Incremental Algorithms for Hierarchical Classification

Nicold Cesa-Bianchi CESA-BIANCHI@DSI.UNIML.IT
Dipartimento di Scienze dell’Informazione

Universita degli Studi di Milano

via Comelico 39, 20135 Milano, Italy

Claudio Gentile CLAUDIO.GENTILEQUNINSUBRIA.IT
Dipartimento di Informatica e Comunicazione

Universita dell’Insubria
via Mazzini 5, 21100 Varese, Italy

Luca Zaniboni ZANIBONI@DTI.UNIMLIT
Dipartimento di Tecnologie dell’Informazione

Universita degli Studi di Milano

via Bramante 65, 26018 Crema (CR), Italy

Editor: 7777

Abstract

We study the problem of classifying data in a given taxonomy when classifications associ-
ated with multiple and/or partial paths are allowed. We introduce a new algorithm that
incrementally learns a linear-threshold classifier for each node of the taxonomy. A hier-
archical classification is obtained by evaluating the trained node classifiers in a top-down
fashion. To evaluate classifiers in our multipath framework, we define a new hierarchical
loss function, the H-loss, capturing the intuition that whenever a classification mistake is
made on a node of the taxonomy, then no loss should be charged for any additional mistake
occurring in the subtree of that node.

Making no assumptions on the mechanism generating the data instances, and assuming
a linear noise model for the labels, we bound the H-loss of our on-line algorithm in terms
of the H-loss of a reference classifier knowing the true parameters of the label-generating
process. We show that, in expectation, the excess cumulative H-loss grows at most loga-
rithmically in the length of the data sequence. Furthermore, our analysis reveals the precise
dependence of the rate of convergence on the eigenstructure of the data each node observes.

Our theoretical results are complemented by a number of experiments on texual cor-
pora. In these experiments we show that, after only one epoch of training, our algorithm
performs much better than Perceptron-based hierarchical classifiers, and reasonably close
to a hierarchical support vector machine.
Keywords: incremental algorithms, online learning, hierarchical classification, second
order perceptron, support vector machines, regret bound, loss function.

1. Introduction

In this paper, we investigate the problem of classifying data based on the knowledge that
the graph of dependencies between the classes is a tree forest. The trees in this forest
are collectively interpreted as a taxonomy. That is, we assume that every data instance is
labelled with a (possibly empty) set of class nodes and, whenever an instance is labelled

©7?777 Nicold Cesa-Bianchi, Claudio Gentile and Luca Zaniboni.

with a certain node 4, then it is also labelled with all the nodes on the path from the root
of the tree where 7 occurs down to node i. A distinctive feature of our framework is that
we also allow multiple-path labellings (instances can be labelled with nodes belonging to
more than one path in the forest), and partial-path labellings (instances can be labelled
with nodes belonging to a path that does not end on a leaf).

We introduce a new algorithm that incrementally learns a linear-threshold classifier for
each node of the taxonomy. A hierarchical classification is then obtained by evaluating
the node classifiers in a top-down fashion, so that the final labelling is consistent with the
taxonomy.

The problem of hierarchical classification, especially of textual information, has been
extensively investigated in past years (see, e.g., Dumais and Chen, 2000; Dekel et al., 2004,
2005; Granitzer, 2003; Hofmann et al., 2003; Koller and Sahami, 1997; McCallum et al., 1998;
Mladenic, 1998; Ruiz and Srinivasan, 2002; Sun and Lim, 2001, and references therein). The
on-line approach to hierarchical classification, which we analyze here, seems well suited when
dealing with scenarios in which new data are produced frequently and in large amounts (e.g.,
data produced by newsfeeds—considered in this paper, or the speech data considered in
Dekel et al., 2005).

An important ingredient in a hierarchical classification problem is the loss function
used to evaluate the classifier’s performance. In pattern classification the zero-one loss is
traditionally used. In a hierarchical setting this loss would simply count one mistake each
time, on a given data instance, the set of class labels output by the hierarchical classifier is
not perfectly identical to the set of true labels associated to that instance. Loss functions
able to reflect the taxonomy structure have been proposed in the past (e.g., Dekel et al.,
2004; Hofmann et al., 2003; Sun and Lim, 2001), but none of these losses works well in our
framework where multiple and partial paths are allowed. In this paper we define a new
loss function, the H-loss (hierarchical loss), whose simple definition captures the following
intuition: “if a mistake is made at node ¢ of the taxonomy, then further mistakes made in
the subtree rooted at ¢ are unimportant”. In other words, we do not require the algorithm
be able to make fine-grained distinctions on tasks where it is unable to make coarse-grained
ones. For example, if an algorithm failed to label a document with the class SPORTS, then
the algorithm should not be charged more loss because it also failed to label the same
document with the subclass SOCCER and the sub-subclass CHAMPIONS LEAGUE.

We bound the theoretical performance of our algorithm using the H-loss. In our analysis,
we make no assumptions on the mechanism generating the data instances; that is, we bound
the H-loss of the algorithm for any arbitrary sequence of data instances. The hierarchical
labellings associated to the instances, instead, are assumed to be independently generated
according to a parametric stochastic process defined on the taxonomy.

Following a standard approach in the analysis of on-line algorithms, we measure the
predictive performance using the cumulative regret, a quantity measuring the difference
between the cumulative H-loss of the classifiers incrementally generated by the on-line al-
gorithm during its run and the cumulative H-loss of a fixed reference classifier. Our main
theoretical result is a bound on the regret of our hierarchical learning algorithm with respect
to a reference hierarchical classifier based on the true parameters of the label-generating
process. More specifically, we bound the contribution to the cumulative regret of each node
classifier in terms of quantities related to the position of the node in the taxonomy and the

data process parameters. This interaction between node position and data process param-
eters captures the hierarchical nature of the classification problem since the contribution of
each node to the overall cumulative regret decreases as we proceed downward from a root in
the forest. In general, the overall cumulative regret is seen to grow at most logarithmically
in the length T of the data sequence.

From the theoretical point of view, the novelty of this line of research is twofold:

1. The use of hierarchically trained linear-threshold classifiers is common to several of
the previous approaches to hierarchical classification (e.g., Dumais and Chen, 2000;
Dekel et al., 2004, 2005; Granitzer, 2003; Hofmann et al., 2003; Koller and Sahami,
1997; McCallum et al., 1998; Mladenic, 1998; Ruiz and Srinivasan, 2002; Sun and
Lim, 2001). However, to our knowledge, this research is the first one to provide a
rigorous performance analysis of hierarchical classification algorithms in the presence
of multiple and partial path classifications.

2. The core of our analysis is a local cumulative regret bound showing that the instan-
taneous regret of each node classifier vanishes at a rate 1/7T. The precise dependence
of the rate of convergence on the eigenstructure of the data each node observes is
a major contribution of this paper. This turns out to be similar in spirit to early
(and classical) work in least-squares linear regression (e.g., Lai et al., 1979; Lai and
Wei, 1982). But unlike these previous investigations, our analysis is not asymptotic
in nature and studies a specific classification setting, instead of a regression one.

To support our theoretical findings we also describe some experiments concerning a more
practical variant of the algorithm we actually analyze. These experiments use large corpora
of textual data on which we test different batch and incremental classifiers. The experiments
show that our on-line algorithm performs significantly better than Perceptron-based hier-
archical classifiers. Furthermore, after only one epoch of training, our algorithm achieves a
performance close to that of a hierarchical support vector machine, the popular batch learn-
ing algorithm for which, to the best of our knowledge, no theoretical performance bounds
are known in hierarchical classification frameworks.

