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Abstract

We provide a new general setting for scalar interacting fields on the covering of a (d + 1)-
dimensional AdS spacetime. The formalism is used at first to construct a one-parameter family of
field theories, each living on a corresponding spacetime submanifold of AdS, which is a cylinderR×
Sd−1. We then introduce a limiting procedure which directly produces Lüscher–Mack CFT’s on the
covering of the AdS asymptotic cone. Our generalized AdS→CFT construction is nonperturbative,
and is illustrated by a complete treatment of two-point functions, the case of Klein–Gordon fields
appearing as particularly simple in our context.

We also show how the Minkowskian representation of these boundary CFT’s can be directly
generated by an alternative limiting procedure involving Minkowskian theories in horocyclic sections
(nowadays called (d−1)-branes, 3-branes forAdS5). These theories are restrictions to the brane of
the ambient AdS field theory considered. This provides a more general correspondence between the
AdS field theory and a Poincaré invariant QFT on the brane, satisfying all the Wightman axioms. The
case of two-point functions is again studied in detail from this viewpoint as well as the CFT limit on
the boundary. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The by-now famous Maldacena’s AdS/CFT correspondence conjectures a duality
between type IIB superstring theory onAdS5 × S5 and super Yang–Mills conformal
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quantum field theory (QFT) on the flat four-dimensional boundary ofAdS5 (times the five
sphereS5) [1].

Not only proving the conjecture in his original shape is far beyond today’s possibilities
(as one would need to solve both superstring and super Yang–Mills theories and then
establish the duality), but also its very formulation is not trivial. As a matter of fact, the
original seminal paper by Maldacena [1] did not spell out how the correspondence (or
duality) should precisely work.

A way to make effective a weaker version of the conjecture, which relates the boundary
conformal field theory (CFT) with the supergravity approximation to superstring theory
has been subsequently formulated independently by Gubser, Klebanov and Polyakov in
[2] and by Witten in [3]. This proposal prescribes how to compute the Green’s functions
of the boundary (super Yang–Mills) CFT in terms of the Euclidean classical supergravity
action of an AdS field configuration which obeys to precise boundary conditions and it has
been discussed in a large number of papers (for a review see [4]). Most of these works are
making use of classical field theory methods, mainly in a Euclidean formulation allowing
the use of Dirichlet’s problem but also in a Lorentzian formulation in terms of modes of
the Klein–Gordon equation [5].

The ideas of the AdS/CFT conjecture also suggest the existence of a rich and yet
uninvestigated conceptual content at the level of quantum fields and therefore it is natural
that many works in this domain have also made use of the already existing (and more than
two decades old) results QFT on the AdS spacetime. In this connection, one must quote
the pioneering approach of [6], whose main concern was to specify boundary conditions
such that the difficulties arising by the lack of global hyperbolicity of the underlying AdS
manifold could be circumvented and the resulting QFT be well defined. Another, earlier,
approach was also given on the basis of group-theoretical methods [7] following ideas that
can be traced back to Dirac [8]. Both of these approaches have influenced the research
on the AdS/CFT subject. However, their applicability is more or less limited to free AdS
QFT’s even if they can produce useful ingredients for perturbative calculations (mainly
tree-level calculations [11,12], but also involving in special cases nontrivial bubbles of
four-point functions [13]).

To go beyond, it may be useful to consider the AdS/CFT debate on a more general
basis1 in which both AdS quantum fields and boundary CFT’s would be treated from the
viewpoint of the structural properties of theirn-point correlation functions. This approach
could also have a practical value for a general perturbative renormalization theory.

It is precisely at this level that this paper wants to address the issue, by studying the
relationship that exists between scalar AdS QFT’s and CFT’s living on the boundary of the
AdS manifold. To this end, we introduce a (minimal) set of field-theoretical requirements
in order to give a well-posed framework for the study of AdS QFT’s. Then we spell out a
condition on AdS fields that allows one to associate a well-defined CFT on the boundary

1 In this spirit such a setting has been proposed [9] in the general framework of algebras of local observables
(or “local quantum physics” in the sense of Haag [10]).
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of the AdS spacetime with any given (interacting, nonperturbative) scalar field theory in
the AdS bulk that satisfies it. We call this propertyasymptotic dimensionality condition.

The result of our study could therefore be summarized by the symbolic writing AdS→
CFT (as opposed to AdS/CFT), since, given any scalar QFT satisfying our set of axioms
and the asymptotic dimensionality condition, we are guaranteed that there exist a fully
acceptable boundary CFT and we know how to construct it.

We will not address in this paper the question of the applicability of this general
correspondence to the original Maldacena’s AdS/CFT conjecture. This would require a
more elaborate scheme taking into account also supersymmetry.

It might be that the original AdS/CFT correspondence (in its field theoretical formu-
lations by Gubser, Klebanov and Polyakov and by Witten) is a subset of our AdS→
CFT construction. This possibility is corroborated by the fact that, with our method, we
can reproduce in a really elementary way the well-known relation between AdS masses
and boundary conformal weights [3] and the various two-point functions. The question
however cannot be answered without first showing that there exists a supergravity theory
satisfying a set of axioms similar to those that we spell out for scalar theories, and it is
well-known that supergravity is an effective theory possibly non-existent as an acceptable
QFT. However, it is also well known that a seemingly innocent question like that, for the
much better understood quantum electrodynamics (and, even simpler, for one scalar self-
interacting field in four spacetime dimensions), has stayed unanswered for seventy-five
years up to date.

Also, we do not dwell on the converse relation,2 which is also needed to establish a
duality (rather than a projection). In this respect, our concern is certainly simpler but, at
the same time, it promises a more general outcome: it always gives a boundary CFT given
a (scalar) AdS QFT satisfying our hypotheses.

Let us give now a few more technical details and the plan of the paper. Our approach
is based on a basic work by Lüscher and Mack [14], where the concept of global
conformal invariance in Minkowskian QFT has been associated in a deep and fruitful way
with the general framework of QFT on the covering of a quadratic cone with signature
(+,+,−, · · · ,−) (in one dimension more). Since such a cone is precisely the asymptotic
cone of the AdS quadric, it seems quite appropriate to try to formulate our axiomatic AdS
→ CFT relation in a way which exhibits as clearly as possible the connection between
Lüscher’s and Mack’s QFT framework on the cone with a similar QFT framework on the
AdS quadric. This is the first purpose of the present work.

In Section 2 we introduce such a general framework for the study of quantum fields on a
(d+1)-dimensional AdS spacetimeAdSd+1 (or more precisely on its covering) in the spirit
of [15]. Then, in Section 3, we present a direct and simple method for obtaining correlation
functions of conformal fields on the boundary, method which does not rely on the use of
any field equation.

2 The existence of such a converse relation has been established in [9] CFT→ AdS at a more global level,
namely for algebras of local observables.
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General interacting QFT’s on the (covering of the) AdS spacetime are assumed to satisfy
a set of basic properties such as microcausality, AdS covariance and a certain energy
spectrum condition here introduced in terms of appropriate analyticity properties of the
n-point functions. Together with these general properties, it is also crucial to require a
certain type of asymptotic behavior for then-point functions in terms of anasymptotic
dimensionality condition. The possibility to use such type of asymptotic condition has been
mentioned in a perturbative context in [16]. We then introduce a limiting procedure which
directly produces CFT’s (in the sense of [14]) on the covering of the asymptotic cone of
AdS spacetime; the conformal covariance of the corresponding Minkowskian (interacting)
field theory on the boundary is then proved without making use of any field equation.

This difference from the original largely followed proposals of [2] and [3] is worth
noticing: rather than solving explicitly for a field that is defined by suitable boundary
conditions on the edge — which can be done in a tractable way only for free fields — we
define a limiting procedure that can be applied directly to the AdS correlation functions.
This is much simpler already for free fields, but our treatment also shows how to deal with
interacting fields AdSd+1 and we gain a general nonperturbative foundation for a scalar
AdS→ CFT construction formulated in terms of then-point correlation functions of such
fields and treated from a model-independent point of view.

In Section 4 we provide a complete treatment of two-point correlation functions. By
applying the general setting of Section 2 we are able to exhibit strong analyticity properties
of AdS two-point functions [17], which are closely similar to those enjoyed by two-point
functions in flat spacetime or in de Sitter spacetime [18,19]. In the case of Klein–Gordon
fields, these analyticity properties fix completely their form to be necessarily appropriate
second-kind Legendre functions, as obtained (for the four-dimensional case) in the group-
theoretical approach of [7]; the CFT limits of such two-point functions are then directly
computable in full consistency with the given general formulation of the AdS→CFT
correspondence.

