-idler fields from being com-
pletely incoherent(this is the ideal result in the case of infi-
nite bandwidth) to being partially coherent. Notethat only
with the homodyne detection scheme is it possible to recon-
struct the near field of a pure phase object,while with the
intensity detection scheme it would not be possible.

3. Spatial average technique

In this section we describe how to improve the speed of
the correlation convergence as well as to obtain a much
larger imaging bandwidth. The idea is to average the corre-
lations not only over repeated shots but also over the position
of the signal detector in a certain way. This implies either
using a scanning pointlike detector setup or an array of de-
tectors in the test arm, abandoning the idea about keeping the
test arm setup as simple as possible. It instead benefits from
having a substantially increased bandwidth and convergence
rate. It works for reconstructing the far field, but not for the
near field becauseFTsxW1,xW2d depends linearly onxW1, see Eqs.
(21b) and (22). Thus it is impossible to engineer the LO
phases to observe a given quadrature asxW1 is varied.

For thef-f case, however, the technique works as follows.
Let us take the case where we want to see the real part, and
assume we have performed all the optimization steps de-
scribed in Sec. IV A 1. The correlation is then

pfsxW1,xW2d = 2Tdslfd−2ugs− xW2kv/f,0da1sxW1da2sxW2du

3 RehT̃objfsxW1 + xW2dkv/fgj. s28d

A change of coordinate systemxW ;xW1+xW2 and averaging over
xW1 aspf,xW1

sxWd;edxW1pfsxW1,xWd gives

pf,xW1
sxWd = 2Tdslfd−2RefT̃objsxWkv/fdg

3E dxW1ugfsxW1 − xWdkv/f,0ga1sxW1da2sxW − xW1du

.2Tdslfd−2RefT̃objsxWkv/fdgua1sxWdu

3E dxW1ugfsxW1 − xWdkv/f,0ga2sxW − xW1du

.const3 RefT̃objsxWkv/fdgua1sxWdu, s29d

where we have assumed thatua1sxW1du is a slowly varying
function and the last approximation holds whenugfsxW1

−xWdkv / f ,0gu is a bound function for allxW. Hence asxW is
scanned the object far field is observed multiplied by the
modulus of the signal LO. Thus whereas withxW1 fixed the
imaging system had a finite bandwidth, now the bandwidth is
effectively only limited by the shape of the signal LO. There-
fore if we assume thatua1sxWdu has a wide enough profile there
is no cutoff of the spatial Fourier frequency components;the
reconstructed diffraction pattern has a practically infinite

bandwidth. We may intuitively understand this by noting the
structure of Eq.(28). As we changexW1 to perform the aver-
age, the position of the diffraction pattern changes because
pfsxW1,xW2d~RehT̃objfsxW1+xW2dkv / fgj. In contrast, the position of
the gain remains stationary sincepfsxW1,xW2d~ ugs−xW2kv / f ,0du.
Hence a different part of the diffraction pattern is amplified.
Averaging over allxW1 all parts of the diffraction pattern is
amplified resulting in a practically unlimited bandwidth. Ad-
ditionally, the spatial average technique gives an increased
convergence rate of the correlation. It is again related to the
fact that when the signal detector is changed fromxW1

0 to xW1
0

+DxW the gain does not change position but the diffraction
pattern does. In this case, assuming thatq0f /kv@Dx, the
shifted diffraction pattern atxW1

0+DxW overlaps quite substan-
tially with the previous one. Thus asxW1 is scanned, a given
position of the diffraction pattern has many independent con-
tributions within a single shot, thereby increasing the conver-
gence rate.