The paper is organized as follows. Section 2 defines the notation used throughout the
paper. In Section 3 we introduce the H-loss function. Our hierarchical algorithm is described
in Section 4. In Section 5 and 6 we define the data model, the learning model, and our
theoretical performance measure: the cumulative regret. The analysis of our algorithm
is carried out in Section 7, while in Section 8 we report on the experiments. Finally, in
Section 9 we summarize our results and mention a few open questions.

2. Notation

We assume data elements are encoded as unit-norm vectors € R%, which we call instances.
A multilabel for an instance x is any subset of the set {1,... , N} of all labels, including
the empty set. We represent the multilabel of z with a vector v = (v1,... ,vy) € {0,1},
where ¢ € {1,... , N} belongs to the multilabel of @ if and only if v; = 1.

A taxonomy G is a forest whose trees are defined over the set of labels. A multilabel
v € {0,1}" is said to respect a taxonomy G if and only if v is the union of one or more paths

IP)(Vvll | V87 m)

Figure 1: A forest made of two disjoint trees. The nodes are tagged with the name of the
labels, so that in this case N = 11. According to our definition, the multilabel v =
(1,1,1,0,0,1,0,1,0,1,0) respects this taxonomy (since it is the union of paths
1—2,1— 3and 6 — 8 — 10), while the multilabel v = (1,1,0,1,0,0,0,0,0,0,0)
does not, since 1 — 2 — 4 is not a path in the forest. Associated with each node
i is a {0,1}-valued random variable V; distributed according to a conditional
probability function P(V; | Vpag(;), T) —see Section 5.

in G, where each path starts from a root but need not terminate on a leaf, see Figure 1.
We assume the data-generating mechanism produces examples (&, v) such that v respects
some fixed underlying taxonomy G with N nodes (see Section 5). The set of roots in G
is denoted by ROOT(G). We use PAR(i) to denote the unique parent of node i, ANC(i) to
denote the set of ancestors of 7, SUB(7) to denote the set of nodes in the subtree rooted at
i (including %), and CHILD(%) to denote the set of children of node i.

We denote by {¢} the Bernoulli random variable which is 1 if and only if predicate ¢ is
true. In our analysis, we repeatedly use simple facts such as {¢p V ¢} = {¢} + { A ¢} <

{¢} + {9} and {¢} = {p A Y} + {p A} < {p A} + {1}, where ¢ is another predicate.

3. The H-loss

Two very simple loss functions, measuring the discrepancy between the prediction multilabel
Yy = (U1,--- ,yn) and the true multilabel v = (v1,... ,vn), are the zero-one loss £y, (y,v) =
{3i : §; # v;} and the symmetric difference loss a(y,v) = {th #v1} + ... + {Un # vn}-
Note that the definition of these losses is based on the set {1,...,N} of labels without
any additional structure. A loss function that takes into account a taxonomical structure
defined over the set of labels is

N
L (G,v) = > {Bi # vi A §j =vj, j € ANC(i)} .
i=1

This loss, which we call H-loss (hierarchical loss), can also be defined as follows: all paths in
G from a root down to a leaf are examined and, whenever a node i is encountered such that
Ui # v;, then 1 is added to the loss, while all the loss contributions in the subtree rooted at
i are discarded. Note that, with this definition, £y/; <y < £a. A graphical representation
of the H-loss and related concepts is given in Figure 2.

(a) (b) (c)

Figure 2: A one-tree forest (repeated four times). Each node corresponds to a class in the
taxonomy G, hence in this case N = 12. Gray nodes are included in the multilabel
under consideration, white nodes are not. (a) A generic multilabel which does
not respect G; (b) its G-truncation. (c) A second multilabel that respects G.
(d) Superposition of multilabel (b) on multilabel (¢): Only the checked nodes
contribute to the H-loss between (b) and (c). Hence the H-loss between multilabel
(b) and multilabel (c) is 3. Here the zero-one loss between (b) and (c) is 1, while
the symmetric difference loss equals 4.

In the next lemma we show an important (and intuitive) property of the H-loss: when
the multilabel v to be predicted respects a taxonomy G then there is no loss of generality
in restricting to predictions which respect G. Formally, given a multilabel 3 € {0, 1}V, we
define the G-truncation of 3§ as the multilabel §' = (7},... ,7%) € {0,1}" where, for each
i=1,...,N,y; =1if and only if §; = 1 and y; = 1 for all j € ANC(z). Note that the
G-truncation of any multilabel always respects G. The next lemma states that if v respects
G, then £z (3, v) cannot be smaller than £z (', v).

Lemma 1 Let G be a tazonomy, v,y € {0, l}N be two multilabels such that v respects G,
and y' be the G-truncation of y. Then

eH(glav) < eH(’?},’U) .

Proof. Since £y (', v) = L {7} # vi A =vj, j € ANC(i)} and £y (F,v) = L {Bi #
v; NY; =vj, j € ANC(7)}, it suffices to show that, foreach ¢ =1,... , N, g} # v; and @’j =,
for all j € ANC(7) implies ¥; # v; and y; = v; for all j € ANC(37).

Pick some 7 and suppose §; # v; and §; = v; for all j € ANC(7). Now suppose 7; = 0
(and thus v; = 0) for some j € ANC(i). Then v; = 0 since v respects G. But this implies
Ui = 1, contradicting the fact that the G-truncation ¥’ respects G. Therefore, it must be
the case that ;T]; = v; = 1 for all j € ANC(i). Hence the G-truncation of y left each node
J € ANC(i) unchanged, implying y; = v; for all j € ANC(3). But, since the G-truncation of
y does not change the value of a node i whose ancestors j are such that ; = 1, this also
implies ; = y;. Therefore y; # v; and the proof is concluded. O

Algorithm H-RLS.
Initialization: Weight vectors w;; = (0,...,0),i=1,...,N.
Fort=1,2,... do

1. Observe instance z; € {z € R? : ||z|| = 1};

2. For each i =1,... ,N compute predictions ¢;; € {0,1} as follows:

{'wiT,tmt >0} ifiis a root node,

Vit = {'wz-T,t:ct >0} if 4 is not a root node and g;; = 1 for j = PAR(3),
0 if 7 is not a root node and ¢;; = 0 for j = PAR(3),
where
T Ty—
wip = I+ Si,Qit-1)54,Q(it—1) T Ty)7 x
-
X 85,Qit—1) Wiy s Vigigs - - - s Vigiggi _1))
Si,Q(i,tfl) = [-’Bil Liy --- .’IZZ'Q(i’t_l)] 1= 1, . ,N.

3. Observe multilabel v; and update weights.

Figure 3: The hierarchical learning algorithm H-RLS.

4. A new hierarchical learning algorithm

In this section we describe our on-line algorithm for hierarchical classification. Its theoretical
performance is analyzed in Section 7.

The on-line learning model we consider is the following. In the generic time step
t = 1,2,... instance x; is revealed to the algorithm which outputs the prediction 3, =
(G185 ,9n¢) € {0,1}V. This is viewed as a guess for the multilabel v; = (v ¢, v, - .. ,UN)
associated with the current instance x;. After each prediction, the algorithm observes the
true multilabel v; and adjusts its parameters for the next prediction.