We also provide an alternative construction based on the Poincaré or horocyclic
coordinate system forAdSd+1. This way of looking to the AdS spacetime as a warped
manifold with Poincaré sections (today called (d−1)-branes) has recently gained an
enormous interest in a phenomenological and cosmological context [20].

We show that by restriction, AdS correlation functions satisfying our general properties
of Section 2 define acceptable two-point Minkowskian QFT correlation functions on the
branes (corresponding to flatd-dimensional spacetime sections of the AdS manifold).

In particular, in Section 5 we establish a spectral decomposition for the AdS Klein–
Gordon fields naturally associated to the Poincaré foliation of the AdS quadric. In this
scheme the well-known ambiguity for low mass theories [21] is seen to be linked to the
lack of essential self-adjointness of the Bessel’s differential operator [22] which naturally
arises in the Poincaré coordinates.

In the last part of our paper, we introduce a more general possible use of the Poincaré
foliation by showing how general Minkowskian interacting QFT’s can be produced by
taking the restrictions of general AdS QFT’s to the branes. It is worthwhile to stress that
this is a nontrivial step. Indeed it is well known that, as a consequence of Heisenberg’s
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indetermination principle, in general a quantum field cannot be restricted to lower-
dimensional submanifolds of the spacetime where the field live. It is a bonus of our
axioms which allows this restriction of an AdS quantum field to a Poincaré or cylindrical
brane. Moreover, by sending these leaves to infinity we exhibit a limiting procedure for
the Minkowskian QFT’s in the leaves which provides an alternative presentation of the
previously defined AdS→CFT construction. The interest of this presentation is that it is
entirely expressed in terms of Minkowskian theories satisfying the Wightman axioms, and
can be of interest for the multidimensional approach to phenomenology and cosmology
[20].

2. General QFT in AdS spacetime

2.1. Notations and geometry

We consider the vector spaceRd+2 equipped with the following pseudo-scalar product:

X ·X′ =X0X′0−X1X′1− · · · −XdX′d +Xd+1X′d+1
. (1)

The(d + 1)-dimensional AdS universe can then be identified with the quadric

AdSd+1=
{
X ∈Rd+2, X2=R2}, (2)

whereX2=X ·X, endowed with the induced metric

ds2
AdS =

(
dX0 2− dX1 2− · · · + dXd+1 2)∣∣

AdSd+1
. (3)

The AdS relativity group isG= SO0(2, d), that is the component connected to the identity
of the pseudo-orthogonal groupO(2, d). Two eventsX, X′ of AdSd+1 are space-like
separated if(X−X′)2< 0, i.e., ifX ·X′ >R2.

We will also consider the complexification ofAdSd+1:

AdS(c)d+1=
{
Z =X+ iY ∈Cd+2, Z2=R2}. (4)

In other terms,Z =X+ iY belongs toAdS(c)d+1 if and only ifX2−Y 2=R2 andX ·Y = 0.
In the following we will put for notational simplicityR = 1.

We shall make use of two parametrizations for the AdS manifold.
The“covering parametrization”X =X[r, τ,e]: it is obtained by intersectingAdSd+1 with

the cylinders with equation{X02+Xd+12= r2+ 1}, and is given byX
0=√r2+ 1sinτ,

Xi = rei , i = 1, . . . , d,
Xd+1=√r2+ 1 cosτ,

(5)

with e2 ≡ e12 + · · · + ed
2 = 1 andr > 0. For each fixed value ofr, the corresponding

“slice”

Cr = AdSd+1∩
{
X02+Xd+12= r2+ 1

}
(6)
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of AdSd+1 is a manifoldS1× Sd−1. The complexified spaceAdS(c)d+1 is obtained by giving
arbitrary complex values tor, τ and to the coordinates e= (ei ) on the unit(d − 1)-sphere.

The parametrization (5) allows one to introduce relevant coverings ofAdSd+1 and
AdS(c)d+1 by unfolding the 2π -periodic coordinateτ (respectively, Reτ ), interpreted as

a time-parameter: these coverings are denoted, respectively, byÂdSd+1 and ÂdS
(c)

d+1.
A privileged “fundamental sheet” is defined on these coverings by imposing the condition
−π < τ < π (respectively,−π < Reτ < π ). This procedure also associates with each
manifoldCr its coveringĈr which is a cylinderRτ × Sd−1e. We will use the symbolsX,
Z, . . . , also to denote points of the coverings.

Similarly one introduces a coverinĝG of the groupG by taking inG the universal
covering of the rotation subgroup in the(0, d + 1)-plane. By transitivity,AdSd+1 and
ÂdSd+1 are, respectively, generated by the action ofG and Ĝ on the base pointB =
(0, . . . ,0,1).

The physical reason which motivates the introduction of the coverinĝAdSd+1, that is
the requirement of nonexistence of closed time-loops, also leads us to specify the notion
of spacelike separation in̂AdSd+1 as follows: letX,X′ ∈ ÂdSd+1 and letg an element of
Ĝ such thatX′ = gB; defineXg = g−1X. X andX′ are spacelike separated ifXg is in the
fundamental sheet of̂AdSd+1 and(X −X′)2≡ (g−1X − g−1X′)2 < 0. This implies that
Xg =Xg[r, τ,e] with −π < τ < π and

√
r2+ 1cosτ > 1.

It is also interesting to note that on each manifoldCr the condition of spacelike
separation between two pointsX =X[r, τ,e] andX′ =X′[r, τ ′,e′] reads (in view of (5)):

(X−X′)2= 2(r2+ 1)
(
1− cos(τ − τ ′))− r2(e− e′)2< 0, (7)

and that the corresponding covering manifoldĈr therefore admits a global causal ordering
which is specified as follows:

(τ,e) > (τ ′,e′), iff τ − τ ′ > 2 Arcsin

(
(e− e′)2

4

r2

r2+ 1

)1/2

. (8)

The “horocyclic parametrization”X = X(v,x): it only covers the partΠ of the AdS
manifold which belongs to the half-space{Xd + Xd+1 > 0} of the ambient space and is
obtained by intersectingAdSd+1 with the hyperplanes{Xd + Xd+1 = ev = 1/u}, 3 each
sliceΠv (or “horosphere”) being an hyperbolic paraboloid:

Xµ = evxµ = 1

u
xµ, µ= 0,1, . . . , d − 1,

Xd = sinhv + 1

2
evx2= 1− u2

2u
+ 1

2u
x2,

x2= x02− x12− · · · − xd−12
,

Xd+1= coshv − 1

2
evx2= 1+ u2

2u
− 1

2u
x2.

(9)

3 The coordinateu= e−v is frequently calledz in the recent literature. We are forced to change this notation
because we reserve the letterz to complex quantities. By allowing also negative values foru the coordinate system
(9) covers almost all the real manifoldAdSd+1.
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In each sliceΠv , x0, . . . , xd−1 can be seen as coordinates of an event of ad-dimensional
Minkowski spacetimeMd with metric ds2

M = dx0 2 − dx12 − · · · − dxd−12
(here and

in the following where it appears, an indexM stands for Minkowski). This explains
why the horocyclic coordinates(v, x) of the parametrization (9) are also called Poincaré
coordinates. The scalar product (1) and the AdS metric can then be rewritten as follows:

X ·X′ = cosh(v − v′)− 1

2
ev+v′(x − x ′)2, (10)

ds2
AdS= e2vds2

M − dv2= 1

u2

(
ds2
M − du2). (11)

Eq. (10) implies that(
X(v,x)−X(v,x ′))2= e2v(x − x ′)2. (12)

This in turn implies that space-like separation in any sliceΠv can be understood
equivalently in the Minkowskian sense of the slice itself or in the sense of the ambient
AdS universe.

Eq. (11) exhibits the regionΠ of AdSd+1 as a warped product [26] with warping function
ω(v) = ev and fibers conformal toMd . The use of this parametrization is crucial in a
recent approach to the mass hierarchy problem [20] and to multidimensional cosmology.
In this context the slicesΠv are called branes. Finally, the representation ofΠ by the
parametrization (5) is specified by consideringΠ as embedded in the fundamental sheet
of ÂdSd+1; it is therefore described by the following conditions on the coordinatesr, τ,e:

−π < τ < π; red +
√
r2+ 1cosτ > 0. (13)

The “Euclidean” submanifoldEd+1 of ÂdS
(c)
d+1 is the set of all pointsZ = X + iY

in ÂdS
(c)
d+1 such thatX = (0,X1, . . . ,Xd+1), Y = (Y 0,0, . . . ,0) andXd+1 > 0. It is

therefore represented by the upper sheet (characterized by the conditionXd+1 > 0) of

the two-sheeted hyperboloid with equationXd+12− Y 02−X12− · · · −Xd2= 1.Ed+1 is
equally well represented in both parametrizations (5) and (9) as follows:

Z =Z[r, τ = iσ,e]; (r, σ,e) ∈R×R× Sd−1 (14)

or

Z =Z
(
v,
(
iy0, x1, . . . , xd−1)); v ∈R, (y0, x1, . . . , xd−1) ∈Rd . (15)

In view of (14),Ed+1 is contained in the fundamental sheet of̂AdS
(c)
d+1.