The possibility of getting rid of the gain cutoff is relying
on the object only being located in one arm so the gain is a
function of xW2 only while the object far field is a function of
xW1+xW2. In contrast, if the object is located in both arms, as in
the HBT scheme, this would not be possible. Notice that this
procedure in practice does not amount to merely integrating
over xW1 (as when a bucket detector is used). Rather, one
should move to positionxW1 of the signal detector while mov-
ing together the positionxW2 of the idler detector as to keep
xW =xW1+xW2 constant. This corresponds to a spatial convolution
between the signal and idler quadratures. To see that, con-
sider the correlation of the measured quadraturesZj, and
from Eq. (8a) using the substitutionxW =xW1+xW2 we have
pf,xW1

sxWd=eTd
dt1eTd

dt2edxW1kZ1sxW1,t1dZ2sxW −xW1,t2dl. In the nu-
merical simulations this convolution is rapidly calculated us-
ing the fast Fourier transform method.

Note that the bandwidth can also be improved if instead
xW2 is fixed andxW1 is scanned. Then, according to Eq.(13a)
the gain cutoff is not present, while the diffraction pattern
still emerges from the correlations. The numerical simula-
tions confirmed this, however, because no spatial average is
performed the convergence rate is as slow as whenxW1 is kept
fixed. If we average overxW2 we obtain the same result as the
spatial average overxW1.

The effects of using the spatial average technique in the
same system setup as in Fig. 2 is shown in Fig. 5. First of all,
we note the excellent agreement between the numerics and
the analytical far-field pattern, and also that there is no fre-
quency cutoff:the imaging bandwidth has become practi-
cally infinite. Moreover,the convergence rate has increased
substantiallycompared to that in Fig. 2(by roughly an order
of magnitude). Another interesting point about homodyne
detection is that by measuring both quadratures in the the
far-field distribution, we may reconstruct the complete near-
field object distribution from this information by using the
inverse Fourier transformF−1fpsqWdg=esdxW /2pdeixW·qWpsqWd. We
have done this for the data in Figs. 5(a) and 5(b) and the
result is shown in Figs. 5(c) and 5(d). The real part,(c), of
F−1fpf,x1

sxdg follows Tobj very precisely. This is because we
now have access to many more high-frequency components
compared to the case shown in Fig. 3. Consequently, as the
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far-field imaging bandwidth is increased, the near-field reso-
lution improves. It is instructive to note that in the absence of
the spatial average the inverse Fourier transform of the far-
field correlations shown in Fig. 2 would giveexactly the
result reported with the telescope setup in Fig. 3. This again
underlines the strong link between the near-field and the far-
field measurements when all the phase information is intact.

Returning to the phase object of Fig. 4 we repeated the
simulations using the spatial average technique to reconstruct
the far-field distribution. In Fig. 6F−1fpf,x1

sxdg is shown and
the real part now shows excellent agreement with the ana-
lytical phase double slit(thin line). Most importantly, Fig.
6(b) showing the modulus now does not reveal any informa-
tion about the double slit. The extended imaging bandwidth
achieved with the spatial average makes the imaging system
truly incoherent and hence no phase information is trans-
ferred to the modulus.

The spatial average technique is even more superior in
two transverse dimensions, since the convergence speedup is
increased from averaging also over the additional transverse
dimension. In Fig. 7 we used two different objects:(a) an
amplitude transmission mask with the letters “INFM,” and
(b) a more complicated amplitude transmission mask show-
ing a picture of a wolf. We showuF−1fpf,xW1

sxWdgu for different

FIG. 6. The same setup as used in Fig. 4 except now the average
is also done overx1. The far-field correlations are calculated from
1000 repeated pump shots, and(a) and (b) show RehF−1fpf,x1

sxdgj
and uF−1fpf,x1

sxdgu, respectively.

FIG. 7. Using the spatial average technique in anf-f setup with
two different objects(a) and (b) to calculateuF−1fpf,xW1

sxWdgu. The
correlations are calculated from a fulls3+1dD simulation, and av-
eraging additionally over the the number of repeated pump shots
shown on the right.

FIG. 5. The same as shown in Fig. 2 except the spatial average
technique is used and the average is performed over 200 pump
shots.(a) and(b) show Rehpf,x1

sxdj and Imhpf,x1
sxdj. Notice that the

full numerical grid is shown.(c) and(d) show RehF−1fpf,x1
sxdgj and

ImhF−1fpf,x1
sxdgj. The thin lines display the analytical results of Eq.