Our algorithm computes 91 ,4,... ,9n, using N linear-threshold classifiers, one for each
node in the taxonomy. These node classifiers are evaluated, starting from each root, in the
following top-down fashion: the root is labelled by evaluating its node classifier; if a node
has been labelled 1, then each child is labelled by evaluating its node classifier. On the
other hand, if a node is labelled 0 then all of its descendants are labelled 0. Note that this
evaluation scheme can only generate multilabels that respect the underlying taxonomy.

Let w1,... ,wy be the weight vectors defining the linear-threshold classifiers used by
the algorithm. A feature of the learning process, which is also important for its theoretical
analysis, is that the classifier at node ¢ is only trained on the examples that are positive
for its parent node. In other words, w; is considered for update only on those instances x;
such that vpap(y,s = 1.

Let Q(i,t) denote the number of times the parent of node i observes a positive label up
to time ¢, i.e., Q(i,t) = [{1 < s <t : Uppg(i),s = 1}|- The weight vector w;; stored at time
t in node i is a (conditional) regularized least squares estimator given by

-1
w; = (I + Si,Q(i,t—l)SZ’TQ(Z"tfl) + wtth) Si,QGi,t—1) (Visiys - - - ,Uz',z'Q(i,t_l))Ta (1)
where I is the d x d identity matrix, S; g(;¢—1) is the d x Q(i,% — 1) matrix whose columns
are the instances @, ... , ig,_,,, and (Vigigs--- ,vi,iQ(i’t_l))T is the Q(7,t — 1)-dimensional
(column) vector of the corresponding labels observed by node .

The estimator in (1) is a slight variant of the regularized least squares estimator for
classification (Cesa-Bianchi et al., 2002; Rifkin et al., 2003) where we include the current
instance x; in the computation of w;; (see, e.g., Azoury and Warmuth, 2001; Vovk, 2001, for
analyses of similar algorithms in different contexts). Efficient incremental computations of
the inverse matrix and dual variable formulations of the algorithm are extensively discussed
by Cesa-Bianchi et al. (2002) and Rifkin et al. (2003).

The pseudocode of our algorithm, which we call H-RLs (Hierarchical Regularized Least
Squares) is given in Figure 3.

5. A stochastic model for generating labels

While no assumptions are made on the mechanism generating the sequence @1, 2, ... of in-
stances, we base our analysis on the following stochastic model for generating the multilabel
associated to an instance x;.

A probability distribution f over the set of multilabels is associated to a taxonomy G
as follows. Each node i of G is tagged with a {0, 1}-valued random variable V; distributed
according to a conditional probability function P(V; | Visg(i),). To model the dependency
between the labels of nodes i and j = PAR(i) we assume

B(Vi=1|V;=0,2)=0 (2)

for all nonroot nodes ¢ and all instances . For example, in the taxonomy of Figure 1 we
have P(Vy=1| V3 =0, z) = 0 for all z € R%. The quantity

N
fow|z) =[P (Vi=vi|V; =vj, j = PAR(i), @)
i=1
thus defines a joint probability distributionon Vi, ... , Vi conditioned on « being the current

instance. This joint distribution puts zero probability on all multilabels v € {0,1}" which
do not respect G.

Through fe we specify an i.i.d. process {V1,Vy,...} as follows. We assume that an
arbitrary and unknown sequence of instance vectors i, xs,... is fixed in advance, where
||lz¢|| = 1 for all . The multilabel V' is distributed according to the joint distribution
fa(- | ©¢). We call each pair (2, v;), where v, is a realization of V', an example.

Let us now introduce a parametric model for fg. With each node 7 in the taxonomy, we
associate a unit-norm weight vector u; € R%. Then, we define the conditional probabilities

for a nonroot node ¢ with parent j as follows:

1 T
P(Vi=1|Vj=1,2) = — 17 (3)
If 4 is a root node, the above simplifies to
1 T
P(Vi=1|a)= — 1%

Our choice of a linear model for Bernoulli random variables, as opposed to a more standard
log-linear model, is mainly motivated by our intention of proving regret bounds with no
assumptions on the way the sequence of instances is generated. Indeed, we are not aware
of any analysis of logistic regression holding in a similar classification setup.

Note also that, in this model, the labels of the children of any given node are independent
random variables. This is motivated by the fact that, unlike previous investigations, we are
expliciteply modelling labellings involving multiple paths. A more sophisticated analysis
could introduce arbitrary negative correlations among the labels of the children nodes. In
this paper, however, we do not follow this route.

6. Regret and the reference classifier

Assuming the stochastic model described in Section 5, we compare the performance of our
algorithm to the performance of the fixed hierarchical classifier built on the true parameters

uy,... ,uy governing the label-generating process. This reference hierarchical classifier has
the same form as the classifiers generated by H-RLS. More precisely, let the multilabel
y = (y1,.-. ,yn) for an instance & be computed as follows:

{u/xz >0} ifiisa root node,
yi =< {u/x >0} ifiis not aroot and y; = 1 for j = PAR(3), (4)
0 if 7 is not a root and y; = 0 for j = PAR(q).

To evaluate our algorithm against the reference hierarchical classifier defined in (4), we
use the cumulative regret. Given any loss function £ (such as one of the three defined in
Section 3), we define the (instantaneous) regret of a classifier assigning label y, to instance
Ty as

Ee(gta Vt) - Eg(yt’ Vt) ;

where vy, is the multilabel assigned by classifier (4), and the expectation is with respect
the random draw of V; (as specified in Section 5). We measure the performance of H-RLS
through its cumulative regret on a sequence of T' examples:

T
Z(Ee(gta Vt) - Ee(yta Vt)) . (5)
t=1
The regret bound we prove in Section 7 holds when ¢ = /g, and is shown to depend on the
interaction between the spectral structure of the data generating process and the structure
of the taxonomy on which the process is applied.

7. Analysis

We now prove a bound on the cumulative regret of H-RLS with respect to the H-loss function
£y. Our analysis hinges on proving that for any node ¢, the estimated margin 'wiT’ 4Ty 1S an
asymptotically unbiased estimator of the true margin u;'—a:t, and then on using known large
deviation arguments to obtain the stated bound. For this purpose, we bound the variance
of the margin estimator at each node and prove a bound on the rate at which the bias

vanishes.

Theorem 2 Consider a taronomy G with N nodes. Pick any set of model parameters
ui,...,uny € R? such that ||u;|| = 1 fori = 1,... ,N, and pick any sequence of instance
vectors ©1,Ta,... € R? such that ||zs|| = 1 for all t. Then the cumulative regret of the
H-RLS algorithm (described in Figure 3) satisfies, for each T > 1,

T N

~ G
> (Br (@, Vi) — Ebn (y,, Vi) < 16(1+1/e) Y G E
t=1 =1 !

d
Z log(l + /\i,j)

j=1

bl

where

Aiy = u; x, A? = t}lninTA?’t’ C; = |suB(i)],
Ails--- s Aig are the eigenvalues of matriz S; g 1) Sz’TQ(i)’ and e is the base of natural
logarithms.

Before delving into the proof, it is worth making a few comments.

Remark 3 Since H-RLS can be cast in dual variables, we can run it in any reproducing
kernel Hilbert space (e.g., Scholkopf and Smola, 2002). The regret bound contained in

Theorem 2 remains true once we observe that the nonzero eigenvalues of S; g(; 1) SZ.TQ(Z-)

coincide with the nonzero eigenvalues of the Gram matrix SZ.T QG,T) Si,q(,1), and we replace

the sum over all input dimensions d with the sum over the (a,t most T') nonzero eigenvalues
of S;—Q(i,T) Si,o,r). We refer the reader to the work by Cesa-Bianchi et al. (2002) for
additional details.

