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Abstract

We consider the vector optimization problem minC f (x), g(x) ∈ −K, wheref :Rn → R
m and

g :Rn → R
p areC0,1 (i.e. locally Lipschitz) functions andC ⊆ R

m andK ⊆ R
p are closed conve

cones. We give several notions of solution (efficiency concepts), among them the notion of p
efficient point (p-minimizer) of orderk and the notion of isolated minimizer of orderk. We show
that each isolated minimizer of orderk � 1 is ap-minimizer of orderk. The possible reversal of th
statement in the casek = 1 is studied through first order necessary and sufficient conditions in t
of Dini derivatives. Observing that the optimality conditions for the constrained problem coi
with those for a suitable unconstrained problem, we introduce sense I solutions (those of the
constrained problem) and sense II solutions (those of the unconstrained problem). Further, w
relations between sense I and sense II isolated minimizers andp-minimizers.
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1. Introduction

In this paper we consider the vector optimization problem

min
C

f (x), g(x) ∈ −K, (1)

wheref :Rn → R
m, g :Rn → R

p. Heren, m andp are positive integers andC ⊆ R
m

andK ⊆ R
p are closed convex cones. Often in the literature the consideration of v

optimization problems is restricted to the case whereC is a closed convex pointed con
with nonempty interior. For the investigations of this paper both conditionsC pointed and
with nonempty interior are too restrictive (they need not be satisfied in problem (14) b
and we prefer to get rid of them at the beginning.

Usually the solutions of problem (1) are called points of efficiency. We prefer,
scalar optimization, to call them minimizers.

The solutions of a vector problem are often studied through a scalarization, i.e.
ing the vector problem to an equivalent scalar problem. A well-known approach is
scalarization, but several other ad hoc scalarization techniques have been used. It h
shown [1–3] that more restrictive definitions of minimality for the considered scala
problem correspond to more restrictive notions of efficiency. In this paper we cons
particular kind of scalarization which makes use of the so called “oriented distance” f
point to a set. In terms of oriented distance the notion of isolated minimizer (i-minimizer)
of a given order is introduced in [4], extending to the vector case a notion known in s
optimization [5–7]. Under the name of strict minimizer the same concept appears in [8
In this paper we prefer the original name of isolated minimizer given by Auslender [5
observe in Section 2, that the isolated minimizers for the vector problem are isolated
mizers of an appropriate scalar problem. In this work we are interested in the links be
isolated minimizers of the scalarized problem and properly efficient points (p-minimizers)
of the constrained problem (1). We will assume thatf andg are of classC0,1, i.e. lo-
cally Lipschitz functions and for such functions we apply some first-order necessar
sufficient optimality conditions to clarify the relations between these concepts.

Observing that the optimality conditions of the constrained problem coincide with
of a suitable unconstrained problem, we introduce sense I solutions (those of the initi
strained problem) and sense II solutions (those of the unconstrained problem). We es
some relations between sense I and sense IIp-minimizers andi-minimizers, which give
also a motivation for the “duplication” of the notions of solution (one prefers probab
deal with the simpler unconstrained problem instead of the constrained one).

The outline of the paper is the following. Section 2 is devoted to notions of optim
for problem (1) and their scalarization. Section 3 generalizes the notion of ap-minimizer
to ap-minimizer of orderk and starts the investigations of the links between isolated
imizers and proper efficiency by showing (Theorems 3.1 and 3.2) that eachi-minimizer is
ap-minimizer. The possible reversal of this statement in the casek = 1 is the main subjec
of investigation in the paper. In Section 4 with reference toC0,1 functions, we recall som
first order necessary and sufficient optimality conditions in terms of Dini derivatives
tained in [3]. Section 5 discusses a reversal of Theorem 3.2, shows that the given opt

conditions are important to solve this problem and they lead to two approaches toward ef-
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ficiency concepts, defining sense I and sense II concepts. The relation between sen
sense IIi-minimizers andp-minimizers is investigated.

2. Vector optimality concepts and scalar characterizations

We denote by‖ · ‖ and〈·, ·〉 the Euclidean norm and the scalar product in the con
ered finite-dimensional spaces. The open unit ball is denoted byB. From the context i
should be clear to which spaces these notations are applied. The results of the pape
immediately extended to finite-dimensional real Banach spaces.

There are different concepts of solution for problem (1). In the following definit
we assume that the considered pointx0 is feasible, i.e.g(x0) ∈ −K (equivalentlyx0 ∈
g−1(−K)). The definitions below are given in a local sense. We omit this specificati
the text.

Definition 2.1. (i) The feasible pointx0 is said to be weakly efficient (efficient), if the
is a neighbourhoodU of x0, such that ifx ∈ U ∩ g−1(−K) thenf (x) − f (x0) /∈ − intC
(respectivelyf (x) − f (x0) /∈ −(C \ {0})).

(ii) The feasible pointx0 is said to be properly efficient if there exist a closed (but
necessarily convex) conẽC ⊆ R

n, with C \ {0} ⊆ int C̃ and a neighbourhoodU of x0, such
that if x ∈ U ∩ g−1(−K), thenf (x) − f (x0) /∈ − int C̃.

In this paper the weakly efficient, the efficient and the properly efficient point
problem (1) are called respectivelyw-minimizers,e-minimizers andp-minimizers. The
following chain of implications is known:

p-minimizer ⇒ e-minimizer ⇒ w-minimizer.