(26) for the far field and(25) for the near field.
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number of shots, and evidently the simple mask(a) con-
verges faster than the more complicated mask(b). Neverthe-
less, in both cases a good, sharp image is obtained after very
few shot repetitions, implying thatthe corresponding far-
field diffraction patterns converge very fast and with a very
large bandwidth. After additional averaging over shots(us-
ing here 500 shots, as shown in the last frames) the irregu-
larities gradually disappear.

The qualitative difference in two dimensions between the
fixed detector case and using the spatial average technique is
shown in Fig. 8.(a) displays the modulus of the near-field
correlations obtained by using the telescope setup and a fixed
signal detector position, and(b) displays the modulus of the
inverse Fourier transform of the far-field correlations ob-
tained using thef-f setup and applying the spatial average
technique. The blurred character in(a) using fixed detectors
is obvious(similar to what was seen in one transverse di-
mension, see, e.g., Fig. 3), and does not improve much even
if more averages are performed since it is a consequence of
the finite bandwidth. In contrast the much improved far-field
bandwidth of the spatial average technique in(b) increases
the near-field resolution so the observed near-field image is
completely sharp. Moreover, only 200 shots is used in(b) in
contrast to the 4000 in(a). Hence the convergence rate in
two dimensions using the spatial average technique is in-
creased with roughly two orders of magnitude when com-
pared to the fixed detector case. Note that the simulations in
Fig. 8 have been performed neglecting the time dimension in
order to save CPU time. Such an approximation corresponds
to using a narrow interference filter, and was justified by
comparing with results for a fewer number of shots including
also time. A further justification of this is that, as is pointed
out in Appendix B, whenTd@tcoh the overlap of the LO
with the field generally tends to select theV=0 component
corresponding to neglecting time(except for a LO duration
shorter thattcoh).

We have in this section shown that using pointlike detec-
tors in the test arm allows us to reconstruct both amplitude
and phase information about an image, with the near-field
and far-field object distributions accessible by merely chang-
ing the optical setup of the reference arm. The spatial imag-
ing bandwidth for a fixed test detector position is determined

by the source bandwidth, and this in turn determines the
near-field resolution. Using a spatial average technique im-
proves the imaging bandwidth dramatically in the far-field
case, and also leads to a much faster information retrieval.

V. BUCKET DETECTORS IN TEST ARM

We now turn to the case where bucket detectors are used
in the test arm, a setup used previously with the intensity
detection scheme to observe the object near field[4,14]. One
motivation is to show that by using homodyne detection to-
gether with bucket detectors, phase-only objects can be im-
aged. If an intensity detection scheme is used this is not
possible, as shown in Ref.[14] for the two-photon coinci-
dence imaging case(although it is possible using a pointlike
detector in the object arm[8,10]). This is a general result that
also holds in the high-gain regime(it can easily be derived
from the results of Refs.[11,12]). Another motivation is to
see the imaging capabilities of this setup since it technically
seems simpler than the pointlike detector setup.

As argued in Sec. III, when bucket detectors are used in
the test arm it is necessary to keep the object placed in the
measurement plane. Besides this, the lens setups in the arms
are arbitrary, but we decided to keep thef-f setup in the
signal arm, as well as the idler setup in either thef-f or the
telescope configuration. The test-arm setup is shown in Fig.
1(c).

A. Analytical results

The test arm in the bucket detector case has the kernel
(5b), so to evaluate the sanalytical form of the quadrature
correlation(12) we must use it in the form(11b). Then, as
we will now show, using the idler kernels(6a) and (6b) we
can obtain the near-field and the far-field distributions, re-
spectively. The bucket detectors in the test arm effectively
integrate overxW1 of the quadrature correlation givingp̄T

bsxW2d
;edxW1pT

bsxW1,xW2d.