For eachv, the complexificationΠ(c)
v of the horosphereΠv is parametrized by formulae

(6) in whichx is replaced by the complex Minkowskian vectorz= x + iy = (z0, . . . , zd);
the Euclidean submanifold of this complex Minkowskian manifold is obtained as the
intersectionΠ(c)

v ∩Ed+1.

2.2. Quantum field theory

Let us consider now a general QFT on̂AdSd+1; for simplicity we limit the present dis-
cussion to one scalar fieldΦ(X). According to the general reconstruction procedure [15],
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a theory is completely determined by the set of alln-point vacuum expectation values (or
“Wightman functions”) of the fieldΦ, given as distributions on the corresponding product
manifolds(ÂdSd+1)

n:

Wn(X1, . . .Xn)=
〈
Ω,Φ(X1) . . . ,Φ(Xn)Ω

〉
. (16)

These distributions are supposed to be tempered when represented in the variables of the
covering parametrizationXj = Xj [rj , τj ,ej ] and to satisfy a set of general requirements
which we will specify below.

Before doing it, we remark that a QFT on̂AdSd+1 can be projected to a theory on
AdSd+1 itself if it is 2π -periodic in the time-parameterτ , namely if eachWn(X1, . . . ,Xn)

is invariant under all individual substitutionsXj [rj , τj ,ej ]→Xj [rj , τj + 2π,ej ].
An important class of fields, which can be explicitly constructed in a Fock space, is

the class of “generalized free fields”; these fields are completely determined by their two-
point functionW2(X1,X2). In particular, the Klein–Gordon fields are those for which
W2(X1,X2) satisfies the corresponding field equation w.r.t. both points. Of course there
are in general infinitely many inequivalent solutions to this problem (encoded in the choice
ofW2) and one has to select the meaningful ones on the basis of some physical principle;
the existence of many possible theories even for a free field of a given mass is no surprise.

We shall assume that the distributionsWn satisfy the following properties:AdS invari-
ance, positive-definiteness, hermiticity, local commutativity or microcausality, analyticity
corresponding to an appropriate spectral condition and “dimensional boundary condi-
tions” at infinity.

The requirement of AdS invariance (corresponding to the scalar character of the field)
can be written as follows:

Wn(gX1, . . . , gXn)=Wn(X1, . . . ,Xn), for anyg ∈ Ĝ. (17)

The usual positivity and hermiticity properties [15] are valid for scalar QFT’s on any
spacetime and we do not spell them out.

(a)Microcausality.Φ(X) commutes (as an operator-valued distribution) withΦ(X′) for
X,X′ spacelike separated in the sense of the covering spaceÂdSd+1, as defined above (for
theories inAdSd+1 itself, it implies commutativity under the only condition(X−X′)2< 0,
which then includes a certain condition of commutativity at periodic time-like separations).
As in the Minkowskian case, this postulate is equivalent to the coincidence of permuted
Wightman functions at spacelike separation of consecutive argumentsXj ,Xj+1 [15].

(b) Analyticity corresponding to energy spectrum condition.Since the parameter of
the covering group of the rotations in the(0, d + 1)-plane is interpreted as a genuine
time-translation for the observers in all the corresponding Killing trajectories, and since
the complexifications of these trajectories do not exhibit any geometrical periodicity4

in ÂdS
(c)

d+1, it is legitimate to consider QFT’s for which the corresponding infinitesimal
generatorJ0,d+1 is represented by a self-adjoint operator whose spectrum is bounded from

4 Such geometrical periodicity in purely imaginary times gives rise to thermal effects for the corresponding
observers, as it has already been checked in various examples of QFT on curved spacetimes [19,27–29].
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below: the latter postulate is in fact interpretable as a reasonable spectral condition on the
energy, valid for all these observers. By using the standard Laplace transform argument
[15,36] in the corresponding time-variablesτ1, . . . , τn, one is led to formulate this spectral
condition by the following analyticity property of the Wightman functions:

Each tempered distributionWn(X1[r1, τ1,e1], . . . ,Xn[rn, τn,en]) is the boundary value
of a holomorphic functionWn(Z1, . . . ,Zn) which is defined in a complex neighborhood of
the set{

Z = (Z1, ...,Zn);Zj =Xj + iYj ∈ ÂdS
(c)

d+1;
Zj = Zj [rj , τj ,ej ]; Imτ1< Im τ2< · · ·< Im τn

}
.

As a by-product, the Schwinger functionSn, that is the restriction of eachWn to the
Euclidean submanifold{(Z1, . . . ,Zn) ∈ (Ed+1)

n; σ1< σ2< · · ·< σn}, is well-defined.
(c) Dimensional boundary conditions at infinity.In order to obtain relevant QFT’s on

the boundary of AdS spacetime (see Section 3), we are led to postulate a certain type
of power-decrease at infinity for the Wightman functions which we call “dimensional
boundary conditions at infinity”; such conditions can be shown to be valid in the case
of Klein–Gordon fields (see Section 4).

By making use of the coordinates (5) we say that a QFT on̂AdSd+1 is of asymptotic
dimension∆ if the following limits exist in the sense of distributions:

lim
min(r1,...,rn)→+∞

(r1 · · · rn)∆Wn

(
X1[r1, τ1,e1], . . . ,Xn[rn, τn,en]

)
=W∞n

([τ1,e1], . . . , [τn,en]
)
. (18)

We have to show that the above condition is meaningful, since it is not true in general
that a distributionWn(X1, . . . ,Xn) can be restricted to the submanifold

∏n
j=1 Ĉrj of

(ÂdSd+1)
n (Cr was defined in Eq. (6)). Our spectral condition (b) implies that this can

be done in the present framework. In fact, for each fixedr1, . . . , rn and e1, . . . ,en, the
existence of an analytic continuationWn ofWn in the variablesτ1, . . . , τn of the covering
parametrization (5) in the tube domainTn = {(τ1, . . . , τn); Im τ1 < Im τ2 < · · · < Imτn}
implies that the boundary value ofWn on the reals from this tube is a distribution in the
variablesτ1, . . . , τn on each leaf obtained by fixing all the parametersrj andej and that it
is even a regular (namelyC∞) function of all these leaf parameters. The limit in Eq. (18)
is therefore also defined as a distribution in the variablesτ1, . . . , τn with C∞ dependence
with respect to the variables ej . Moreover, it is then natural to assume thatthe limit in
Eq. (18) can be extrapolated to the holomorphic functionsWn in their tube domainsTn
so that the corresponding limitsW∞n are themselves holomorphic inTn and admit the
corresponding distributionsW∞n as their boundary values on the reals. By restricting all
these holomorphic functions to the Euclidean manifoldsτj = iσj , j = 1, . . . , n, one then
obtains a similar condition for the Schwinger functionsSn and the corresponding limits
S∞n .

If one wishes to select QFT’s satisfying the property ofuniqueness of the vacuum, one
should supplement the previous requirements by an appropriate cluster property on the
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n-point functions. In order to obtain a relevant cluster property for the corresponding
Lüscher–Mack CFT on the conêC2,d obtained by the procedure described in our next
section (namely the “conformal cluster property” described in [14]), one should formulate

here a similar cluster property on the Schwinger functions on̂AdS
(c)
d+1, namely:

lim
σ→+∞Wm+n

(
X1[r1, iσ1,e1], . . . ,Xm[rm, iσm,em],

Xm+1
[
rm+1, i(σm+1+ σ),em+1

]
, . . . ,Xm+n

[
rm+n, i(σm+n + σ),em+n

])
=Wm

(
X1[r1, iσ1,e1], . . . ,Xm[rm, iσm,em]

)
×Wn

(
Xm+1[rm+1, iσm+1,em+1], . . . ,Xm+n[rm+n, iσm+n,em+n]

)
. (19)

Causal quantum field theories on the manifoldsĈr

As a special application of the previous framework, it is meaningful to consider the
restrictions of the distributionsWn to the submanifolds(Ĉr )n of (ÂdSd+1)

n (i.e., to the case
when all variablesrj are equal tor). One then notices that the positivity conditions satisfied
by assumption by the distributionsWn on ÂdSd+1 can be extended to test-functions of
the variablesτj and ej localized in these submanifoldsr1 = · · · = rn = r. In view of the
standard reconstruction procedure [15], this allows one to say that in each sliceĈr the
given field onÂdSd+1 yields by restriction a well-defined quantum fieldΦr(τ,e). This
field is obviously invariant under the product of the translation group with time-parameter
τ by the orthogonal groupSO(d) of space transformations acting on the sphereSd−1 of the
variables e. Moreover, it follows from the microcausality postulate (a) together with Eqs.
(7) and (8) that the fieldΦr also satisfies local commutativity in the sense of the spacetime
manifoldĈr . Finally, in view of (b), then-point functions ofΦr are (for eachr) boundary
values of holomorphic functions of the complex variablesτ1, . . . , τn in the tubeTn, which
shows that these theories satisfy a spectral condition with respect to the generator of time-
translations.