Remark 2.1. If we assume thatC is a pointed cone, in virtue of Definition 2.1 ap-mini-
mizer can be defined in the following way: the feasible pointx0 is said to be properly
efficient for the constrained problem (1) if there exists a closed convex coneC̃, such that
C \ {0} ⊆ int C̃ andx0 is weakly efficient for the problem miñ

C
f (x), g(x) ∈ −K . This is

the commonly accepted definition of a properly efficient point (see, e.g., Henig [11])
latter however does not work with non-pointed cones, hence it is too restrictive with r
to our hypotheses.

Definition 2.2. The feasible pointx0 is said a stronge-minimizer if there exists a neigh
borhoodU of x0, such thatf (x) − f (x0) /∈ −C, for x ∈ U \ {x0} ∩ g−1(−K).

Obviously, every stronge-minimizer ise-minimizer.
The unconstrained problem

min
C

f (x), x ∈ R
n, (2)

is a particular case of problem (1) and the defined notions of optimality concern als

problem.
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For the coneM ⊆ R
k its positive polar coneM ′ is defined byM ′ = {ζ ∈ R

k | 〈ζ,φ〉 � 0
for all φ ∈ M}. The coneM ′ is closed and convex and it is well known thatM ′′ := (M ′)′ =
cl coM ; see, e.g., [12, Chapter III, §15]. In particular, for a closed convex coneM we have
M = M ′′ = {φ ∈ R

k | 〈ζ,φ〉 � 0 for all ζ ∈ M ′}.
If φ ∈ −cl coM , then〈ζ,φ〉 � 0 for all ζ ∈ M ′. We setM ′(φ) = {ζ ∈ M ′ | 〈ζ,φ〉 = 0}.

ThenM ′(φ) is a closed convex cone andM ′(φ) ⊆ M ′. Consequently its positive polar con
M(φ) = (M ′(φ))′ is a closed convex cone,M ⊆ M(φ) and its positive polar cone sati
fies (M(φ))′ = M ′(φ). In this paper we apply this notation forM = K andφ = −g(x0).
Then we write for shortK ′(x0) instead ofK ′(−g(x0)) (and call this cone the index set
problem (1) atx0) andK(x0) instead ofK(−g(x0)).

Next results characterize the solutions of problem (1) in terms of a suitable scalariz

Proposition 2.1 [3]. Define

ϕ(x) = max
{〈

ξ, f (x) − f (x0)
〉 ∣∣ ξ ∈ C′, ‖ξ‖ = 1

}
. (3)

The feasible pointx0 ∈ R
n is aw-minimizer for problem(1), if and only ifx0 is a minimizer

for the scalar problem

minϕ(x), g(x) ∈ −K. (4)

Proposition 2.2 [3]. The feasible pointx0 is a stronge-minimizer of problem(1) if and only
if x0 is a strong minimizer of problem(4), i.e. if and only if there exists a neighborhoodU

of x0, such thatϕ(x) − ϕ(x0) > 0 for all x ∈ (U \ {x0}) ∩ g−1(−K).

Recall that the feasible pointx0 is said to be an isolated minimizer of orderk > 0 of
problem (4) when there exists a constantA > 0 such thatϕ(x) � ϕ(x0) + A‖x − x0‖k for
all x ∈ U ∩ g−1(−K). The concept of an isolated minimizer for scalar problems has
popularized by Auslender [5]. It is natural to introduce a similar concept of optimalit
the vector problem (1).

Definition 2.3. We say that the feasible pointx0 is an isolated minimizer (i-minimizer) of
orderk for the vector problem (1) if it is an isolated minimizer of orderk for the scalar
problem (4).

To interpret geometrically the property thatx0 is a minimizer of problem (1) of certai
type, we introduce the so called oriented distance. Given a setA ⊆ R

k , then the distanc
from y ∈ R

k to A is given byd(y,A) = inf{‖a − y‖ | a ∈ A}. This definition works also
for A = ∅ puttingd(y,∅) = inf ∅ = +∞. The oriented distance fromy to A is defined by
D(y,A) = d(y,A) − d(y,R

k \ A). This definition givesD(y,A) = +∞ whenA = ∅ and
D(y,A) = −∞ whenA = R

k .
FunctionD is introduced in Hiriart-Urruty [13,14] and is used later in Ciligot-Trav

[15], Amahroq and Taa [16], Miglierina [17], Miglierina and Molho [18]. Zaffaroni [
gives different notions of efficiency and uses the functionD for their scalarization and
comparison. Ginchev and Hoffmann [19] use the oriented distance to study approxim

of set-valued functions by single-valued ones and in the case of a convex coneC show



I. Ginchev et al. / J. Math. Anal. Appl. 309 (2005) 353–368 357

s

re
ate

like

r effi-

ex;
the representationD(y,−C) = sup‖ξ‖=1,ξ∈C′ 〈ξ, y〉. Turn attention that this formula work
also in the case of the improper conesC = {0} (thenD(y,−C) = sup‖ξ‖=1〈ξ, y〉 = ‖y‖)
andC = R

m (thenD(y,−C) = supξ∈∅〈ξ, y〉 = −∞).
In particular functionϕ in (4) is expressed byϕ(x) = D(f (x) − f (x0),−C). Proposi-

tions 2.1 and 2.2 are easily reformulated in terms of the oriented distance, namely:

x0 w-minimizer ⇔ D
(
f (x) − f (x0),−C

)
� 0 for x ∈ U ∩ g−1(−K),

x0 stronge-minimizer ⇔
D

(
f (x) − f (x0),−C

)
> 0 for x ∈ (

U \ {x0}) ∩ g−1(−K).

The definition ofi-minimizer gives

x0 i-minimizer of orderk ⇔
D

(
f (x) − f (x0),−C

)
� A‖x − x0‖k for x ∈ U ∩ g−1(−K).