1. Retrieval of object near field

We here use thef-f setup in the reference arm, implying
we must use the idler kernel Eq.(6a) in the form (11b).
Inserting this in Eq.(12) and integrating overxW1 the signal-
idler quadrature correlation for retrieving the object near
field is consequently

p̄f
bsxW2d =

Td

p
ua1s− xW2da2sxW2dgs− xW2kv/f,0du

3RefTobjs− xW2deF̄f
bsxW2dg, s30ad

F̄ f
bsxW2d ; fgs− xW2kv/f,0d − f1

LOs− xW2d − f2,f
LOsxW2d + p.

s30bd

The idler LO phase may then be engineered to observe the
desired quadrature and as a first approximation the gain
phase dependence is neglected, soto observe the real part we
must choose

FIG. 8. Qualitative comparison in two dimensions.(a) is the
fixed detector case using the telescope setup in the idler arm, and
upTsxW1,xW2du is shown after 4000 shots.(b) is the spatial average case
using thef-f setup in the idler arm and anduF−1fpf,xW1

sxWdgu is shown
after 200 shots. The simulations are three-dimensional(3D) in
space but neglect the time dimension.
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c2,f
LO = fgs− qWC,0d − f1

LOs− xW2d + p. s31d

We may optimize this result by setting the focus plane of the
f-f setup in the idler arm inside the crystal with the amount
given by Eq.(18) as to compensate the quadratic term of the
gain phase. Additionally, by making the idler LO a tilted
wave with the wave number given by Eq.(17) we compen-
sate for the linear phase term.With these optimizations, the
real part can be observed by choosing

c2,f
LO = fg

s0d − f1
LOs− xW2d + p. s32d

We note that the results show a dependence of the signal
LO asa1s−xW2d. Therefore as the idler pixels are scanned it is
crucial that the signal LO does not vary substantially. An-
other point is the scale of the coordinate system, but we will
return to this in the next subsection.

2. Retrieval of object far field

For a telescope setup in the reference arm we must use the
kernel (6b) in the form (11b). Inserting this in Eq.(12) and
integrating overxW1 the measured correlation is

p̄T
bsxW2d =

Td

ilf
a2

psxW2d

3E dxW1

2p
e−ixW1·xW2kv/fgsxW1kv/f,0da1

psxW1dTobjsxW1d + c.c.

s33d

We assume now that the plateau-shaped gain and the modu-
lus of the signal LO vary slowly with respect to the object, so
they can be taken out of the integral, evaluated at the posi-
tion of maximum gainxW1kv / f =−qWC. This approximation
gives the quadrature correlation for observing the object far
field,

p̄T
bsxW2d .

2Td

lf
ugs− qWC,0da1s− qWCf/kvda2sxW2du

3RefT̃objsxW2kv/f + qW1
LOdeiF̄T

bsxW2dg, s34ad

F̄T
bsxW2d ; fgs− qWC,0d − c1

LO − f2,T
LOsxW2d + p/2. s34bd

Assuming a constant gain phasethe real part of the object
far field can be observed if

f2,T
LOsxW2d = fgs− qWC,0d − c1

LO + p/2. s35d

As in the other cases the result(34a) can be optimized by
compensating for the quadratic gain phase term before the
integration by taking the imaging plane of the telescope
setup inside the crystal with the amount given by Eq.(18).
Thusin the optimized case to observe the real part of the far
field the reference phase is

f2,T
LOsxW2d = fg

s0d − c1
LO + p/2. s36d

In connection with optimizing the imaging performance, it is
apparent from Eq.(34a) that if the signal LO is a tilted wave
then the origin of the reconstructed diffraction pattern
changes. This can be used to compensate for undesired walk-

off effects by centering the reconstructed image in the place
where the idler(which in this setup is in the near field) has
its maximum. Additionally, making the idler LO a tilted
wave can be used to compensate for unimportant oscillations
in the quadrature components that comes from shifting the
object near field from origin[see in that connection Eq.
(26)].