3. Correspondence with conformal field theories on̂C2,d à la Lüscher–Mack

We shall now introduce the asymptotic coneC2,d (respectively,C(c)2,d ) of AdSd+1

(respectively,AdS(c)d+1) and wish to identify the limit (in the sense of Eq. (18)) of a QFT
on ÂdSd+1 satisfying the previous properties with a QFT on the corresponding covering
Ĉ2,d of C2,d . To do this, we first notice that by adapting the covering parametrization (5)

of ÂdSd+1 to the case of its asymptotic cone,C2,d = {η = (η0, . . . , η(d+1)); η02− η12−
· · · − ηd2+ ηd+12= 0}, one readily obtains the following parametrization (with the same
notations as [14], but in dimensiond + 2):η

0= r sinτ,
ηi = rei , i = 1, . . . , d,
ηd+1= r cosτ,

(20)
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with e12+ · · · + ed
2= 1 andr > 0, or in brief:η= η[r, τ,e].

The parametrization (20) allows one to introduce the coveringsĈ2,d and Ĉ (c)2,d of C2,d

andC(c)2,d by again unfolding the 2π -periodic coordinateτ (respectively, Reτ ). A privileged
“fundamental sheet” is defined on these coverings by imposing the condition−π < τ < π
(respectively,−π < Reτ < π ).

We also note that the standard condition of spacelike separation onC2,d is similar to the
condition chosen on the AdS spacetime, namely

(η− η′)2= r2
[
4

(
sin

(
τ − τ ′

2

))2

− (e− e′)2
]
=−2r2(cos(τ − τ ′)− e· e′)< 0,

(21)

and yields the corresponding global causal ordering onĈ2,d

(τ,e) > (τ ′,e′) iff τ − τ ′ > 2 Arcsin

(
(e− e′)2

4

)1/2

, (22)

equivalently written, e.g., in [14] asτ − τ ′ > Arccos(e· e′). Note that in the space of
variables(τ, τ ′,e,e′), the region described by Eq. (22) is exactly the limit of the region
given by Eq. (8) whenr tends to infinity.

By taking the intersection ofC2,d with the family of hyperplanes with equationηd +
ηd+1= ev , one obtains the analogue of the horocyclic parametrization (9), namely:

ηµ = evxµ, µ= 0,1, . . . , d − 1,

ηd = 1

2
ev
(
1+ x2

)
, x2= x02− x12− · · · − xd−12

,

ηd+1= 1

2
ev
(
1− x2

)
,

(23)

which implies the following identity (similar to (10)) between quadratic forms:

(η− η′)2= ev+v′(x − x ′)2. (24)

By taking Eqs. (20) into account, one then sees that these formulae correspond (in
dimensiond) to the embedding of Minkowski space into the covering of the coneC2,d (see
[30] and references therein), namely one has (in view of the identificationηd + ηd+1 =
ev = r(ed + cosτ )):

x0= sinτ

cosτ + ed
, xi = ei

cosτ + ed
, (25)

with

cosτ + ed > 0, −π < τ < π. (26)

Let us now consider a general QFT on̂AdSd+1 whose Wightman functionsWn satisfy
AdS invariance together with the properties (a)–(c) described in the previous section. In
view of (c), we can associate with the latter the following set ofn-point distributions
W̃n(η1, . . . , ηn) on Ĉ2,d :

W̃n(η1, . . . , ηn)= (r1 · · · rn)−∆W∞n
([τ1,e1], . . . , [τn,en]

)
. (27)
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At first, one can check that the set of distributions̃Wn satisfy the required positivity
conditions for defining a QFT on̂C2,d . This is because, in view of postulate (c) (applied
with all rj equal to the samer), the distributionsW∞n appear as the limits of then-point
functions of the QFT’s on the spacetimeŝCr when r tends to infinity. The positivity
conditions satisfied by the latter are then preserved in the limit, in terms of test-functions
of the variablesτj and ej , and then extended in a trivial way into the radial variablesrj

as positivity conditions for the distributions on the coneĈ2,d (by using the appropriate
test-functions homogeneous in the variablesrj [14]).

It follows from the reconstruction procedure [15] that the set of distributionsW̃n define
a quantum field̃O(η) on Ĉ2,d . Õ(η) enjoys the following properties:

Microcausality.Since the region (22) is the limit of (8) forr tending to infinity, it results
from the boundary condition (c) and from the local commutativity of all fieldsΦr in the
corresponding spacetimeŝCr that the fieldÕ(η) satisfies local commutativity on̂C2,d .

Spectral condition.In view of our postulate (c) extended to the complex domainTn

in the variablesτ , we see that then-point distributionsW̃n(η1, . . . , ηn) are boundary
values of holomorphic functions in the same analyticity domains of(Ĉ (c)2,d )

n as those of
the Lüscher–Mack field theories [14]. In particular, the restrictions of these holomorphic
functions to the Euclidean space domains{η= (η1, . . . , ηn);η0

j = ir sinhσj , ηij = reij , i =
1, . . . , d, ηd+1

j = r coshσj ;σ1 < σ2 < · · · < σn} yield the Schwinger functions of the
theory. It is also clear that, if the original Schwinger functions on the complexified AdS
space satisfy the cluster property (19), the corresponding Schwinger functions onĈ(c)2,d
satisfy the Luscher–Mack conformal cluster property (formula (5.1) of [14]) ensuring the
uniqueness of the vacuum.

We are now going to establish that thêG-invariance (17) of the AdSn-point functions,
together with the properties (a)–(c), imply the conformal invariance of the fieldÕ(η); more
precisely, we wish to show that the Wightman functionsW̃n of this field are invariant under
the action on̂C2,d of the groupĜ, now interpreted as in [14] as the “quantum mechanical
conformal group”, namely that one has:

W̃n(gη1, . . . , gηn)= W̃n(η1, . . . , ηn) (28)

for all g in Ĝ.
A part of this invariance is trivial in view of the limiting procedure of (c): it is the

invariance under the rotations in the(0, d + 1)-plane (i.e., the translations in the time
variablesτ ) and the invariance under the spatial orthogonal group of the subspace of
variables(η1, . . . , ηd) (acting on the sphereSd−1).

In order to show that the invariance condition (28) holds for allg in Ĝ, it remains to show
that it holds for all one-parameter subgroups of pseudo-rotations in the(0, i)-planes and in
the(i, d + 1)-planes of coordinates, withi = 1, . . . , d . Let us consider the first case with,
e.g., i = 1 and associate with the corresponding subgroupG0,1 of pseudo-rotations the
following parametrizationsX =X{ρ,ψ,u} andη = η{ρ,ψ,u} (with u= (u2, . . . , ud+1))
of ÂdSd+1 and ofĈ2,d :
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X0= ρ sinhψ,
X1= ρ coshψ
Xi =√ρ2+ 1ui, i = 2, . . . , d,

Xd+1=√ρ2+ 1 ud+1, ud+12− u22− · · · − ud2= 1,

(29)


η0= ρ sinhψ,
η1= ρ coshψ,
ηi = ρ, ui, i = 2, . . . , d,
ηd+1= ρ ud+1, ud+12− u22− · · · − ud2= 1.

(30)

For g ∈G0,1, the invariance condition (28) to be proven can be written as follows (with
the simplified notatioñWn(η1, . . . , ηn)= W̃n(ηj )):

W̃n

(
ηj {ρj ,ψj + a,uj }

)= W̃n

(
ηj {ρj ,ψj ,uj }

)
(31)

for all reala. Now in view of the definition (27) of̃Wn(ηj ) and of the relations between
the sets of parameters(r, τ,e) and(ρ,ψ,u) obtained by identification of the expressions
(20) and (30) ofη, the invariance condition (31) to be proven is equivalent to the following
condition for the asymptotic forms of the AdSn-point functionsW∞n (for all a):∏

16k6n

(
(sinhψk)

2+ (ud+1
k

)2)−∆/2((
sinh(ψk + a)

)2+ (ud+1
k

)2)∆/2
×W∞n

([
arctg

sinhψj

ud+1
j

,
coshψj

((sinhψj)2+ (ud+1
j )2)1/2

,
uij

((sinhψj)2+ (ud+1
j )2)1/2

])
=W∞n

([
arctg

sinh(ψj + a)
ud+1
j

,
coshψj

((sinh(ψj + a))2+ (ud+1
j )2)1/2

,

× uij

((sinh(ψj + a))2+ (ud+1
j )2)1/2

])
. (32)

In this equation the symbol arctg(·) denotes the angleτj of the parametrization (20), which
can take all real values; however, one notices that under the transformationψj → ψj + a,
the angleτj varies in such a way that the pointη remains in the same sheet of the covering
Ĉ2,d of the coneC2,d (e.g.,−π/2< τj < π/2 for the choice of Arctg).