We see that ani-minimizers is a stronge-minimizer. In the next section we explo
the links betweeni-minimizers andp-minimizers. The next proposition has an immedi
proof and we omit it.

Proposition 2.3. The pointx0 is an i-minimizer of orderk for problem(1) if and only if
there exists a constantA > 0 and a neighborhoodU of x0, such that(

f (x) + C
) ∩ B

(
f (x0),A‖x − x0‖k

) = ∅, ∀x ∈ U \ {x0} (5)

(hereB(f (x0), δ) denotes the open ball with center inf (x0) and radiusδ).

Remark 2.2. Points satisfying (5) are called strict efficient points of orderk in [8–10].

Remark 2.3. In the important caseC = R
n+ it can be shown (see [2,3]) that statements

those of Propositions 2.1 and 2.2 remain true if functionϕ is substituted by

ϕ0(x) = max1�i�n

(
fi(x) − fi(x

0)
)
. (6)

In fact, there exist constantsα,β > 0 such thatαϕ(x) � ϕ0(x) � βϕ(x).

3. Isolated minimizers and proper efficiency

Applying the oriented distance function we can generalize the concept of prope
ciency. For givenk � 1 anda > 0 we define the set

Ck(a) = {
y ∈ R

m | D(y,C) � a‖y‖k
}
.

It is easily seen that whenk = 1 the setC1(a) is a closed cone (not necessarily conv
see, e.g., [20]).

Definition 3.1. We say that the feasible pointx0 is a properly efficient point (p-minimizer)
of orderk � 1 for problem (1) if there exist a neighbourhoodU of x0 and a constanta > 0

such that ifx ∈ U ∩ g−1(−K) thenf (x) − f (x0) /∈ − intCk(a).
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case, for arbitrarya > 0 and all sufficiently small‖y‖ we would haveD(y,C) � ‖y‖ �
a‖y‖k . Therefore, assumingf is continuous, forx sufficiently close tox0, the inclusion
f (x) − f (x0) /∈ − intCk(a) could not hold.

Proposition 3.1. The pointx0 is ap-minimizer for problem(1) if and only if it is ap-mini-
mizer of order1.

Proof. If x0 is ap-minimizer of order 1 thenx0 satisfies Definition 2.1 with respect to th
coneC̃ = C1(a), hencex0 is ap-minimizer.

Conversely, letx0 be ap-minimizer andC̃ be the cone from Definition 2.1. Since th
setF = {y ∈ C | ‖y‖ = 1} is compact and disjoint from the closed setR

n \ C̃, therefore
a := dist(F,R

n \ int C̃) > 0. Now obviouslyC1(a) ⊆ C̃. Sincex ∈ U ∩ g−1(−K) implies
f (x) − f (x0) /∈ − int C̃ and− int C̃ ⊃ − int C̃1(a), we getf (x) − f (x0) /∈ − intC1(a).
Thereforex0 is ap-minimizer of order 1. �

Definition 3.1 can be equivalently rephrased according to the following results.

Proposition 3.2. The feasible pointx0 is a p-minimizer of orderk for problem(1) if and
only if there exist a neighbourhoodU of x0 and a constanta > 0 such that for allε > 0 and
all x ∈ U ∩ g−1(−K) satisfying‖f (x) − f (x0)‖ � ε it holds D(f (x) − f (x0),−C) �
aεk .

Proof. Let x0 be ap-minimizer of orderk. Then there exist a neighbourhoodU of x0 and
a constanta > 0 such that for allx ∈ U ∩ g−1(−K) it holdsf (x) − f (x0) /∈ − intCk(a).
Taking into account the definition ofCk(a), we obtainD(f (x)−f (x0),−C) � a‖f (x)−
f (x0)‖k . Then‖f (x) − f (x0)‖ � ε givesD(f (x) − f (x0),−C) � aεk.

Conversely, letx0 satisfy the given condition. In particular, if we fixx ∈ U ∩ g−1(−K)

in advance, the inequality‖f (x)−f (x0)‖ � ε is satisfied forε = ‖f (x)−f (x0)‖. Hence,
we getD(f (x) − f (x0),−C) � a‖f (x) − f (x0)‖k which can be rephrased asf (x) −
f (x0) /∈ − intCk(a). �
Proposition 3.3. The feasible pointx0 is a p-minimizer of orderk � 1 for problem(1) if
and only if there exist a neighbourhoodU of x0 and a constanta > 0 such that for all
ε > 0 it holds(

f
(
U ∩ g−1(−K)

) − f (x0)
) ∩ (aεkB − C) ⊆ εB. (7)

Proof. Let x0 be ap-minimizer of orderk and let the neighbourhoodU of x0 and the
constanta > 0 be those from Proposition 3.2. We show that (7) holds for allε > 0.
Assume, on the contrary, that there existsx ∈ U ∩ g−1(−K) such thatf (x) − f (x0) ∈
aεkB − C, or equivalentlyD(f (x) − f (x0),−C) < aεk , but f (x) − f (x0) /∈ εB, or
equivalently‖f (x) − f (x0)‖ � ε. This inequality, according to Proposition 3.2 impli
D(f (x) − f (x0),−C) � aεk , a contradiction.

Assume now that forx0 there exist a neighbourhoodU and a constanta > 0 for which

(7) holds. We show that also the condition in Proposition 3.2 is satisfied. Assume, on the
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contrary, that there existsε > 0 andx ∈ U ∩g−1(−K) satisfying‖f (x)−f (x0)‖ � ε, but
D(f (x) − f (x0),−C) < aεk . This means thatf (x) − f (x0) belongs to the left-hand sid
of (7) but not to the right-hand side, a contradiction.�

As far as we know, the definition of proper efficiency of orderk � 1 is a new one. Le
us however mention that from Proposition 3.3, it follows thatp-minimizers of orderk are
strictly efficient points in the sense of Bednarczuk [21].