Let us come back to the scaling of the image information.
The particular setup we chose(having the object placed in
the far field created by anf-f lens system, just before the
bucket detectors) implies that the signal field impinging on
the object changes on the scalexf = fq0/kv. This is evident in
the analytical formulas Eqs.(30a) and(33). In contrast, when
the object was placed in the near field the field changed on
the scalexcoh=1/q0. As an example, forf =5 cm andl
=704 nm,xf =338mm while in contrastxcoh=17 mm. The
consequence is that while imaging is possible with bucket
detectors, it occurs on a different(i.e., larger) length scale
than with pointlike detectors.

B. Numerical results

The numerical simulations using bucket detectors were
similar to those presented in Sec. IV B, except now the ob-
ject is placed after thef-f setup in the test arm. We decided
to keep the object structure used in Fig. 4, i.e., a pure phase
double slit with exactly the same number of pixels between
the slits as well as for the slit aperture. Hence the physical
slit dimensions are determined by the larger scalexf. In ad-
dition, all the optimization procedures discussed in the pre-
vious sections were used.

Figure 9 shows the numerical simulation using thef-f
setup in the idler arm. The reconstructed real part in(a)
follows the analytical double slit, while the imaginary part
(b) is containing only little information about the slits. Con-
sequentlyusing bucket detectors in the test arm both phase
and amplitude information about the object near field can be
reconstructed. Notice that theMATHEMATICA result (thick
line) has a better resolution than the numerical results. This

FIG. 9. The reconstruction of the object near-field distribution of
a pure phase object with bucket detectors in the test arm and using
the f-f setup in the reference arm. The numerical correlations(open
diamonds) were calculated from averaging over 104 pump shots.
The thin line is the pure phase double slit(27), while the thick line
is calculated inMATHEMATICA on basis of Eq.(30a). Slit parameters
in pixels as Fig. 2 corresponding forf =5 cm to a=166mm, d
=610mm, anddx=−2.9 mm.
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indicates thatthe finite shape of the pump worsens the reso-
lution, and we will come back to this later. Away from the
slits the correlations decay to zero because of the finite shape
of the far-field gain.

Figure 10 shows a numerical simulation similar to Fig. 9
but with the telescope setup in the idler arm. The recon-
structed real part in(a) follows within a certain bandwidth
the analytical result(thin line) while the imaginary part(b) is
zero. Thususing bucket detectors in the test arm both phase
and amplitude information about the object far-field distri-
bution can be reconstructed. The cutoff in (a) is actually
caused by the Gaussian shape of the idler near-field profile,
which has been taken into account in theMATHEMATICA cal-
culation of the integral(33); without such a correction the
MATHEMATICA result would actually very closely follow the
analytical result(thin line) without being cut off. This can be
understood by inspecting Eq.(33) more closely, since we see
that the action of the gain inside the integral is to provide a
limit for the object extension. However, in contrast to the
pointlike detector case of Eq.(13a) where the gain eventu-
ally determines the far-field imaging bandwidth, in the
bucket case it is not so:Once the object is located inside the
gain, the reproduced diffraction pattern is very good. This is
also in accord with what we saw in the semianalytical repro-
duction of the near field in Fig. 9, where the double slits
appear very sharp indicating that the Fourier frequency band-
width is large. A consequence of this is thatif we tailor the
pump to have a plane-wave shape, we should see practically
no cutoff in the far field as well as a very sharp reproduction
of the double slit in the near field. We checked this to be the
case. Thus also the bucket detector case shows an inherent
link between far-field bandwidth and near-field resolution.
Note that in(b) Imfp̄T

bsx2dg.0 because we used a tilted-wave
idler LO in order to eliminate the oscillations arising because
of the offset of the object from origin, making the Fourier
transform purely real. Additionally, the central peak of the
analytical function in(a) goes out of the range shown for the
same reasons as in Fig. 4.