Remark 4 It is important to emphasize the interplay between the taxonomy structure and
the process generating the examples, as expressed by the above regret bound. Recall that

we denote by Aj1,...,A;q the eigenvalues of matrix S; g(; 1) SZ.TQ(Z.)" From the previous

remark we have Z?Zl Xij = trace(SiTQ(i,T) Si’Q(i,T)) = Q(i,T) since ||z¢|| =1 Vt, and

d d d
Zlog(l + A j) < max Z log(1 + p;) : Zuj =Q:,T) p =dlog (1 +
j=1 j=1 j=1

)

Moreover, Q(%,T') is the sum of T Bernoulli random variables, where the ¢-th variable takes
value 1 when the parent of the i-th node in the taxonomy observes label Vi g = 1 at
time ¢. The probability of this event clearly equals

m ()

JEANC(1)

Thus

E

Jzi:llog(l +Xij)| < dE [log (1 + %)] (6)

d log (1 + EiQ(;’T)>

(from Jensen’s inequality)

A.
Yo Meanc (S22
= dlog |1+ = jEAN;()< 2) . (7)

IN

Bound (6) is obviously a log7" cumulative regret bound, since Q(:,7) < T anyway. It is
important, however, to see how the regret bound depends on the taxonomy structure. Let
us focus on (7). If i is a root node then EQ(i,T) = Q(i,T) = T (since a root node observes
all labels). As we descend along a path, EQ(7,7") tends to decrease with a rate depending
on the margins achieved by the ancestors of node i. Bound (7) thus makes explicit the
contribution of node ¢ to the overall regret. If ¢ is a root node, then its contribution to
the overall regret is roughly logT. On the other hand, the deeper is node ¢ within the
taxonomy the smaller is the contribution of node ¢ to the overall regret. A very deep leaf
node observes a possibly small subset of the instances, but it is also required to produce only
a small subset of linear-threshold predictions, i.e., the associated weight vector w;; might
be an unreliable estimator, but is also used less often. Therefore, the contribution of leaf
node 7 is smaller than log T' because the hierarchical nature of the problem (as expressed by
the H-loss) lowers the relative importance of the accuracy of estimator w; ; when computing
the overall regret.

Remark 5 Nothing prevents us from generalizing the H-loss by associating fixed cost co-
efficients to each taxonomy node:

N
Lr(G,v) =Y ci{fi # vi A G =vj, j € ANC(i)},
i=1

where the cost coefficients ¢; are positive real numbers. It is straightforward to see that
with this definition of H-loss, the statement of Theorem 2 still holds, once we generalize the
regret factors C; as C; =) kesun(i) Ck- Note that this would involve changes neither in our
learning algorithm nor in our reference predictor. In fact, we are measuring regret against
a reference predictor that is not Bayes optimal for the data model at hand. This is not
immediate to see when the cost coefficients ¢; defining the H-loss are all set to 1 but, as we
mentioned, it is generally evinced by the fact that both the reference predictor (4) and our
learning algorithm do not depend on the c;.

Remark 6 From the proof of Theorem 2 below, the reader can see that there are several
ways one can improve the bounds. In fact, we made no special effort to minimize the
main constant 16(1 + 1/e) and, in general, we disregarded quite a lot of constant factors
throughout. Moreover, though we decided to cast the bounds in terms of the worst-case

10

margin A? = ming—;,_ .1 A%’t, it is straighforward to modify the proof to obtain a bound
depending on some sort of average squared margin. Since this sharper bound would hide
the clean dependence on the eigenstructure of the data, we decided not to pursue this
optimization any further.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We fix a node ¢ and upper bound its contribution to the total in-
stantaneous regret. Since for any four predicates ¢,,x,(we have {¢p A} — {x A (} <
{dNYAN-x}+{dANY A XxNA-(}, we see that
{Ui # Vig, Vi € ANC(Q) = Ui = Viut — {yie # Vi, V5 € ANC() : yjp = Vju}
<AUit # Vit, yit = Vi, Vj € ANC(4) = Yy = Vj1} (8)
+ {Uit # Vi, Yit # Vi, VJ € ANC(3) : Yjp = Vju, 37 € ANC(3) : yj0 # Vi) - (9)
We bound the two terms (8) and (9) separately. We can write:
(8) = {¥it # Vit, yit = Vi, Vj € ANC(3) : Yjp = Vi =1}
(since yj; = Vj = 0 for some ancestor j implies y;; = V;; = 0)
<AUit # vits Kip},
where we have introduced the short-hand K;; = “Vj € ANC(i) : Vj; = 17. By the same
token, we have
9) = {Uit # Vit, Yip # Vi, ¥V € ANC(i) : Ui = Vjp =1, 3j € ANC(3) : yj # Vju}
=A{Yit # Vi, Yig # Vit, V5 € ANC(3) : Yje = Vje =1, 37 € ANC(4) : Yjt # Yjt}
<{3j € ANC(d) : Yjt # Yjts Kig}
Z {Ujt # yjtr Kin}

jEANC(i)

Z {Uie # yip> Kt} s

JEANC(i)

where the last inequality holds because K; ; implies K;; for all j € ANc(é). Using our bounds
for (8) and (9), and summing over ¢ yields

EH(:;/\t, Vt) - eH(yta Vt)

({yz t 7 Vi, V5 € ANC(4) = Ui = Vju} — {vie # Vi, V§ € ANC(3) : yj = Vj,t})

IN

||Mz I Mz

> Ui £ vin Kidd

1 jeanc(i)u{i}

{yzt7éyzta Kb > 1

JESUB(%)

'Mz IIMz

-
Il
—

z{@t # Yit, ’Ci,t} -

11

We then take expectations and sum over ¢:

T

T N
Z(E@H @, Vi) —Elu(y,, Vi) < Z Z Ci P(Uit # viy, Kit)

t=1 t=1 =1

T
Ci ZP Yit 7é Yity ICi,t) . (10)
t=1

I
Mz

=1

Equation (10) is a conveniently simple upper bound on the cumulative regret. This allows
us to focus on bounding from above the one-node cumulative expectation Zthl P(yi: #
Yits Kit)-

For brevity, in the rest of this proof we use the notations A; ; = uzT x; (the target margin
on x;) and ﬁi,t = th"L't (the algorithm margin on x;). As we said earlier, our argument

centers on proving that for any node i, ﬁi,t is an asymptotically unbiased estimator of A;,
and then on using known large deviation techniques to obtain the stated bound. For this
purpose, we need to study both the conditional bias and the conditional variance of 3”
Recall Figure 3. Since the sequence x1,x9,... is fixed, the multilabel vectors V; are
statistically independent. Also, for any ¢t = 1,2,... and for any node ¢ with parent j, the
child’s labels V;;,,... ,V; are independent when conditioned on the parent’s labels

55Q(i,t—1)
Vits---,Vjs—1. We use the notation

Eat = E[. | V',17"' "/j’t_l] :

By definition of our parametric model (3) we have E; ;[(V;,, . W,iQ(i7t71))T] = SiTQ(z‘ (1)U

Recalling the definition (1) of w;;, this implies (for conciseness we write @ instead of
Qi —1))
Et[A”] =u; SZQS Q(I—I—SzQSZQ + zix,) le, .
Note that
=Ei [Ai] +uf (I + @]) (I + Si 08 otz) toy =Ky [Ai] + Biy,

where B;; = u; I+])(I + S; QSz o T Ty 1)1z, is the conditional bias of wig. It is
useful to 1ntroduce the short-hand notation

Tit = .’BtT(I + Si,QSz'TQ + :I:tmtT)_lwt .