Whenf is aC0,1 function, the following relation holds betweeni-minimizers of orderk
andp-minimizers of orderk.

Theorem 3.1. Let f be of classC0,1. If a point x0 is an i-minimizer of orderk � 1 for
problem(1) thenx0 is ap-minimizer of orderk.

Proof. Assume, on the contrary, thatx0 is ani-minimizer of orderk but notp-minimizer
of orderk. Let f be Lipschitz with constantL in x0 + r clB. Take sequencesδν → 0+
andεν → 0+ and consider the setsCk(εν). Sincex0 is not ap-minimizer of orderk it
follows that there exists a sequence of feasible pointsxν ∈ (x0+δνB)∩g−1(−K) such that
f (xν) − f (x0) ∈ − intCk(εν), and in particularf (xν) − f (x0) �= 0. From the definition
of Ck(εν) we get

D
(
f (xν) − f (x0),−C

)
< εν

∥∥f (xν) − f (x0)
∥∥k � ενL

k‖xν − x0‖k

which contradicts tox0 i-minimizer of orderk. �
We formulate separately the particular case obtained by Theorem 3.1 fork = 1.

Theorem 3.2. Let f be of classC0,1. If x0 is an i-minimizer of first order for problem(1)
thenx0 is ap-minimizer.

Next Examples 3.1 and 3.2 show respectively that the Lipschitz assumption in
rems 3.1 and 3.2 cannot be dropped and the result of Theorems 3.1 and 3.2 in
cannot be reverted. As for the used notations, let us say that we prefer to denote th
value of the variablex by x0 whenx is vector-valued (thenx0

i stands for theith coordinate
of x0) andx0 whenx is real-valued.

Example 3.1. Let f :R → R
2, g :R → R, be defined asf (x) = (

√|x| ),− 4
√|x| ) and

g(x) = x. Let C = R
2+ andK = R+. The pointx0 = 0 is ani-minimizer of first order,

but not ap-minimizer for problem (1).

Fromf (x) = f (−x) we see that the conditiong(x) ≡ x � 0 does not introduce chang
on the efficiency properties ofx0 = 0 for the constrained problem (1) in comparison w
the unconstrained problem (2). It is obvious from the definition thatx0 is not ap-mini-
mizer. SinceD(f (x) − f (x0),−R

2+) �
√|x| � |x| for |x| < 1, the pointx0 is ani-mini-

mizer of first order. Thus, the conclusion of Theorem 3.2 does not hold, but obviouslf is

notC0,1.
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Example 3.2. (i) Let f :R → R
2, g :R → R be defined asf (x) = (x2,−x2) andg(x) = x.

Let C = R
2+ andK = R+. Hence,f andg are of classC0,1, x0 = 0 is ap-minimizer, but

x0 is not ani-minimizer of first order.
(ii) Consider the functionf :R → R

2, f (x) = (f1(x), f2(x)), with f1(x) =
−x2 sin 1

x
− x2 andf2(x) = [f1(x)]2, if x �= 0, andf1(0) = f2(0) = 0. The pointx0 = 0 is

ap-minimizer of any orderk > 2, but there exists no positive numberk, such thatx0 is an
i-minimizer of orderk.

For Example 3.2(i), as an application of Proposition 3.2 we observe that

D
(
f (x) − f (x0),−C

) = D
(
(x2,−x2),−R

2+
)
� x2 = 1√

2

∥∥(x2,−x2)
∥∥

= 1√
2

∥∥f (x) − f (x0)
∥∥.

Thereforef (x) − f (x0) /∈ − intC1(1/
√

2), whencex0 is a p-minimizer. On the othe
hand,x0 is not ani-minimizer of first order for problem (1), sincex0 is not an isolated
minimizer of first order for the scalar problemϕ(x) → min, x � 0, which easily seen from
x2 � ϕ(x) �

√
2x2.

For Example 3.2(ii), we observe that, for everyk > 2, we have

D
(
f (x) − f (x0),−C

)
� f2(x) = [

f1(x)
]2 �

∣∣f1(x)
∣∣k([f1(x)

]2 + 1
)k/2

= ∥∥f (x) − f (x0)
∥∥k

,

for x in a suitable neighbourhood ofx0. Hence,f (x) − f (x0) /∈ − intCk(1), andx0 is a
p-minimizer of orderk > 2. On the other hand, it is easily seen thatx0 is not ani-mini-
mizer of any orderk > 0.

In the sequel we consider onlyi-minimizers of first order and for this reason sometim
we call them simplyi-minimizers. Similarly, we consider onlyp-minimizers of first order
which as we know are justp-minimizers.

4. Dini derivatives and first-order optimality conditions

Problem (1) has been investigated in [3] under the hypothesis thatf andg are of class
C0,1. The authors obtained optimality conditions in terms of the first-order Dini directi
derivative.

Given aC0,1 function Φ :Rn → R
k we define the Dini directional derivative (we u

to say just Dini derivative)Φ ′
u(x

0) of Φ at x0 in directionu ∈ R
n, as the set of the cluste

points of(1/t)(Φ(x0 + tu) − Φ(x0)) ast → 0+, that is as the Kuratowski limit

Φ ′
u(x

0) = Lim sup
t→0+

1

t

(
Φ(x0 + tu) − Φ(x0)

)
.