Comparing the parametrizations (5) and (29) of̂AdSd+1 we obtain the following
relations:

r = ρ
[
(sinhψ)2+ (ud+1)2+ (ud+1)2− 1

ρ2

]1/2

≡ ρ hρ
(
ψ,ud+1), (33)

τ = arctg

[(
1+ 1

ρ2

)−1/2sinhψ

ud+1

]
, (34)

e1= coshψ

hρ(ψ,ud+1)
, ei = ui

hρ(ψ,ud+1)

(
1+ 1

ρ2

)1/2

. (35)

Note that the functionhρ introduced in (33) is such that

lim
ρ→∞hρ

(
ψ,ud+1)= [(sinhψ)2+ (ud+1)2]1/2. (36)
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This implies that it is equivalent to take the limits in Eq. (18) forρj (instead ofrj ) tending
to infinity and at fixed value ofψj anduj , after plugging the expressions (33)–(35) of
rj , τj ,ej into both sides of Eq. (18):

lim
min(ρ1,...,ρn)→+∞

∣∣∣∣∣(ρ1 · · ·ρn)∆Wn

(
Xj {ρj ,ψj ,uj }

)− ∏
16k6n

hρk
(
ψk,u

d+1
k

)−∆

×W∞n
([

arctg

[
sinhψj(

1+ 1
ρ2
j

)1/2
ud+1
j

]
,

coshψj

hρj (ψj ,u
d+1
j )

,

uij

(
1+ 1

ρ2
j

)1/2
hρj (ψj ,u

d+1
j )

])∣∣∣∣∣= 0. (37)

If we now also consider the vanishing limit of the same difference after the transformation
ψj →ψj + a has been applied, and take into account the fact that, by assumption, the first
term of this difference has remained unchanged, we obtain the following relation:

lim
min(ρ1,...,ρn)→+∞

∣∣∣∣∣ ∏
16k6n

hρk
(
ψk,u

d+1
k

)−∆

×W∞n
([

arctg

[
sinhψj(

1+ 1
ρ2
j

)1/2
ud+1
j

]
,

coshψj

hρj (ψj ,u
d+1
j )

,

uij

(
1+ 1

ρ2
j

)1/2
hρj (ψj ,u

d+1
j )

])

−
∏

16k6n
hρj

(
ψk + a,ud+1

k

)−∆

×W∞n
([

arctg

[
sinh(ψj + a)(

1+ 1
ρ2
j

)1/2
ud+1
j

]
,

(coshψj + a)
hρj (ψj + a,ud+1

j )
,

uij

(
1+ 1

ρ2
j

)1/2
hρj (ψj + a,ud+1

j )

])∣∣∣∣∣= 0.

(38)

Now it is easily seen that in the latter, the limit can be taken separately in each term and
that the resulting equality yields precisely the required covariance relation (32) forW∞n .

Although the previous formulae have been written in terms of the distributionsWn and
of their asymptotic forms, one could reproduce the argument in a completely rigorous
way [17] in terms of the functionsWn in the tube domainsTn of the variablesτj , all the
functions involved being then of classC∞ with respect to all the variables(ρj ,ψj ,uj )
and all the limits being taken in the sense of regular functions; the covariance relations on
the reals will then be obtained as relations for the corresponding boundary values (in the
sense of distributions). The treatment of the covariance with respect to the pseudo-rotation
groupsGi,d+1 is completely similar.

We can then summarize the results of this section by the following statement:
the procedure we have described(expressed by Eqs.(18)and(27))displays a general AdS
CFT correspondence for QFT’s:

Φ(X)→ Õ(η) (39)



M. Bertola et al. / Nuclear Physics B 587 (2000) 619–644 633

between a scalar(AdS invariant) quantum fieldΦ(X) on the coverinĝAdSd+1 of AdSd+1

whose Wightman functions satisfy the properties (a)–(c), and a conformally invariant local
(i.e., causal) field Õ(η) on the coveringĈ2,d of the coneC2,d , enjoying the Lüscher–
Mack spectral condition; the degree of homogeneity(dimension) ∆ of Õ(η) is equal to
the asymptotic dimension of the AdS fieldΦ(X).

Of course, from this general point of view, the correspondence may a priori be many-
to-one. Finally, according to the formalism described in [14,30], the correspondence (39)
can be completed by saying that there exists a unique conformal (Minkowskian) local field
O(x) of dimension∆ whosen-point functionsWM

n are expressed in terms of those of
Õ(η) by the following formulae:

WM
n (x1, . . . , xn)= e(v1+···+vn)∆ W̃n(η1, . . . , ηn)

=Π16j6n
(
ηdj + ηd+1

j

)∆ W̃n(η1, . . . , ηn). (40)

In the latter, the Minkowskian variablesxj are expressed in terms of the cone variablesηj

by inverting (23), which yields:

x
µ
j =

η
µ
j

ηdj + ηd+1
j

. (41)

4. Two-point functions

4.1. The analytic structure of two-point functions on the AdS spacetime

It turns out that in all field theories on̂AdSd+1 satisfying the general requirements
described in Section 2.2, the two-point function enjoysmaximal analyticity propertiesin
all the coordinates, as it is the case for the Minkowski [15] and de Sitter cases [19]. A full
proof of these results will be found in [17]. We shall only give here a descriptive account
of them, needed for further applications. Since, in particular, AdS covariance and the
“energy spectrum condition” (b) of Section 2.2 are responsible for this maximal analytic
structure and since (as seen below) the latter determines completely satisfactory solutions
for the case of Klein–Gordon AdS fields, we shall consider this general class of two-point
functions as “preferred”.

There are two distinguished complex domains [17] ofAdS(c)d+1, invariant under real AdS
transformations, which are of crucial importance for a full understanding of the structures
associated with two-point functions. They are given by:

T + = {Z =X+ iY ∈ AdS(c)d+1; Y 2> 0, ε(Z)=+1
}
,

T − = {Z =X+ iY ∈ AdS(c)d+1; Y 2> 0, ε(Z)=−1
}
, (42)

where

ε(Z)= sign
(
Y 0Xd+1−X0Y d+1). (43)
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T + andT − are the AdS version of the usual forward and backward tubesT +M andT −M of
complex Minkowski spacetime, obtained in correspondence with the energy–momentum
spectrum condition [15]; let us recall their definition (in arbitrary spacetime dimensionp):

T +M =
{
z= x + iy ∈Mp(c); y2> 0, y0> 0

}
,

T −M =
{
z= x + iy ∈Mp(c); y2> 0, y0< 0

}
. (44)

In the same way as these Minkowskian tubes are generated by the action of real Lorentz
transformations on the “flat” (one complex time-variable) domains{z = x + iy; y =
(y0, E0); y0> 0 (respectively,y0< 0)}, the domains (42) ofAdS(c)d+1 are generated by the
action of the groupG on the flat domains obtained by lettingτ vary in the half-planes
Im τ > 0 or Imτ < 0 and keepingr ande real in the covering parametrization (5) of the
AdS quadric. In fact, by using the complex extension of this parametrization and putting
r = sinh(ψ + iφ), τ = Reτ + iσ one can represent the domains (42) by the following
semi-tubes (invariant under translations in the variable Reτ ):

±sinhσ >

[
(sinφ)2+ ((coshψ)2− (cosφ)2)(Im e)2

(coshψ)2− (sinφ)2

]1/2

. (45)

This representation (which clearly contains the previously mentioned flat domains) can be
thought of, either as representing the domains (42) ofAdS(c) if τ is identified toτ +2π , or

coverings of the latter embedded in̂AdS
(c)
d+1, which we denote bŷT + andT̂ −, if one does

not make this identification.
One typical property of Wightman’s QFT [15] is that any two-point distribution
WM(x, x

′) satisfying the spectral condition is the boundary value of a functionWM(z, z
′)

holomorphic forz ∈ T −M and z′ ∈ T +M . An analogous property also holds forn-point
functions.