Also, in order to stress the dependence® of rit on @ = Q(i,t — 1), we denote it by 7 ¢.
The conditional bias is bounded in the following lemma (proven in the appendix).

Lemma 7 With the notation introduced so far, we have

Bizt S V Ti7t,Q + |Alat| Ti,t:Q :

1. As it turns out, many of the quantities appearing in the present proof, including the bias term B;; and
the variance vector Z;; defined later on, are algorithm-dependent, hence they do actually depend on
Q = Q(i,t—1). However, this dependence is made notationally explicit only for the quantity r;; = rit,0
since, we believe, this specific dependence is key to the proof.

12

As far as the conditional variance of ﬁi,t is concerned, from Figure 3 we see that
R Q
Nie = Viiy Zit
k=1
where
-1
2], = Zigpse Zin@) = Sig (T + SigSilg +mal) ai . (11)

The next lemma (proven in the appendix) handles the conditional variance || Z;||°.
Lemma 8 With the notation introduced so far, we have
1Zigl* < rigq -

Armed with these two lemmas, we proceed through our large deviation argument.
We can write

{Git # it Kiy}

< {ﬁi,t A <0, /Cz',t}

< {|£i,t — Nl > |Aigl, }Ci,t}

< {|£i,t + Bit — Aig| > |Aig| — |Bigl, /Ci,t}

< (1B + Bip = Bigl > 18il/2, Kigh +{1Bigl > 18il/2, Kigh. (12)

We can further bound the second term of (12) by using Lemma 7. We obtain

{\Bz',tl > A /2, /Cz',t} < Vi 1At i > 1Aigl/2, Kig}
{(rigg > [Ait?/16 V rig g > 1/4), Ky}
= {riso > |Aig?/16, Kit}

the equality following from the fact that |A;;|?/16 < 1/16 < 1/4. We plug back into (12),
take expectations, and sum over . We have

IA

T
E [Z {Gi # it Kig}
t=1

({|£i,t + Biy — Ag] > [Ay

/2, /Ci,t} + {rito > |Aisl*/16, ICi,t})

T
< ENY.
t=1

T
2|
t=1

{KCia} i {1 B+ Big = Digl > |2 /2}] (13)

+ E , (14)

T
> {ring > [8il?/16, Ky}
t=1

13

where in (13) we used the fact that K;; is determined given Voxr(i) 15 5 Vear(i),t—1-

We now bound the two expectations (13) and (14) separately. Let j = PAR(:). To
bound the first expectation, we exploit the fact that Vj;,,... , Vi, are independent under
the law P;; = IP’(- | Vit,-.. ,Vj,t_l), and Zit1,..., 2 defined in (11) are determined
given V;1,...,V;;—1. Hence, we can apply Chernoff-Hoeffding inequality (Hoeffding, 1963)

to the sum A;; = Vi Z; 41 + .. V”QZ t,0 of independent random variables, where

Ei,t [Ki,t] = Ai,t — Bi,t and (Vi,il Zi,t,l) . (V; ZQZ) S Tit,Q by Lemma 8. Recalling
that A% = ming—1,_. T A?’t, we can write

T T
~ A2
E {’Cz‘,t}lp’z‘,t<|Ai,t + B — Aiyg| > |Az’,t|/2) <2 E {Ki}exp (— !) .
=1

t:]_ 8 rivtaQ

This quantity can be further upper bounded using the following lemma (proven in the
appendix).

Lemma 9 Let o, M be positive constants. Then
n n M
max —e/a g0 >0,... an > = <=
{Ze ay > 0, ,an_O,Eat M}_ea
t=1 t=1
If we let
T
M =Y {Kis}rite = D, Titg
t=1 b {Ks =1
we immediately see that Lemma 9 implies

Z{/Czt}exp< Al)—) exp(— =)geiZMi.

8 Tit,Q t: Ko }=1 8 Tit,Q

Therefore,

16
13) < —— EM;
(13) <

€2

To bound (14) we can argue as follows (note that, by definition, r;;¢o > 0, since it is the
value of a quadratic form with a positive definite matrix):

T
M; = > {Kis}rirg
t=1

T T

= Y {rige > AI/16, Kigdrigo + > {rine < A}/16, Kigdrie
=1 =1

T

> {ring > AI/16, Kit} A7/16 .

t=1

Vv

14

Hence

T
16
(14) = ;{MQ > A?/16, K }| < < a7 EM; .

We have thus obtained the following bound

T

ZP(Qz‘,t # Yip, Kiyg) < W EM; .

t=1 i
To conclude, we need to upper bound EM;. Observe that M; is a sum only over time
steps ¢ such that {K;;} = 1; i.e., over those ¢ such that the weight vector w;; gets actually
updated. Therefore, since we would like to relate M; to the spectral structure of the data
correlation matrices S; ;1) SZ QT We can proceed through the standard upper bounding
argument (Azoury and Warmuth, 2001; Cesa-Bianchi et al., 2002) given below.

T
M; =) {Kit}rivg
t=1

_ ET: (1 _ det(I + Si;Q(i:tl)SiTQ(i,t—l))>

s det(I + Si,Q(i,t)Sz'TQ(i,t))

(using Lemma 2, part 1, in Lai and Wei, 1982)

T det(I + S; ,Q(, t)SiTQ(z',t))

2; det(I + S; gi— I)SiTQ(i,t—l))
det(I + Si q(i/1)Siqu,m)

=1
8 det (1)

IA

(since 1 — z < —logz for all x > 0)

d
= Z log(1 + Ai,j) .
j=1
Putting together as in (10) concludes the proof. O

Our analysis of Theorem 2 is similar in spirit to the work of Lai et al. (1979) on least-
squares regression. In particular, they also assume the sequence xi,@2,... be arbitrary
while the real-valued labels y; are defined as y; = u'@; + &, where & are i.i.d. random
variables with finite variance.

A regret bound similar to the one established by Theorem 2 can be proven for the zero-
one loss using the fact that this loss can be crudely upper bounded by the H-loss (with all
cost coefficients set to 1). Indeed, a more direct (and sharper) analysis could be performed
for the zero-one loss, following the same lines as the proof of Theorem 2. As far as the
symmetric difference loss £a is concerned, a regret analysis might be obtained through a
method we developed in earlier work (Cesa-Bianchi et al., 2004). As a matter of fact,
the analysis by Cesa-Bianchi et al. (2004) rests on several side assumptions about the way
data x1,... ,zT are generated. We have been unable to apply the theoretical arguments
employed in the present paper to £a. In any case, since these two loss functions are unable
to capture the hierarchical nature of our classification problem, we believe the resulting
bounds are less relevant to this paper.