It can be shown (see, e.g., [3]) that ifΦ is of classC0,1, thenΦ ′
u(x

0) is a nonempty

compact subset ofRk , whateveru ∈ R

n.
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In connection with problem (1) we deal with the Dini directional derivative of
function Φ :Rn → R

m+p, Φ(x) = (f (x), g(x)) and then we use to writeΦ ′
u(x

0) =
(f, g)′u(x0). If at least one of the derivativesf ′

u(x
0) and g′

u(x
0) is a singleton, then

(f, g)′u(x0) = (f ′
u(x

0), g′
u(x

0)). Let us turn attention that always(f, g)′u(x0) ⊆ f ′
u(x

0) ×
g′

u(x
0), but in general these two sets do not coincide.

Theorem 4.1 gives first-order optimality conditions in terms of the Dini derivative
is useful in clarifying the links betweeni-minimizers andp-minimizers. It uses the cond
tions denoted below byN ′

0,1 andS ′
0,1, in which all cluster points of the differential quotie

of (f, g) play a role. This justifies the usage of the set-valued Dini derivative(f, g)′u(x0).
The set-valuedness appears in fact when in problem (1) we consider arbitrary functf

andg of classC0,1. When the considerations are restricted to directionally differenti
functionsf andg, the Dini derivative is a singleton and is expressed through the d
tional derivative, i.e.(f, g)′u(x0) = (f ′(x0, u), g′(x0, u)). Let us mention that the use
set-valued derivatives (of first and second order) in vector optimization is known i
literature (see, e.g., [22–25]). The importance of set-valued derivatives for vector fun
is stressed also in Rockafellar and Wets [26, p. 327], where the authors define the
of graphical derivative. In opposite to the introduced Dini derivative, the graphical de
tive involves in its definition also a variation in the direction (compare with formula 8
p. 327 in [26]). In a simplified setting Demyanov and Rubinov [27] apply the name of
derivative when a variation in the direction does not appear and of Hadamard der
otherwise. Following this convention we use the name of Dini derivative for the n
defined in this section, while the graphical derivative in [26] is in fact an Hadamard
derivative.

In the formulation of Theorem 4.1 we use the following constraint qualification, w
is a generalization forC0,1 constraints of the well-known Kuhn–Tucker constraint qua
cation (compare with Mangasarian [28, p. 102]):

Q0,1(x
0): if g(x0) ∈ −K and

1

tk

(
g(x0 + tku

0) − g(x0)
) → z0 ∈ −K(x0)

then∃uk → u0: ∃k0 ∈ N : ∀k > k0: g(x0 + tku
k) ∈ −K.

Theorem 4.1 [3]. Letf,g beC0,1 functions.
Necessary conditions.Let x0 be aw-minimizer for problem(1). Then for eachu ∈ R

n

the following condition is satisfied:

N ′
0,1: ∀(y0, z0) ∈ (f, g)′u(x0): ∃(ξ0, η0) ∈ C′ × K ′:

(ξ0, η0) �= (0,0),
〈
η0, g(x0)

〉 = 0 and 〈ξ0, y0〉 + 〈η0, z0〉 � 0.

Sufficient conditions.Letx0 ∈ R
n and suppose that for eachu ∈ R

n \ {0} the following
condition is satisfied:

S ′
0,1: ∀(y0, z0) ∈ (f, g)′u(x0): ∃(ξ0, η0) ∈ C′ × K ′:

(ξ0, η0) �= (0,0),
〈
η0, g(x0)

〉 = 0 and 〈ξ0, y0〉 + 〈η0, z0〉 > 0.
Thenx0 is an i-minimizer of first order for problem(1).
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Conversely, ifx0 is an i-minimizer of first order for problem(1) and the constrain
qualificationQ0,1(x

0) holds, then conditionS ′
0,1 is satisfied.

Theorem 4.1 is valid and simplifies in an obvious way when instead of (1) we con
the unconstrained problem (2). Let us underline that in this case the reversal of the su
conditions does not require the use of constraint qualifications.

Theorem 4.2. Necessary conditions.Letf be aC0,1 function. Letx0 be aw-minimizer of
problem(2). Then for eachu ∈ R

n the following condition is satisfied:

∀y0 ∈ f ′
u(x

0): ∃ξ0 ∈ C′: ξ0 �= 0 and 〈ξ0, y0〉 � 0.

Sufficient conditions.Letx0 ∈ R
n and suppose that for eachu ∈ R

n \ {0} the following
condition is satisfied:

∀y0 ∈ f ′
u(x

0): ∃ξ0 ∈ C′: ξ0 �= 0 and 〈ξ0, y0〉 > 0. (8)

Thenx0 is an i-minimizer of first order for problem(2). Conversely, ifx0 is an i-mini-
mizer of first order for problem(2) then condition(8) is satisfied.

As an application of Theorem 4.1 we get the next Proposition 4.1.

Proposition 4.1. Letf andg beC0,1 functions. If for some pair(ξ0, η0) ∈ (C′ ×K ′(x0))\
{(0,0)}, the feasible pointx0 is an isolated minimizer of first order for the scalar functio

γ (x) = 〈
ξ0, f (x)

〉 + 〈
η0, g(x)

〉
, (9)

thenx0 is ap-minimizer of(1).

Proof. Let u ∈ R
n \{0} and let(y0, z0) ∈ (f, g)′u(x0). Hence, for some sequencetk → 0+,

we have

y0 = lim
k→+∞

f (x0 + tku) − f (x0)

tk
, z0 = lim

k→+∞
g(x0 + tku) − g(x0)

tk
.

Sincex0 is an isolated minimizer of first order for the scalar function (9), there exis
numberA > 0, such thatγ (x0 + tku) − γ (x0) � Atk , whence〈

ξ0,
1

tk

(
f (x0 + tku) − f (x0)

)〉 +
〈
η0,

1

tk

(
g(x0 + tku) − g(x0)

)〉
� A > 0.