To conclude this section, a homodyne detection scheme
with bucket detectors in the test arm is capable of observing
both amplitude and phase distribution of an object. Both the
near-field and the far-field distributions are accessible by
only changing the optical setup in the reference arm and

even phase-only objects can be imaged with a bucket detec-
tor, in contrast to the intensity detection case[14]. We finally
note thatonly with the homodyne technique is it possible to
reconstruct the diffraction pattern of an object using bucket
detectors in the test arm. And while the intensity detection
case may reproduce the object near field using a bucket de-
tector in the test arm[4,14,32], as mentioned above only the
modulus of the object near field may be reproduced.

VI. CONCLUSION

We have shown that homodyne detection can be used to
get access to both modulus and phase information in ghost-
imaging schemes based on PDC in the high-gain regime.
Both the signal and idler beams are measured with individual
LO’s, and we have shown analytically how to engineer the
phases of these in order to retrieve amplitude as well as
phase information of the object image(near field) and the
object diffraction pattern(far field). Generally, the results
indicate that merely fixing a reference phase of the idler LO
is enough to generate the desired quadrature correlations,
except for the near field that in addition requires a tilted
wave LO. An improvement can in all cases be achieved if the
quadratic dependence of gain phase is compensated for, pri-
marily by keeping the focusing plane a short distance inside
the crystal. Interestingly, even when using bucket detectors
in the test arm the homodyne technique could completely
reconstruct both the amplitude and phase of an image. The
results were confirmed with numerical simulations taking
into account a finite shape of the pump pulse.

We showed that when reconstructing the diffraction pat-
tern a spatial average over the signal detector position leads
to much faster convergence rate of the correlations(fewer
pump-shot repetitions needed) as well as a hugely improved
bandwidth of the diffraction pattern. An intuitive explanation
of the method is found from Eq.(28): as the signal detector
position is changed to perform the average, the position of
the diffraction pattern in the correlations is also changed. In
contrast, the position of the gain is not changing since it only
depends on the position of the idler detector. Hence as the
signal detector position is changed, different parts of the dif-
fraction pattern is amplified leading to a larger bandwidth.
The improved convergence rate is related to the fact that
within a single shot there are many independent modes that
each contribute to the correlation statistics. Thus the spatial
average technique truly exploits the possibility for parallel
operations in spatially correlated beams. The technique can-
not be applied in the near-field case, but it is important to
note that the technique works when reconstructing the dif-
fraction pattern using direct intensity measurements of the
fields, both when using PDC beams(as will be discussed
elsewhere in a separate publication[32]) and the thermal-like
beams investigated in Ref.[12]. The technique works par-
ticularly well in the high-gain regime because the number of
signal photons per mode is not small, but should also work in
the low-gain regime. Finally, it is worthwhile to mention that
when using bucket detectors in the test arm the imaging
bandwidth was determined by the finite shape of the pump.
Hence to improve the bandwidth a pump with a larger waist
should be chosen.

FIG. 10. The same as shown in Fig. 9 except now using the
telescope setup in the idler arm making it possible to reconstruct the
object far-field distribution. The thick line is Eq.(33) calculated in
MATHEMATICA while taking into account the finite shape of the idler
near-field distribution.
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Since the homodyne scheme allows us to have access to
both phase and amplitude information, we may pass from the
far-field result to the near-field result by simply making an
inverse Fourier transform. Thus by taking the far-field corre-
lations containing the information about the diffraction pat-
tern and performing an inverse Fourier transform gave the
same result as measuring the near-field correlations contain-
ing the information about the object image, and vice versa.
An important consequence is that we can exploit the spatial
average technique to improve the bandwidth of the recon-
structed diffraction pattern, and through an inverse Fourier
transform obtain an image with a hugely improved resolu-
tion. This is not possible in the intensity detection case.