15

8. Experimental results

We tested the empirical performance of our on-line algorithm on datasets extracted from
two popular corpora of free-text documents. The first dataset consists of the first (in
chronological order) 100,000 newswire stories from the Reuters Corpus Volume 1 (Reuters,
2000). The associated taxonomy of labels, which are the document topics, contains 101
nodes organized in a forest of 4 trees. The forest is shallow: the longest path has length
3 and the distribution of nodes, sorted by increasing path length, is {0.04,0.53,0.42,0.01}.
The average number of paths in the multilabel of an instance is 1.5. For this dataset we
used the bag-of-words vectorization performed by Xerox Research Center Europe within
the EC project KerMIT (see Cesa-Bianchi et al., 2003, for details). The 100,000 documents
were divided into 5 equally sized groups of chronologically consecutive documents. We then
used each adjacent pair of groups as training and test set for an experiment (here the fifth
and first group are considered adjacent), and then averaged the test set performance over
the 5 experiments.

The second dataset includes the documents classified in the nodes of the subtree rooted
in “Quality of Health Care” (MeSH code N05.715) of the OHSUMED corpus of medical
abstracts (Hersh, 1994). Since OHSUMED is not quite a tree but a directed acyclic graph,
and since the H-loss is defined for trees only, we removed from this OHSUMED fragment
the few nodes that did not have a unique path to the root. This produced a hierarchy
with 94 classes and a dataset with 55,503 documents. The choice of this specific subtree
was motivated by its structure only; in particular: the subtree depth is 4, the distribution
of nodes (sorted by increasing path length) is {0.26,0.37,0.22,0.12,0.03}, and there is a
reasonable number of partial and multiple path multilabels (the average number of paths
per instance is 1.53). The vectorization of the documents was carried out similarly to
RCV1. After tokenization, we removed all stopwords and also those words that did not
occur at least 3 times in the corpus. Then, we vectorized the documents using the BOW
library (McCallum, 2004) with a log(1 + TF) log(IDF) encoding. We ran 5 experiments by
randomly splitting the corpus in a training set of 40,000 documents and a test set of 15,503
documents. Test set performances are averages over these 5 experiments. In the training
set we kept more documents than in the RCV1 splits since the OHSUMED corpus turned
out to be a harder classification problem than RCV1. In both datasets instances have been
normalized to unit length.

Since the space complexity of H-RLS grows linearly with training time, due to the need
of storing each training instance in the matrices S;; —see (1), we had to make some modi-
fications to the algorithm in order to be able to carry out experiments on datasets of this
size. For this purpose, we have developed SH-RLS, a space-efficient variant of H-RLS that we
used in all of our experiments.

The performance of SH-RLS is compared against five baseline algorithms: a flat and
a hierarchical version of the Perceptron algorithm (Novikov, 1962; Rosenblatt, 1958), a
flat and a hierarchical version of Vapnik’s support vector machine (see, e.g., Vapnik, 1998;
Scholkopf and Smola, 2002), and a flat version of SH-RLS. Note that support vector machines
are not trained incrementally; we include them in our pool of baseline algorithms to show
that on-line learners, processing each training example only once, can have a performance
level close to that of batch learners.

16

Note also that, unlike our theoretical analysis based on cumulative regret, in the ex-
periments we distinguish a training phase, where the hierarchical classifiers are built, and
a test phase, where the performance of the hierarchical classifiers obtained in the training
phase is measured on fresh data. This allows us to use a single measure, the test error, to
compare both batch and incremental learners.

The first algorithm we consider, H-PERC, is a simple hierarchical version of the Percep-
tron. Its functioning differs from H-RLS described in Figure 3 only in the way weights are
updated. In particular, H-PERC learns a hierarchical classifier by training a linear-threshold
classifier at each node via the Perceptron algorithm. At the beginning, the weight vector
of each node classifier is set to the zero vector, w;; = (0,...,0) fori =1,... ,N. Upon re-
ceiving an example (x;,v;), H-PERC considers for an update only those classifiers sitting at
nodes i satisfying either i € ROOT(G) or vpsg)r = 1. If {wztcct > 0} # v;4 for such a node
i, then the weight vector w;; is updated using the Perceptron rule w; ;1 = w; + v; 1 ¢;
on the other hand, if {wztwt > 0} = vy, then w; ;11 = w;; (no update takes place at node

During the test phase, H-PERC computes the multilabel ¥ = (91,... ,yn) of a test
instance using the same top-down process described in Figure 3,

{w/z >0} ifiisaroot node,

Ui =< {w/xz >0} ifiis not aroot node and §; = 1 for j = PAR(3), (15)
0 if 4 is not a root node and ¢; = 0 for j = PAR(i).

The second incremental algorithm considered is SH-RLS, our sparse variant of H-RLS. The
two algorithms, H-RLS and SH-RLS operate in the same way (see Figure 3) with the only
difference that SH-RLS performs fewer updates in the training phase. In particular, given
a training example (xy, v¢), both algorithms consider for an update only those classifiers
sitting at nodes i satisfying either i € ROOT(G) or vpag(;),+ = 1. However, whereas H-RLS
would update the weight w; ; of all such nodes 7, SH-RLS also requires the margin condition
|wiT,ta:t| < +/(5Int)/N;;, where N;, is the number of instances stored at node i up to time

t — 1. The choice of the margin threshold 1/(51nt)/N; ; is motivated by Cesa-Bianchi et al.
(2003) via a large deviation analysis.

We also tested a hierarchical version of SVM (denoted by H-svM) in which each node is
an SVM classifier trained using a batch version of our hierarchical learning protocol. More
precisely, each node 7 was trained only on those examples (x¢, v¢) such that Upar(i),t = 1- The
resulting set of linear-threshold functions was then evaluated on the test set using the hier-
archical classification scheme (15). We tried both the C' and v parametrizations (Scholkopf
et al., 2000) for SVM and found the setting C' = 1 to work best? for our data (recall that
all instances x; are normalized, ||z;|| = 1).

We finally tested the “flat” variants of H-PERC, SH-RLS and H-SVM, denoted by PERC,
S-RLS and SVM, respectively. In these variants, each node is trained and evaluated indepen-
dently of the others, disregarding all taxonomical information. All SVM experiments were
carried out using the 1libSVM implementation (Chang and Lin, 2004) and all the algorithms
ran with a linear kernel. The performance of these algorithms was evaluated against three

2. It should be emphasized that this tuning of C' was actually chosen in hindsight across the interval [0.1,10]
with no cross-validation.

17

RCV1

Algorithm zero-one loss uniform H-loss A-loss

PERC 0.702(£0.045) 1.196(£0.127) 1.695(+0.182)
H-PERC 0.655(+£0.040) 1.224(+0.114) 1.861(£0.172)
S-RLS 0.559(£0.005) 0.981(£0.020) 1.413(%0.033)
SH-RLS 0.456(+0.010) 0.743(+0.026) 1.086(+0.036)
SVM 0.482(£0.009) 0.790(£0.023) 1.173(%0.051)
H-SVM 0.440(£0.008) 0.712(£0.021) 1.050(+0.027)

OHSUMED

Algorithm zero-one loss uniform H-loss A-loss

PERC 0.899(+0.024) 1.938(+0.219) 2.639(+0.226)
H-PERC 0.846(+0.024) 1.560(£0.155) 2.528(+0.251)
S-RLS 0.873(£0.004) 1.814(%0.024) 2.627(+0.027)
SH-RLS 0.769(+0.004) 1.200(+0.007) 1.957(+0.011)
SVM 0.784(£0.003) 1.206(£0.003) 1.872(%0.005)
H-SVM 0.759(£0.002) 1.170(£0.005) 1.910(%0.007)

Table 1: Experimental results on two hierarchical text classification tasks under various
loss functions. We report average test errors along with standard deviations (in
parenthesis). In bold are the best performance figures among the incremental
algorithms (all incremental algorithms were run for one epoch over the training
data).

different loss measures (see Table 1). The first two losses are the zero-one loss and the
H-loss with cost coefficients set to 1 (denoted by uniform H-loss in Table 1). The third loss
is the symmetric difference loss (A-loss in Table 1).