Passing to the limit we get〈ξ0, y0〉 + 〈η0, z0〉 � A > 0. Now the Sufficient condition in
Theorem 4.1 gives thatx0 is ani-minimizer of first order for problem (1), and accordi
to Theorem 3.2 it is also ap-minimizer. �

5. Two approaches toward proper efficiency

It is natural to put the question, under what condition Theorem 3.2 admits a rev

that is under what conditionx0 p-minimizer impliesx0 i-minimizer. Example 3.2(i) shows
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that in general such a reversal does not hold. To answer the posed question we c
first the unconstrained problem (2). Then a crucial role plays the property 0/∈ f ′

u(x
0).

Theorem 5.1. Let f be a locally Lipschitz function and letx0 be ap-minimizer for the
unconstrained problem(2), which has the property0 /∈ f ′

u(x
0) for all u ∈ R

n \ {0}. Then
x0 is an i-minimizer of first order for(2).

Proof. We prove separately the particular case whenC is a pointed cone, in order t
demonstrate an application of Theorem 4.2.

The caseC pointed.According to Remark 2.1, we may assume that the coneC̃ in
Definition 2.1 is closed and convex, such that intC̃ ⊃ C \ {0} andx0 is w-minimizer for
the problem miñ

C
f (x), x ∈ R

n. According to the Necessary conditions of Theorem
this means that for eachu ∈ R

n \ {0} andy0 ∈ f ′
u(x

0), there exists̃ξ0 ∈ C̃′ \ {0}, such
that 〈ξ̃0, y0〉 � 0. This inequality, together withy0 �= 0 (implied by property 0/∈ f ′

u(x
0)),

shows thaty0 /∈ − int C̃ ∪ {0}. SinceC ⊆ int C̃ ∪ {0}, we see thaty0 /∈ −C. This implies,
that there existsξ0 ∈ C′, such that〈ξ0, y0〉 > 0. According to the reversal of the Sufficie
conditions of Theorem 4.2, the pointx0 is ani-minimizer of first order.

The general case.The general case assumes that the coneC is only closed and convex
Assume on the contrary thatx0 is ap-minimizer for the unconstrained problem (2), b

it is not ani-minimizer of first order. Choose a monotone decreasing sequenceεk → 0+.
Hence, there exist sequencestk → 0+ anduk , ‖uk‖ = 1, such that

D
(
f (x0 + tku

k) − f (x0),−C
) = max

ξ∈ΓC′

〈
ξ, f (x0 + tku

k) − f (x0)
〉
< εktk, (10)

whereΓC′ = {ξ ∈ C′ | ‖ξ‖ = 1}. We may assume that 0< tk < r andf is Lipschitz with
constantL in x0 + r clB. Passing to a subsequence, we may assume also thatuk → u0,
‖u0‖ = 1, and thaty0 = limk y0,k , wherey0,k = (1/tk)(f (x0 + tku

0) − f (x0)). From the
definition of the Dini derivative we havey0 ∈ f ′

u(x
0) and from the assumptionsy0 �= 0.

We show thatyk → y0, whereyk = (1/tk)(f (x0 + tku
k) − f (x0)). This follows from the

estimation

‖yk − y0‖ � 1

tk

∥∥f (x0 + tku
k) − f (x0 + tku

0)
∥∥ + ‖y0,k − y0‖

� L‖uk − u0‖ + ‖y0,k − y0‖.
Let nowξ ∈ ΓC′ . Then

〈ξ, yk〉 = 1

tk

〈
ξ, f (x0 + tku

k) − f (x0)
〉
� 1

tk
max
ξ∈ΓC′

〈
ξ, f (x0 + tku

k) − f (x0)
〉

= 1

tk
D

(
f (x0 + tku

k) − f (x0),−C
)
<

1

tk
εktk = εk.

Passing to a limit withk → ∞ we get 〈ξ, y0〉 � 0 for arbitrary ξ ∈ ΓC′ , whence
D(y0,−C) = maxξ∈ΓC′ 〈ξ, y0〉 � 0.

On the other hand,x0 is ap-minimizer, which according to Definition 3.1 and Propo

tion 3.1 means that there exists a constanta > 0, such that for sufficiently largek it holds
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f (x0 + tku
k) − f (x0) /∈ − intC1(a) ⇔

1

tk
D

(
f (x0 + tku

k) − f (x0),−C
)
� a

∥∥∥∥ 1

tk

(
f (x0 + tku

k) − f (x0)
)∥∥∥∥.

Applying the positive homogeneity of the oriented distance and taking the limit ask → ∞
we get the contradiction

0� D(y0,−C) � a‖y0‖ > 0, (11)

which shows thatx0 is ani-minimizer. �
Now we generalize Theorem 5.1 for the constrained problem.

Theorem 5.2. Let f and g be C0,1 functions and letx0 be ap-minimizer for the con-
strained problem(1), which has the property

(y0, z0) ∈ (f, g)′u(x0) and z0 ∈ −K(x0) implies y0 �= 0. (12)

Thenx0 is ani-minimizer of first order for(1).

Proof. Assume on the contrary thatx0 is a p-minimizer for the constrained proble
(1) but it is not ani-minimizer. Choose a monotone decreasing sequenceεk → 0+.
By assumption, there exist sequencestk → 0+ and uk , ‖uk‖ = 1, such thatg(x0 +
tku

k) ∈ −K and (10) holds. We may assume that 0< tk < r and f and g are lo-
cally Lipschitz with constantL in x0 + r clB. Passing to a subsequence we may
sume also thatuk → u0, ‖u0‖ = 1, and thaty0 = limk y0,k and z0 = limk z0,k . Here
y0,k = (1/tk)(f (x0 + tku

0) − f (x0)) and similarlyz0,k = (1/tk)(g(x0 + tku
0) − g(x0)).