It is a consequence of AdS invariance together with the spectrum assumption (b) [17]
that, also in the AdS spacetime, general two-point functions can be characterized by
the following global analyticity property which plays the role of aG-invariant spectral
condition:
(b(inv)) Normal analyticity condition for two-point functions: the two-point function
W(X,X′) is the boundary value of a functionW(Z,Z′) which is holomorphic in the

domainT̂ − × T̂ + of ÂdS
(c)
d+1× ÂdS(c)d+1.

A further use of AdS invariance implies thatW(Z,Z′) is actually a functionw(ζ ) of a
single complex variableζ ; this variableζ can be identified withZ · Z′ whenZ andZ′

are both in the fundamental sheet of̂AdS
(c)

d+1; AdS invariance and the normal analyticity
condition together imply the following

Maximal analyticity property. w(ζ ) is analytic in the coveringΘ̂ of the cut-plane
Θ = {C \ [−1,1]}.

For special theories which are periodic in the time coordinateτ ,w(ζ ) is in fact analytic in
Θ itself. One can now introduce all the usual Green functions. The “permuted Wightman
function” W(X′,X) = 〈Ω,Φ(X′)Φ(X)Ω〉 is the boundary value ofW(Z,Z′) from
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the domain{(Z,Z′) : Z ∈ T̂ +,Z′ ∈ T̂ −}. The commutator function is thenC(X,X′) =
W(X,X′)−W(X′,X). The retarded propagatorR(X,X′) is introduced by splitting the
support of the commutatorC(X,X′) as follows

R(X,X′)= iθ(τ − τ ′)C(X,X′). (46)

The other Green functions are then defined in terms ofR by the usual formulae: the
advanced propagator is given byA=R− iC while the chronological propagator is given
byF =−iA+W .

Note finally that, as a function of the single variableζ = X · X′, the jumpiδw(ζ ) of
iw(ζ ) across its cut(−∞,+1] coincides with the retarded propagatorR(X,X′) (or the
advanced one); in the periodic (i.e., “true AdS”) case, the support ofδw reduces to the
compact interval[−1,+1].

4.2. The simplest example revisited: Klein–Gordon fields in the AdS/CFT correspondence

The Wightman functions of fields satisfying the Klein–Gordon equationAdSd+1

�AdSΦ +m2Φ = 0 (47)

display the simplest example of the previous analytic structure:

Wν(Z,Z
′)=wν(ζ )= e

−iπ d−1
2

(2π)
d+1

2

(
ζ 2− 1

)− d−1
4 Q

d−1
2

ν− 1
2
(ζ ). (48)

HereQ is a second-kind Legendre’s function5 [31]; the parameterν is linked to the field’s
mass by the relation

ν2= d
2

4
+m2 (49)

and the normalization ofWν is chosen by imposing the short-distance Hadamard behavior.
SinceWν(Z,Z

′) andW−ν(Z,Z′) are solutions of the same Klein–Gordon equation (and
share the same analyticity properties), the question arises if these Wightman function both
define acceptable QFT’s onAdSd+1. The answer [21] is that only theories withν > −1
are acceptable and there are therefore two regimes: forν > 1 there is only one field
theory corresponding to a given mass while for|ν| < 1 there are two theories. The case
ν = 1 is a limit case. Eq. (48) shows clearly that the only difference between the theories
parametrized by opposite values ofν is in their large distance behavior. More precisely, in
view of Eq. (3.3.1.4) of [31], we can write:

w−ν(ζ )=wν(ζ )+ sinπν

(2π)
d+1

2

Γ
(
d
2 − ν

)
Γ
(
d
2 + ν

)(
ζ 2− 1

)− d−1
4 P
− d−1

2

− 1
2−ν

(ζ ). (50)

5 This is the way these Wightman functions were first written in [7] for the four-dimensional cased = 3. Their
identification with second-kind Legendre functions is worth being emphasized, in place of their less specific
(although exact) introduction under the general label of hypergeometric functions, used in recent papers. In fact
Legendre functions are basically linked to the geometry of the dS and AdS quadrics from both group-theoretical
and complex analysis viewpoints [19,23–25].
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Now we notice that in this relation (where all terms are solutions of the same Klein–Gordon
equation) the last term isregular on the cutζ ∈ [−1,1]. This entails (reintroducing the AdS
radiusR) that, in the two theories, thec-number commutator[Φ(X),Φ(X′)] takes the
same value for all (time-like separated) vectors(X,X′) such that|X ·X′|<R2. Therefore
we can say thatthe two theories represent the same algebra of local observables at short
distances(with respect to the radiusR). But since the last term in the latter relation grows
the faster the larger is|ν| (see [31] Eqs. (3.9.2)), we see that the two theories drastically
differ by their long range behaviors.

The existence of the two regimes above has given rise to two distinct treatments of
the AdS/CFT correspondence in the two cases [32] and symmetry breaking had been
advocated to explain the difference.

In the present context, by applying the correspondence as given in Eq. (39), the two
regimes can be treated in one stroke. Indeed, Eq. (3.9.2.21) of [31] reports the following
largeζ behavior of the Legendre’s functionQ (valid for any complexν):

Q
d−1

2

ν− 1
2
(ζ )' eiπ d−1

2 2−ν−
1
2
Γ (ν + d

2 )

Γ (ν + 1)
π

1
2 ζ−

1
2−ν . (51)

It follows that the two-point function (48) and thereby all then-point functions of the
corresponding Klein–Gordon field satisfy the dimensional boundary conditions at infinity
with dimension∆= d

2 + ν. Indeed, letτ andτ ′ be complex and such that Imτ < Imτ ′. It
follows that

W∞ν
([τ,e], [τ ′,e′])= lim

r,r ′→∞
(rr ′)

d
2+νWν

(
Z[τ, r,e],Z′[τ ′, r ′,e′])

= 2−ν−1

(2π)
d
2

Γ (ν + d
2)

Γ (ν + 1)

1

[cos(τ − τ ′)− e· e′] d2+ν
(52)

(see also [33]). This equation expresses nothing more than the behavior of the previous
Legendre’s function at infinity. Not only all theν ’s are treated this way in one stroke but,
also, one can study the boundary limit for theories corresponding toν < −1, even if the
corresponding QFT may have no direct physical interpretation.

The two-point function of the conformal field̃O(η) on the conêC2,d corresponding to
(52) is then constructed by following the prescription of Eq. (27), which yields

W̃ν(η, η
′)= (rr ′)− d2−νW∞ν

([τ,e], [τ ′,e′])= 1

2π
d
2

Γ (ν + d
2 )

Γ (ν + 1)

1

[−(η− η′)2] d2+ν
.

(53)

Correspondingly, we can deduce from (53) the expression of the two-point function of
the associated Minkowskian field onMd , given by formula (40); by taking Eq. (24) into
account, we obtain:

WM
ν (z, z

′)= e(v+v′)( d2+ν)W̃ν

(
η(v, z), η′(v′, z′)

)= 1

2π
d
2

Γ (ν + d
2 )

Γ (ν + 1)

1

[−(z− z′)2] d2+ν
.

(54)
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In the latter, the Poincaré coordinatesz andz′ must be taken with the usualiε-prescription
(Imz0 < Im z′0), which can be checked to be implied by the spectral condition (b) of
Section 2 through the previous limiting procedure.

We note that this natural way of producing the boundary field theory gives rise to the
normalization advocated in [32], Eq. (2.21) (apart from a trivial factor 4, which does not
depend on the anomalous dimension∆= d

2 + ν).
Let us now describe how the previous limiting procedure looks in the Poincaré

coordinates (9). These coordinates offer the possibility of studying directly the boundary
behavior of the AdS Wightman functions in a larger domain of the complex AdS spacetime.
This fact is based on the following simple observation: consider the parametrization (9) for
two points with complex parameters specified by

Z =Z(v, z), v ∈R, z ∈ T −M,
Z′ =Z′(v′, z′), v′ ∈R, z′ ∈ T +M. (55)

It is easy to check that this choice of parameters implies thatZ ∈ T − andZ′ ∈ T +. It
follows that, given an AdS invariant two-point function satisfying microcausality and the
normal analyticity condition(b(inv)), the following restriction automatically generates a
microcausal and (Poincaré) covariant two-point function on the sliceΠv , which satisfies
the spectral condition [15] (in short: the two-point function of a general Wightman QFT):

WM{v}(z, z′)=W
(
Z(v, z),Z′(v, z′)

)
. (56)

On the basis of the dimensional boundary condition (18), and of the fact (obtained by
comparing (5) and (9)) thatev/r =√1+ 1/r2 cosτ +ed tends to the finite limit cosτ +ed

whenr tends to infinity, one sees that the following limit exists and that it yields (in view
of (27) and (40)):

lim
v→+∞ e

2v∆WM{v}(z, z′)=WM(z, z′). (57)

The limiting two-point functionWM(z, z′) then automatically exhibits microcausality,
Poincaré invariance and the spectral condition. (The invariance under special conformal
transformations and scaling property would necessitate a special check, but they result
from the general statement of conformal invariance of the limiting fieldÕ(η) proved in
Section 3 completed by the analysis of [14].)