In the time domain the outcome of a homodyne detection
is depending strongly on the temporal overlap between the
local oscillator and the field. A question to answer in this
paper was therefore how important it is to ensure a proper
overlap also in the spatial domain between the local oscilla-
tor and the field. The answer in the context of ghost imaging
is that it is not crucial. In fact, the analytical results in the
plane-wave pump approximation suggest that the near-field
shape of the local oscillator is merely multiplied onto the
final result. Even the numerical simulations taking a Gauss-
ian shape of the fields into account suggest the same. An-
other issue entirely is measurements where the quantum ef-
ficiency is important(in contrast to here), and in that case
undoubtably the spatial overlap becomes more important.

Using an intensity detection scheme the detection time
must not be larger than the coherence time, otherwise the
background term that contains no image information be-
comes dominating and the visibility of the image is dramati-
cally decreased[7,12,13]. In contrast, the homodyne detec-
tion scheme is not restricted by this because the correlation
function is second order in the field operators implying there
is no background term. Hence the detection time may be
chosen much larger than the coherence time. Additionally,
we have shown that the spatial average technique can give a
much larger imaging bandwidth than the source itself. This
suggests the possibility of using an optical parametric oscil-
lator (OPO) as a source, and using homodyne detection as a
measurement protocol. The limited spatial bandwidth of the
OPO with respect to PDC could then be circumvented with
the spatial average technique, and the homodyne measure-
ments allow a continuous wave operation of the imaging
scheme: since there are no problems with image visibility,
the measurement time can be taken longer than the coher-
ence time. Thus one could effectively abandon the involved
scheme of using a high-power laser pumping a PDC setup
and the complicated task of overlapping LO fields with the
signal-idler fields with temporal durations on a ps level.
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APPENDIX A: GAIN FUNCTIONS AND THE EXPANSION
OF THE GAIN PHASE

The gain functions of Eq.(3) are for the signal[20]

U1sqW,Vd = eiD12sqW,Vdlc/2Fcosh„G12sqW,Vdlc…

+ i
D12sqW,Vd
2G12sqW,Vd

sinh„G12sqW,Vdlc…G , sA1ad

V1sqW,Vd = eiD12sqW,Vdlc/2
spsinhfG12sqW,Vdlcg

G12sqW,Vd
. sA1bd

For the idler similar gain functions are found by exchanging
indices 1↔2. We have in Eq.(A1) introduced

Di jsqW,Vd ; D0 + disqW,Vd + d js− qW,− Vd, sA2d

as well as DijsqW ,Vd;disqW ,Vd−d js−qW ,−Vd−D0, Gi jsqW ,Vd
;Îsp

2−fDi jsqW ,Vd /2g2 andsp;sAp.
When the signal and idler input fields of the crystal are in

the vacuum state the output fields are[20]

kaj
out†sqW,Vdak

outsqW8,V8dl

=d jkdsqW − qW8ddsV − V8duVjsqW,Vdu2, j = 1,2,

sA3ad

ka1
outsqW,Vda2

outsqW8,V8dl

=dsqW + qW8ddsV + V8dU1sqW,VdV2s− qW,− Vd.

sA3bd

The bandwidths of emission of the gain functions(A1) in
the spatial and temporal frequency domain are

q0
2 = 2flcs1/k1 + 1/k2dg−1, sA4ad

V0 = suk18 − k28ulcd
−1, sA4bd

where the coherence length and coherence time describe the
typical variation scales of the signal-idler fields:

xcoh= 1/q0, tcoh= 1/V0. sA5d

It is useful to perform a quadratic expansion for the gain
phase fg from the expressions(A1). We note that
D12sqW ,Vd=D21s−qW ,−Vd;DsqW ,Vd and therefore also
G12sqW ,Vd=G21s−qW ,−Vd;GsqW ,Vd. Thus we obtain

fgsqW,Vd = − D0lc + arctanFDsqW,VdtanhfGsq,Vdlcg
2GsqW,Vd

G.− D0lc

+ arctanfCgDsqW,Vdlcg.− D0lc + CgDsqW,Vdlc,
sA6d

where we use that the gain is large and that the modes inside
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the gain are phase matchedfDsqW ,Vd.0g making GsqW ,Vd
.sp. We have introduced a dimensionless parameter that is
related to the dimensionless gainsplc,