Obviously(y0, z0) ∈ (f, g)′
u0(x

0) and similarly to the general case proof of Theorem

we havey0 = limk yk and z0 = limk zk , whereyk = (1/tk)(f (x0 + tku
k) − f (x0)) and

zk = (1/tk)(g(x0 + tku
k) − g(x0)). Furtherz0 ∈ −K(x0), which is true sinceη ∈ K ′(x0)

implies 〈η, zk〉 = (1/tk)〈η,g(x0 + tku
k)〉 � 0. Therefore condition (12) givesy0 �= 0. Re-

peating now the general case proof of Theorem 5.1, we get the contradictory ch
inequalities (11), which proves the thesis.�

As we see from Theorems 5.1 and 5.2, the condition 0/∈ f ′
u(x

0) plays an importan
role for the implicationx0 p-minimizer implies thatx0 is an i-minimizer of first order.
However, as next Example 5.1 shows, in the constrained case this condition is not ne
for this implication (while it is in the unconstrained case as Theorem 4.2 shows).

Example 5.1. Consider the constrained problem (1) withf :R → R, f (x) = −x2, C =
R+, g :R → R, g(x) = |x|, K = R+. The pointx0 = 0 is the only feasible point an
according to the definitions in Section 2 it is both ap-minimizer and ani-minimizer of
first order. The Dini derivative atx0 in directionu is (f, g)′u(x0) = (0, |u|).

The sufficient conditionS ′
0,1 in Theorem 4.1 involves in fact the condition
(0,0) /∈ (f, g)′u(x0) for all u ∈ R
n \ {0} (13)
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(which is weaker than (12)). Indeed, if(y0, z0) = (0,0) ∈ (f, g)′u(x0), then the strong in
equality〈ξ0, y

0〉 + 〈η0, z0〉 > 0 for (ξ0, η0) ∈ C′ × K ′(x0) cannot be satisfied. Therefor
it seems natural, for the investigated implication, to apply condition (13), instead of c
tion (12). The next example shows however, that the conclusion of Theorem 5.2 do
hold, if we replace condition (12) with condition (13).

Example 5.2. Consider problem (1), withf :R → R
2, f (x) = (x2,−x2), C = R

2+,
g :R → R, g(x) = −|x|, K = R+ and letx0 = 0. Foru ∈ R \ {0} we havef ′

u(x0) = (0,0)

and(f, g)′u(x0) = (0,0;−|u|) �= 0. Therefore condition (13) holds, but (12) does not. F
ther g(x0) = 0, whenceK(x0) = R+. The constraint qualificationQ0,1(x

0) is satisfied,
sinceg(x0 + tu) = −t |u| ∈ −R+ for everyu ∈ R andt > 0. The pointx0 is ap-minimizer,
but not ani-minimizer of first order. Therefore, the conclusion of Theorem 5.2 does
hold.

In virtue of Example 5.2, to obtain a result similar to Theorem 5.2 under condition
we need a new approach toward the concepts ofi-minimizer andp-minimizer. For this pur-
pose, we relate to the constrained problem (1) and the feasible pointx0, the unconstraine
problem

min
C×K(x0)

(
f (x), g(x)

)
. (14)

Definition 5.1. We say thatx0 is ap-minimizer of orderk in sense II (or justp-minimizer
in sense II, whenk = 1) for the constrained problem (1) ifx0 is ap-minimizer of orderk
for the unconstrained problem (14).

Similarly, we say thatx0 is an isolated minimizer of orderk in sense II for the con
strained problem (1) ifx0 is an isolated minimizer of orderk for the unconstrained problem
(14).

We will preserve the names for the concepts used so far, but sometimes we will r
them as sense I concepts, saying, e.g.,p-minimizer in sense I, instead of justp-minimizer.

As an immediate application of Theorem 5.1 we get the following result.

Theorem 5.3. Letf andg beC0,1 functions and letx0 be ap-minimizer in senseII for the
constrained problem(1), which has property(13). Thenx0 is an i-minimizer of first order
in senseII for (1).

Next, under the hypotheses of Theorem 5.3, we show thatx0 is an i-minimizer in
sense I. We state also relations between sense I and sense II,i-minimizers andp-mini-
mizers.

Theorem 5.4. Letf andg beC0,1 functions and letx0 be ap-minimizer in senseII for the
constrained problem(1), which has property(13). Thenx0 is an i-minimizer of first order

in senseI for (1) and hencex0 is also ap-minimizer in senseI.
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Proof. According to Theorem 5.3,x0 is ani-minimizer of first order for the unconstraine
problem (14). The reversal of the Sufficient conditions part of Theorem 4.2 gives a c
tion, which coincides with the sufficient conditionS ′

0,1 of Theorem 4.1, whencex0 is an

i-minimizer in sense I for the constrained problem (1). Theorem 3.2 gives now thatx0 is
also ap-minimizer in sense I for (1). �

Thus, within the set of points satisfying (13), the set of thep-minimizers in sense II is
a subset of thep-minimizers in sense I. The reversal does not hold. In fact, the follow
reasoning shows, that in Example 5.2 the pointx0 is ap-minimizer in sense I, but it is no
ap-minimizer in sense II. Now, for the corresponding problem (14) we have

(f, g) :R → R
3,

(
f (x), g(x)

) = (
x2,−x2,−|x|)

andC × K(x0) = R
2+ × R+ = R

3+. Each pointx ∈ R is feasible and we havex2 � ϕ(x) �√
2x2, whencex0 is ani-minimizer of order 2 in sense II, but it is not ani-minimizer of

first order in sense II. Therefore, according to Theorem 5.3, in spite thatx0 is ap-minimizer
in sense I, it is not ap-minimizer in sense II (the assumption thatx0 is ap-minimizer in
sense II would imply thatx0 is ani-minimizer of first order in sense II).