When applied to the Wightman functions of Klein–Gordon fields (i.e., with∆ = d/2
+ν), the latter presentation of the limiting procedure gives immediately the result obtained
in Eq. (54) but in a larger complex domain:

lim
v→∞ e

2v( d2+ν)Wν

(
Z(v, z),Z′(v, z′)

)= 1

2πd/2
Γ (ν + d

2)

Γ (ν + 1)

1

[−(z− z′)2] d2+ν
, (58)

In a completely similar way one can compute the bulk-to-boundary correlation function
by considering a two-slice restrictionWν(Z(v, z),Z

′(v′, z′)) ofWν . The bulk-to-boundary
correlation function is obtained by sendingv′ →∞while keepingv fixed, by the following
limit:
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lim
v′→∞

ev
′( d2+ν)Wν

(
Z(v, z),Z′(v′, z′)

)= 1

2π
d
2

Γ (ν + d
2 )

Γ (ν + 1)

1

(e−v − ev(z− z′)2) d2+ν

= 1

2π
d
2

Γ (ν + d
2 )

Γ (ν + 1)

(
u

u2− (z− z′)2
) d

2+ν
. (59)

5. Decomposition of AdS Klein–Gordon fields to the branes

We will discuss in this section a decomposition of Klein–Gordon fields associated with
the Poincaré coordinate system (9). This will produce some new and exact formulae which
exhibit how a field of a given mass on the ambient AdS spacetime is decomposed into
elementary massive fields when restricted to the brane. We will also gain insight about the
two different AdS regimes depending on the values of of the mass parameterν. We follow
here a method already used in [34,35].

According to Eq. (56), we can obtain by restriction Poincaré invariant QFT’s on the
branesΠv of AdSd+1. Of course the restricted theories are not conformal and can become
conformal only in the limitv→∞.

Let us study the case of Klein–Gordon fields. By using the coordinates (9) the Klein–
Gordon equation (47) is separated into the following pair of equations:

�Mφ + λφ = 0, (60)

e2v[θ ′′(v)+ d θ ′(v)−m2θ(v)
]=−λθ(v). (61)

The first equation is another Klein–Gordon equation, now considered on ad-dimensional
Minkowski spacetime. The second equation is an eigenvalue equation for a second order
operator. The separation constantλ is for the moment unrestricted. To get information on
the allowed values forλ we have to consider Eq. (61) as a spectral problem in a suitable
Hilbert space. To this end let us introduce the Hilbert spaceL2(R, e(d−2)v dv), where the
differential operator defined in Eq. (61) is symmetric. It is useful to pass to the variable

u= e−v already introduced in Eq. (9) and definef (u)= θ(v)e d−1
2 v . Eq. (61) is then turned

into

−f ′′(u)+ m
2+ (d2− 1)/4

u2 f (u)=−f ′′(u)+ (ν + 1/2)(ν − 1/2)

u2 f (u)= λf (u),
(62)

a well-known Schrödinger spectral problem on the half-line (the Hilbert space is now
L2(R+, du)).

Following [22, p. 88 ff], we learn that there are two distinct regimes corresponding as
before toν > 1 and|ν|< 1.

When ν > 1 the previous operator is essentially self-adjoint and there is only one
possible choice for the generalized eigenfunctions, namely

fλ(u)= 1√
2
u1/2Jν

(√
λu
)
, (63)
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whereJν are Bessel’s functions. The completeness of these eigenfunctions gives Hankel’s
formula, which expresses the resolution of the identity inL2(R+,du) as follows:

g(u)=
∞∫

0

dλfλ(u)

∞∫
0

fλ(u
′)g(u′)du′, ∀g ∈ L2(R+,du). (64)

When 06 ν < 1 both solutionsu1/2Jν(
√
λu) andu1/2J−ν(

√
λu) are square integrable in

the neighborhood ofu = 0 and must be taken into consideration: we are in the so-called
limit circle caseat zero [22,36], which implies that the operator is not essentially self-
adjoint and there exists aS1 ambiguity in the self-adjoint extensions we can perform. The
freedom is exactly in the choice of the boundary conditions atu= 0 (corresponding to the
boundary of AdS).
Now we have a one-parameter family of eigenfunctions:

f
(~)
λ (u)≡

√
u

2

(
~2− 2~λν cos(πν)+ λ2ν)−1/2[

~ Jν
(√
λu
)− λνJ−ν(√λu)] , (65)

to which we must add one bound state when~ > 0:

f
(~)
bound(u)≡

√
2~1/ν sinπν

πν
u1/2Kν

(
~1/2νu

)
. (66)

The possible choices of the parameter~ do correspond to different self-adjoint extensions
of the differential operator (62). To each such extension there is associated a domainD(~)

also depending on the parameter~ [36]. To constructD(~) consider the one-dimensional
subspacesH± spanned by the eigenfunctions solving Eq. (62) with eigenvalues±i:

f±(u)≡√uKν
(
e±

iπ
4 u
)
, (67)

both these functions are square-integrable when 06 ν < 1. Each extension is in one-
to-one correspondence with partial isometriesU :H+ 7→ H−, namely — in this case —
with elements ofU(1)' S1. The domain of the extension is obtained by adjoining to the
original domain of symmetry the subspace(idH+ + U)H+: here it means that we have to
add the span of theL2 element

fα(u)≡ f+(u)+ eiαf−(u)
which has in our case the asymptotics

fα(u)' π

2 sin(πν)

[
2ν
(
e−iπν/4+ eiα+iπν/4)

Γ (1− ν) u−ν − 2−ν
(
eiπν/4+ eiα−iπν/4

)
Γ (1+ ν) uν

]
.

(68)

The generalized eigenfunctions of the operator (62) corresponding to a specific extension
have the following asymptotics

f
(~)
λ (u)' 2−

1
2u

1
2
(
~2− 2~λν cos(πν)+ λ2ν)− 1

2λ
ν
2

[
~

2−νuν

Γ (1+ ν) −
2νu−ν

Γ (1− ν)
]
.

(69)
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As usual these functions do not belong toL2(R+,du) but any wave-packet does; moreover
any such wave packet has this asymptotics. This allows us to find which parameter~

corresponds to which unitary operatoreiα :H+ 7→ H−, i.e., to a specific self-adjoint
extension. Indeed, by matching the asymptotics in Eqs. (68) with that in Eq. (69) we obtain

~ = cos
(
α
2 − πν

4

)
cos
(
α
2 + πν

4

) .
We can now show that the (“bulk-to-bulk”) two-point function (48) inAdSd+1 in the whole
rangeν ∈ (−1,∞) can be decomposed as follows:

Wd+1
ν

(
Z(v, z),Z′(v′, z′)

)= ∞∫
0

dλθλ(v)θλ(v
′)WM,d

λ (z, z′), ν ∈ [1,∞),

Wd+1
ν

(
Z(v, z),Z′(v′, z′)

)= ∞∫
0

dλθ(∞)λ (v)θ
(∞)
λ (v′)WM,d

λ (z, z′), ν ∈ [0,1),

Wd+1
ν

(
Z(v, z),Z′(v′, z′)

)= ∞∫
0

dλθ(0)λ (v)θ
(0)
λ (v′)WM,d

λ (z, z′), ν ∈ (−1,0), (70)

whereWM,d
λ (z, z′) is the usual two-point function for a Klein–Gordon field onMd of

square massλ in the Wightman vacuum:

W
M,d
λ (z, z′)≡

∫
ddp

(2π)d−1δ
(
p2− λ)Θ(p0)e

−ip·(z−z′)

= (2π)−d/2
(
δ√
λ

) 2−d
2

Kd−2
2
(
√
λδ), δ ≡−(z− z′)2. (71)

In Eqs. (70) the functionsθ(∞)λ and theθ(0)λ belong to the domains of self-adjointness
corresponding to the values~ =∞ and~ = 0, respectively. They explicitly read

θ
(∞)
λ (v)= 1√

2
e−

d
2vJν

(√
λe−v

)
, (72)

θ
(0)
λ (v)= 1√

2
e−

d
2vJ−|ν|

(√
λe−v

)
. (73)

The reason why we must use different self-adjoint extensions is thatWd+1
ν (Z(v, z),

Z(v′, z′)), as a function ofv (or v′) belongs toD(∞) when ν ∈ [0,1) while it belongs
to D(0) whenν ∈ (−1,0): this can be proved directly by studying the asymptotics.