A few remarks on Table 1 are in order at this point. As expected, H-SVM performs best,
but the good performance of svMm (flat support vector machine) is surprising. As for the
incremental algorithms, SH-RLS performs better than its flat variant SH-RLS, and far better
than both H-PERC and PERC. In addition, and perhaps surprisingly, after a single epoch
of training SH-RLS performs generally better than SVvM and comes reasonably close to the
performance of H-sVM. Finally, note that the running times of both s-RLS and SH-RLS scale
quadratically in the number of stored instances, whereas the running time of Perceptrons
scales only linearly. Thus, as usual, the performance benefit has to be traded-off against
computational cost.

To give an idea of how flat and hierarchical algorithms compare in terms of running
times, we mention that hierarchical algorithms turned out to be roughly four times faster
than the corresponding flat algorithms running on the same datasets.

The (uniform) H-loss does not provide any information on the distribution of mistakes
across the different hierarchy levels. Therefore, we counted the “H-loss mistakes” made
at each level, distinguishing between false positive (FP) and false negative (FN) mistakes.
Fix an example (x,v) and let ¥ be the guessed multilabel. Then node i makes an H-loss

18

RCV1
Depth H-PERC SH-RLS H-SVM

0 FP 4144(4+2431) 1449(£79) 1769(+163)
FN 2690(£851) 2436(x112) 2513(+148)
1 FP 6769(+2509) 1361(+108) 1317(+81)
FN 7961(+838) 8135(+476) 7260(+450)
9 FP 1161(%261) 413(+32) 380(+28)
FN 1513(+833) 937(+51) 624(+23)
3 FP 161(i314) 14(+16) 20(+£26)
FN 88(+44) 115(+31) 94(+24)
OHSUMED
Depth H-PERC SH-RLS H-SVM
0 FP 7916(+2638) 3192(£88) 3062(%60)
FN 12639(+1418) 12888(+64) 12587(+49)
1 FP 1816(%730) 828(+14) 839(+11)
FN 1606(£373) 1594(£33) 1542(£25)
9 FP 88(+20) 30(+6) 37(£7)
FN 86(+31) 54(+4) 55(+2)
3 FP 10(£5) 2(£1) 3(£1)
FN 16(£11) 13(£3) 14(£1)
4 FP 3(£2) 1(£1) 4(£1)
FN 5(£6) 1(£1) 2(£1)

Table 2: Distribution across the hierarchy levels of false positive (FP) and false negative
(FN) H-loss mistakes on the two hierarchical text classification tasks RCV1 and
OHSUMED. We report the average number of mistakes at each level of the hierar-
chy trees with standard deviation in parenthesis (recall that we made 5 experiments
on different splits of the two dataset).

19

mistake on (z,v) if
Ui £vi ANJj=v; =1, j € ANC(3) .
Thus, node ¢ makes a false positive mistake if
Uyi=1ANv=0A7Yy;=v;=1, 7€ ANC(i)
and makes a false negative mistake if
Ui=0ANv=1ANYyj=v;=1,35€ANC(i) .

Table 2 shows the H-loss mistake distribution for RCV1 and OHSUMED over hierarchy
levels.

The average values contained in Table 2 are also plotted in Figure 4. A quick visual
comparison reveals the close similarity between the distributions obtained by SH-RLS and
H-SVM, whereas the behavior of H-PERC looks quite different.

9. Conclusions, ongoing research, and open problems

We have introduced H-RLS, a new on-line algorithm for hierarchical classification that main-
tains and updates regularized least-squares estimators on the nodes of a taxonomy. The
linear-threshold classifications, obtained from the estimators, are combined to produce a
single hierarchical multilabel through a simple top-down evaluation model.

Our algorithm is suitable for learning multilabels that include multiple and/or partial
paths on the taxonomy. To properly evaluate hierarchical classifiers in this framework we
have defined the H-loss, a new hierarchical loss function, with cost coefficients possibly
associated to each taxonomy node—see Remark 5.

Our main theoretical result states that, on any sequence of instances, the cumulative
H-loss of H-RLS is never much bigger than the cumulative H-loss of a reference classifier
tuned with the parameters of the stochastic process generating the multilabels for the
given sequence of instances. QOur theoretical findings are complemented by experiments
on the hierarchical classification of textual data, in which we compare the performance of
a sparsified variant of H-RLS to that of standard batch and incremental learners, such as
simple hierarchical versions of the Perceptron algorithm and the SVM. The experiments
show that one epoch of training of our algorithm is enough to achieve a performance close
to that of the hierarchical SVM.

Our investigation leaves a number of open questions. The first open question is the
derivation of a hierarchical algorithm especially designed to minimize the H-loss. We are
currently exploring efficient ways to approximate the Bayes optimal classifier for the H-loss,
given our data model. Since such optimal classifier turns out to be remarkably different
from the hierarchical classifiers produced by H-RLS, a related theoretical question is to prove
any reasonable bound on the regret with respect to the Bayes optimal classifier.

Additional open problems concern the data model. First, it would be useful to modify
the label-generating model to introduce dependencies among the children’s labels. This
could allow a better fitting of datasets when the rate of multiple paths in multilabels is
limited. Second, further investigation, both of empirical and theoretical nature, might be
devoted to the issue of using regularized logistic regressors at each node.

20

H-PERC mistake distribution on RCV1 H-PERC mistake distribution on OHSUMED

FP FP
12000 FN B 12000 EN g
10000 E 10000 E
«» 8000 [B «» 8000 B
Q Q
X X
8 8
® 6000 - E © 6000 E
= =
4000 - B 4000 B
2000 E 2000 E
0 . 0 . . .
3 2 3 4
Level
(a) (b)
SH-RLS mistake distribution on RCV1 SH-RLS mistake distribution on OHSUMED
FP FP
12000 FN B 12000 FN b
10000 B 10000 B
«» 8000 E » 8000 | E
Q Q
X X
8 8
S 6000 b S 6000 - B
= =
4000 E 4000 - E
2000 B 2000 B
o m= ‘ o ‘ ‘ ‘
2 3 2 3 4
Level Level
(c) (d)
H-SVM mistake distribution on RCV1 H-SVM mistake distribution on OHSUMED
FP FP
12000 FN B 12000 EN g
10000 E 10000 E
«» 8000 [B «» 8000 B
Q Q
X X
8 8
© 6000 - E © 6000 E
= =
4000 - B 4000 B
2000 E 2000 E
0 0 " . .
2 3 4

Figure 4: Plot of the average values contained in Table 2 for the H-loss mistake distribution
over hierarchy levels.

21

ACKNOWLEDGMENTS

The authors would like to thank Michael Collins for his timely editorial work, as well as the
anonymous reviewers, whose comments and suggestions greatly improved the presentation
of this paper. This work was supported in part by the IST Programme of the European
Community under the PASCAL Network of Excellence IST-2002-506778. This publication
only reflects the authors’ views.