Cg ;
tanhssplcd

2splc
. sA7d

For splc→0 (small gain) Cg→1/2 while for splc@1 (large
gain) Cg→0. Now from Eq.(A2) it is evident thatDsqW ,Vd
is quadratic inqW andV, so that the gain phase(A6) approxi-
mately can be written as

fgsqW,Vd . fg
s0d + fW g,q

s1d ·qW + fg,q
s2d uqW u2 + fg,V

s1d V + fg,V
s2d V2,

sA8ad

fg
s0d = D0lcs− 1 +Cgd, sA8bd

fW g,q
s1d = − r2lcCgeWx, sA8cd

fg,q
s2d = −

sn1 + n2dlcCg

2n1n2kv
, sA8dd

fg,V
s1d = sk18 − k28dlcCg, sA8ed

fg,V
s2d = sk19 + k29dlcCg/2, sA8fd

whereeWx is a unit vector in thex direction.

APPENDIX B: SIGNAL-IDLER CORRELATION

Here we present the detailed calculations of the expres-
sions for the signal-idler correlation(8b). By using Eq.(11a)
we see that in Eq.(8b) the Fourier spatial and temporal fre-
quencies are decoupled as

psxW1,xW2d =E dVBsxW1,xW2,Vd

3E dqWh1sxW1,− qWdh2sxW2,qWdgsqW,Vd + c.c.,

sB1ad

BsxW1,xW2,Vd ; Td
2E E dV8dV9

s2pd2 a1
psxW1,V8da2

psxW2,V9d

3 sincfsV − V8dTd/2gsincfsV + V9dTd/2g.

sB1bd

Let us consider the case of apulsedLO, i.e., evaluate Eq.
(B1b) for the LO duration much smaller thantcoh. Addition-
ally it can be assumed thatTd@tcoh implying
TdsincfsV±V8dTd/2g.2pdsV±V8d, giving BsxW1,xW2,Vd
=a1

psxW1,Vda2
psxW2,Vd, which means that the correlation is

psxW1,xW2d =E dVa1
psxW1,Vda2

psxW2,Vd

3E dqWh1sxW1,− qWdh2sxW2,qWdgsqW,Vd + c.c.

sB2d

In the case of acontinuous waveLO, the LO duration is
much longer thattcoh. Thus the LO corresponds to a quasi-
monochromatic wave, i.e.,a jsxW ,Vd=dsVda jsxWd. Using this
form in Eq. (B1b) removes the integration onV8 and V9.
Then we use that forTd@tcoh the remaining term
TdfsincsVTd/2dg2 behaves like 2pdsVd, implying
BsxW1,xW2,Vd.dsVda1

psxW1da2
psxW2dTd/ s2pd. Hence

psxW1,xW2d .
Td

2p
a1

psxW1da2
psxW2d

3E dqWh1sxW1,− qWdh2sxW2,qWdgsqW,0d + c.c.

sB3d

Clearly, the pulsed case may have a larger gain than the
monochromatic case because of the integration overV, but
only if we can minimize theV dependence of the phase in
the integrand of Eq.(B2), which will in turn maximize the
integral regardless of the value ofqW. As an approximation, a
proper temporal delay between the LO’s effectively cancels
the first-order term(A8e) of the gain phase. It is not easy to
cancel the second-order term, but we estimate that this term
does not contribute much sincesk19+k29dlcV0

2/2=sk19
+k29d / fsk28−k18d

2lcg=Os10−4d for the crystal setup we consider.
The numerics showed only a slightly enlarged effective spa-
tial bandwidth due to the delay between the LO’s, and since
it requires temporally short pulses(roughly less than 20% of
tcoh) which are difficult to obtain experimentally, we used the
limit of a continuous wave LO for the analytical results.
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