The three Eqs. (70) are thus summarized into the following formula valid for the whole
range of parameterν:

Wd+1
ν

(
Z(v, z),Z′(v′, z′)

)
= (2π)− d2 (uu′) d2

∞∫
0

dλ

2
λ
d−2

4 Jν(
√
λu)Jν(

√
λu′)Kd−2

2
(mδ), (74)
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with, again,u = e−v . The full details of the proof include analytical continuation to
the Euclidean section whereδ = −(z − z′)2 > 0, and take into account formula (12)
in [37, p. 64].

Eq. (70) can also been inverted and we obtain the Minkowski Klein–Gordon two-point
function on the sliceΠv by integratingWν against the eigenfunctionsθλ. For instance,
whenν > 1 this corresponds to the introduction of the fieldsφλ(x) on the Minkowskian
sliceΠv obtained by smearing the AdS Klein–Gordon field̂Φ with the complete set of
modes (72):

φλ(x)=
∞∫
−∞

Φ
(
X(v,x)

)
θλ(v)e

(d−2)v dv. (75)

It can be shown that the fieldφλ(x) is a canonical Minkowskian Klein–Gordon field in the
Wightman vacuum state. In precise terms, we have that the AdS vacuum expectation value
of φλ(x) is given by

Wλ,λ′(x, x
′)≡ 〈Ω |φλ(x)φλ′(x ′)|Ω〉 = δ(λ− λ′)WM,d

λ (z, z′). (76)

In particular, the fieldsφλ have zero correlation (and hence commute) for different values
of the square massλ.

The results of this section can be used to construct other two-point functionsW
d+1,(~)
ν

(Z(v, z),Z(v′, z′)) for a Klein–Gordon field on AdS by using the other self-adjoint
extensions: however it is not guaranteed that suchW

d+1,(~)
ν can be extended to the other

half of AdS since the definition uses the set of coordinates defined only on one half.
Moreover one should prove (or disprove) the AdS invariance and analyticity properties
of such states. We will not go any further in this direction in this paper.

6. General QFT’s in the Poincaré coordinates

The results of Sections 4 and 5 suggest the following alternative approach to the
AdS→CFT correspondence. Starting from a given set of AdS invariantn-point functions
satisfying general requirements of the form described in Section 2, it is (at least formally)
possible to obtain a set of Poincaré invariant (see below)n-point functions in one-
dimension less by taking the following restrictions:

WM
n{v}(x1, . . . , xn)=Wn

(
X1(v, x1), . . . ,Xn(v, xn)

)
. (77)

On the basis of the requirement of asymptotic dimensionality (c) supplemented by an
argument similar to the one given in Section 4.2 (based on Eqs. (27) and (40)) for justifying
the limit (57) of two-point functions in the slicesΠv , n-point correlation functions on the
boundary will be obtained by taking the following limits:

WM
n (x1, . . . , xn)= lim

v→∞e
nv∆WM

n{v}(x1, . . . , xn). (78)

One can also consider a many-leaf restriction as follows:
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Wn{vm+1,...,vn}(X1, . . . ,Xm,xm+1, . . . , xn)

=Wn

(
X1, . . . ,Xm,Xm+1(vm+1, xm+1), . . . ,Xn(vn, xn)

)
, (79)

and get various bulk-to-boundary correlation functions by taking the limit as before:

Wn(X1, . . . ,Xm,xm+1, . . . , xn)

= lim
vm+1,...,vn→∞

e(vm+1+···+vn)∆Wn{vm+1,...,vn}(X1, . . . ,Xm,xm+1, . . . , xn). (80)

Restricting ourselves here to the limiting procedure described by Eq. (78), we then see that
the general AdS→CFT correspondence for QFT’s described in Section 3 can alternatively
be presented purely in terms of a limit of Minkowskian fields, denoted as follows:

Φ(X)→{ϕv(x)}→O(x), (81)

where each fieldϕv(x) is the scalar Minkowskian field whosen-point correlation functions
are those given by (77).

Here we must point out that there is a substantial difference between two-point and
n-point functions. In fact, in view of their maximal analyticity property (see Section
4.2) the two-point functions admit restrictions to the slicesΠv which are themselves
boundary values of holomorphic functions in relevant Minkowskian complex domains of
the corresponding complexified slicesΠ(c)

v : in this case there is therefore no problem of
restriction of the distributionW2 toΠv ×Πv .

As regards then-point correlation functions, the existence of the restrictions (77) as
distributions on(Πv)n is not an obvious consequence of the requirements (a), (b), (c)
of Section 2. Only the existence of the corresponding restrictions at Euclidean points
of (Π(c)

v )n (namely the Schwinger functions of these Minkowskian theories) are direct
consequences of the spectral condition (b) we have assumed: this is because changingτ

into iσ in (5) or changingx0 into iy0 in (9), all other parameters being kept real, yield two

equivalent representations of the Euclidean points ofÂdS
(c)

d+1.
As a matter of fact, in order to be able to define the restrictions (77) as distributions

enjoying the full structure of Minkowskiann-point functions, namely as distribution
boundary values of holomorphic functions in relevant domains of(Π

(c)
v )n, one is led to

use instead of (b) an alternative spectral condition in which the positivity of the spectrum
refers to the representation of ad-dimensional Abelian subgroup ofG playing the role of
the Minkowskian translation group with respect to the slicesΠv .

Let us briefly sketch the construction. Using the horocyclic parametrization of Eq. (9),
we can lift the action of the Poincaré group as follows. Consider the standard action of
the Poincaré group on the Minkowski spacetime coordinates:x ′µ = Λµν xν + aµ, µ =
0,1, . . . , d − 1. By plugging this relation into Eq. (9) we promptly obtain the following
relation:

X′µ =Λµν Xν +
(
Xd +Xd+1

)
aµ,

X′d =
(

1+ a
2

2

)
Xd + aµΛµν Xν +Xd+1 a

2

2
,

X′d+1=
(

1− a
2

2

)
Xd+1− aµΛµν Xν −Xd a

2

2
,

(82)
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where Greek indices are raised and lowered with the standard Minkowski metric. In matrix
form we get

g(Λ,a)=
 Λ a a

ΛaT
(
1+ a2/2

)
a2/2

−ΛaT −a2/2
(
1− a2/2

)
 . (83)

Among such transformations there is the Abelian subgroup of Poincaré translationsg(I, a).
The corresponding generators

Pµ ≡
(
Xd +Xd+1) ∂

∂Xµ
+Xµ

(
∂

∂Xd
− ∂

∂Xd+1

)
(84)

of these transformations form an Abelian algebra. The AdS spectral condition (b) of
Section 2 should then be supplemented by the following one:

(b′) Spectral condition: the infinitesimal generatorsPµ are represented by(commuting)
self-adjoint operators whose joint spectrum is contained in the forward light-coneV + =
{pµpµ > 0,p0> 0} of ad-dimensional Minkowski momentum space.

By using a Laplace transform argument[15,36], in the corresponding vector variables
x1, . . . , xn one can see that this spectral condition implies the following analyticity
property of the Wightman functions:

Analyticity corresponding to the spectrum of Poincaré translations: each AdS distri-
butionWn(X1(v1, x1), . . . ,Xn(vn, xn)) is the boundary value of a holomorphic function
Wn(Z1(v1, z1), . . . ,Zn(vn, zn)) which is defined in the tube

Tn =
{
Z = (Z1, . . . ,Zn) ∈AdS(c)d+1; Zj =Zj(vj , zj ); v1, . . . , vn ∈R,
Im(zj+1− zj ) ∈ V +, j = 1, . . . , n− 1

}
. (85)

Property (b′) implies in particular that it is meaningful to consider the restricted distrib-
utionsWM

n{v} given in Eq. (77). The Poincaré invariance ofWM
n{v} follows immediately by

Eq. (82). Furthermore, the positive-definiteness of this family of distributions is induced
as before by the analogous property satisfied by the distributionsWn on ÂdSd+1. We also
note that the validity of the Euclidean cluster property forWM

n{v} is equivalent to the con-
dition introduced earlier in Eq. (19). Under these conditions the reconstruction procedure
is now justified and the given field on̂AdSd+1 yields by restriction a well-defined quantum
field ϕv(x).

Moreover, it follows from the microcausality postulate (a) together with Eqs. (12) that
the field ϕv also satisfies standard local commutativity inΠv . Finally, in view of (b′),
the n-point functions ofϕv are (for eachv) boundary values of holomorphic functions
in the tube domainsTMn of Wightman’s QFT. This shows that these theories satisfy
a standard energy–momentum spectrum condition (with respect to the generators of
spacetime translations). The conformal covariance of the boundary fieldO(x) results from
the general analysis of Section 3.

The interesting question whether the spectral condition (b′) might be derived from
condition (b) together with AdS invariance will be left for future work.
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