References

K.S. Azoury and M.K. Warmuth. Relative loss bounds for on-line density estimation with
the exponential familiy of distributions. Machine Learning, 43(3):211-246, 2001.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order perceptron algorithm. STAM
Journal of Computing., 43(3):640-668, 2005.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. Learning probabilistic linear-threshold clas-
sifiers via selective sampling. In Proceedings of the 16th Annual Conference on Compu-
tational Learning Theory, pages 373-386. LNAI 2777, Springer, 2003.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. Regret bounds for hierarchical classifica-
tion with linear-threshold functions. In Proceedings of the 17th Annual Conference on
Computational Learning Theory, pages 93-108. LNATI 3120, Springer, 2004.

C.C. Chang and C.J. Lin. Libsvm: a library for support vector machines, 2004. URL
www.csie.ntu.edu.tw/~cjlin/libsvm/.

O. Dekel, J. Keshet, and Y. Singer. An efficient online algorithm for hierarchical phoneme
classification. In Proceedings of the 1st International Workshop on Machine Learning for
Multimodal Interaction, pages 146-158. Springer LNAT 3361, 2005.

O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. In Proceedings
of the 21st International Conference on Machine Learning. Omnipress, 2004.

S.T. Dumais and H. Chen. Hierarchical classification of web content. In Proceedings of
the 23rd ACM International Conference on Research and Development in Information
Retrieval, pages 256-263. ACM Press, 2000.

M. Granitzer. Hierarchical Text Classification using Methods from Machine Learning. PhD
thesis, Graz University of Technology, 2003.

W.R. Hersh. The OHSUMED test collection, 1994. URL medir.ohsu.edu/pub/ohsumed/.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58:13-30, 1963.

T. Hofmann, L. Cai, and M. Ciaramita. Learning with taxonomies: classifying documents
and words. In NIPS 2003: Workshop on syntaz, semantics, and statistics, 2003.

R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge University Press, 1985.

22

D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In
Proceedings of the 14th International Conference on Machine Learning, pages 170-178,
1997.

T.L. Lai, H. Robbins, and C.Z. Wei. Strong consistency of least squares estimates in multiple
regression. Proceedings of the National Academy of Sciences USA, 75(7):3034-3036, 1979.

T.L. Lai and C.Z. Wei. Least squares estimates in stochastic regression models with appli-
cations to identification and control of dynamic systems. The Annals of Statistics, 10(1):
154-166, 1982.

A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification
and clustering, 2004. URL www-2.cs.cmu.edu/~mccallum/bow/.

A K. McCallum, R. Rosenfeld, T.M. Mitchell, and A.Y. Ng. Improving text classification
by shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference
on Machine Learning, pages 3569-367. Morgan Kaufmann Publishers, 1998.

D. Mladenic. Turning yahoo into an automatic web-page classifier. In Proceedings of the
13th European Conference on Artificial Intelligence, pages 473-474, 1998.

A.B.J. Novikov. On convergence proofs on Perceptrons. In Proceedings of the Symposium
on the Mathematical Theory of Automata, vol. XII, pages 615-622, 1962.

Reuters. Reuters corpus volume 1, 2000.
URL about.reuters.com/researchandstandards/corpus/.

R. Rifkin, G. Yeo, and T. Poggio. Regularized least squares classification. Advances in
Learning Theory: Methods, Model and Applications. NATO Science Series III: Computer
and Systems Sciences, 190:131-153, 2003.

F. Rosenblatt. The Perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65:386—408, 1958.

M.E. Ruiz and P. Srinivasan. Hierarchical text categorization using neural networks. In-
formation Retrieval, 5(1):87-118, 2002.

B. Scholkopf and A. Smola. Learning with kernels. MIT Press, 2002.

B. Schélkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett. New support vector algo-
rithms. Neural Computation, 12:1207-1245, 2000.

A. Sun and E.P. Lim. Hierarchical text classification and evaluation. In Proceedings of the
2001 International Conference on Data Mining, pages 521-528. IEEE Press, 2001.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

V. Vovk. Competitive on-line statistics. International Statistical Review, 69:213-248, 2001.

23

Appendix

This appendix contains the proofs of Lemmas 7, 8, and 9 mentioned in the main text.
Throughout this appendix A denotes the positive definite matrix I + Si,QS;,—Qa while r

denotes the quadratic form ; (A + zx,) " ax;.

Proof of Lemma 7

We have
Biy = u)(I+zz))(A+zzx) tx
= u (A+zz]) o+ Agyr
< ol (A+ @) 2 + Ayl r
< VAT
where the first inequality follows from w, z < MaX ||y ||=1 u;z = ||z|, with 2 = (A +

xyx;) 'z, and the second inequality follows from z ' (A +zz") 2z <z'(A+zz ') 'z,

holding for any « and for any positive definite matrix A whose eigenvalues are not smaller
than 1 (notice that this condition makes (A+zx')™! — (A+zx")~2 a positive semidefinite
matrix). O

Proof of Lemma 8

Setting for brevity H = S.) ;A lz; and a = z,] A lx; we can write
g y 2,Q t

—1 -1
1Zisl? = z) (A+mz]) SigSio(A+za])
,Q

A gz AT Atz A1
T -1 ty T -1 1ot
= A ——Ft) S5 0S A7 - —
Ty (1—|—.’1:;|—A_1:l:t> 4,QY1,Q (1—{—:1:;'—A_1:1:t>$t
(by the Sherman-Morrison formula—e.g., Horn and Johnson, 1985, chap. 0)
2
= HH--2 H'H-—> H'H+ > _H'H
l+a l+a (1+a)?

H'H
(1+a)?
mE—AflSi,QSJQAflmt
(1+ a)2
w] ATV2ATIEG; 0S] AT R AT 2,
(1+ a)2
[A4=2a]| [[428108 04~ llof 4=
(1+ a)2
a

= e |47 Sia8Tea ™. (19)

24

where HA_I/ZSZ',QSZ-TQA_UQH is the spectral norm of matrix A_l/QSZ-,QSiTQA_l/Q.
We continue by bounding the two factors in (16). Observe that

@ _ _a
(14a)? " 1+4a

=T

where the equality derives again from the Sherman-Morrison formula. As far as the second
factor is concerned, we just note that the two matrices A=1/2 and SZ-,QSJQ have the same

eigenvectors. Furthermore, if); is an eigenvalue of Si,QSiT o thenl /+/1+ A; is an eigenvalue
of A='/2. Therefore

HAil/QSi,QSi—l:QAfl/Q) = max

1 1
L yx <.
Y TS v A v

Substituting into (16) yields || Z;||* < r, as desired. O

Proof of Lemma 9

From a simple Kuhn-Tucker analysis? it follows that if a; is larger than 0 at the maximum,
then a; takes some constant value § > 0 (independent of t). Hence the maximizing vector
(a1,a2,... ,a,) has components which can take only two possible values: a; = 0 or a; = S.
Let us denote by N™ the number of ¢ : a; = 8. At the maximum we can write

n
M:Zat: Z a; + Z at:,BN+
t=1

t:at=p t:a;—0t

i.e., = M/N*. Hence, at the maximum

zn:e—a/at _ Z e—a/at_l_ Z e—a/at
t=1

tiar=p t:a;=0t
— Z e /B
t:ar=p
Nte /B
Nte—aNT/M

Since Nt is not determined by this argument, we can write

n n
M
max{Ze_a/‘” a1 >0,...,a, > O,Zat :M} < rﬂrcl%cxe_aw/M =
t=1 t=1 =

thereby concluding the proof. O

3. The function f(a) = e~*/% is not defined when a = 0. However, it is clearly possible to extend f by
defining f(0) = 0, preserving (one-sided) differentiability.

25