Let us now make some comparison between Theorems 5.2 and 5.4. In spite that
tion (13) is more general than condition (12), Theorem 5.4 does not imply Theorem
Indeed, the assumption in Theorem 5.4 is thatx0 is ap-minimizer in sense II, which doe
not imply the more general assumption in Theorem 5.2 thatx0 is ap-minimizer in sense I

Next we compare thei-minimizers in senses I and II.

Theorem 5.5. Letf andg beC0,1 functions. Ifx0 is ani-minimizer of first order in senseII
for the constrained problem(1), thenx0 is an i-minimizer of first order in senseI for (1).
If the constraint qualificationQ0,1(x

0) holds, then also the converse is true.

Proof. Let x0 be ani-minimizer of first order in sense II. The reversal of the Suffici
conditions part of Theorem 4.2 gives the sufficient conditionS ′

0,1 of Theorem 4.1, whenc

x0 is ani-minimizer in sense I.
Conversely, letx0 be ani-minimizer of first order in sense I. Under the constra

qualificationQ0,1(x
0), we can apply the reversal of the Sufficient conditions par

Theorem 4.1, getting conditionS ′
0,1, which is identical with the sufficient conditions

Theorem 4.2 applied to problem (14), whencex0 is ani-minimizer in sense II. �
We conclude the paper with the following remark. The comparison of thep-minimizers

and thei-minimizers has been a motivation to “duplicate” the notions of optimality
troducing sense II concepts. As we have shown, sense II concepts are related to th
concepts of optimality and they are simpler to some extent, since they are defined t
an unconstrained problem. The complexity of the vector optimization problems has c
the appearance of many notions of optimality. Each of them stresses a particular qu
the minimizer. Thep-minimizers enjoy stability properties as it is shown in Benson
Morin [29], Podinovskiy and Nogin [30] and Miglierina and Molho [18]. For scalar pr

lems Auslender [5] shows that the isolated minimizers also obey some stability properties.
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The study of the stability properties of thep-minimizers andi-minimizers of orderk on one
hand, and of sense I and sense II concepts on the other hand, is in our opinion an i
ing subject for research. One can observe here a qualitative advantage of sense II c
which gives for them an additional “right for existence.” Namely, sense Ip-minimizers and
i-minimizers obey stability with respect to the objective data, while sense II concepts
stability with respect to both objective and constraint data. We intend to demonstra
in a separate issue.

References

[1] A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Optim. 42 (2003) 1071–1086.
[2] I. Ginchev, A. Guerraggio, M. Rocca, From scalar to vector optimization, Appl. Math., in press.
[3] I. Ginchev, A. Guerraggio, M. Rocca, First-order conditions forC0,1 constrained vector optimization, in

F. Giannessi, A. Maugeri (Eds.), Variational Analysis and Applications, Proc. Erice, June 20–July 1
Kluwer Academic, Dordrecht, 2004, in press.

[4] I. Ginchev, Higher order optimality conditions in nonsmooth vector optimization, in: A. Cambini, B.K. D
L. Martein (Eds.), Generalized Convexity, Generalized Monotonicity, Optimality Conditions and Dua
Scalar and Vector Optimization, 2003, J. Stat. Manag. Syst. 5 (2002) 321–339.

[5] A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J. Control
tim. 22 (1984) 239–254.

[6] M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions,
J. Control Optim. 24 (1986) 1044–1049.

[7] D.E. Ward, Characterizations of strict local minima and necessary conditions for weak sharp minima
tim. Theory Appl. 80 (1994) 551–571.

[8] B. Jiménez, Strict efficiency in vector optimization, J. Math. Anal. Appl. 265 (2002) 264–284.
[9] B. Jiménez, Strict minimality conditions in nondifferentiable multiobjective programming, J. Optim. Th

Appl. 116 (2003) 99–116.
[10] B. Jiménez, V. Novo, First and second order conditions for strict minimality in nonsmooth vector opt

tion, J. Math. Anal. Appl. 284 (2003) 496–510.
[11] M.I. Henig, Proper efficiency with respect to cones, J. Optim. Theory Appl. 36 (1982) 387–407.
[12] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970.
[13] J.-B. Hiriart-Urruty, New concepts in nondifferentiable programming, Bull. Soc. Math. France 60 (

57–85.
[14] J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach

Math. Oper. Res. 4 (1979) 79–97.
[15] M. Ciligot-Travain, On Lagrange–Kuhn–Tucker multipliers for Pareto optimization problems, Nu

Funct. Anal. Optim. 15 (1994) 689–693.
[16] T. Amahroq, A. Taa, On Lagrange–Kuhn–Tucker multipliers for multiobjective optimization problems

timization 41 (1997) 159–172.
[17] E. Miglierina, Characterization of solutions of multiobjective optimization problems, Rend. Circ.

Palermo 50 (2001) 153–164.
[18] E. Miglierina, E. Molho, Scalarization and its stability in vector optimization, J. Optim. Theory Appl.

(2002) 657–670.
[19] I. Ginchev, A. Hoffmann, Approximation of set-valued functions by single-valued one, Discuss. Math

ferential Incl. Control Optim. 22 (2002) 33–66.
[20] G.P. Crespi, I. Ginchev, M. Rocca, First-order optimality conditions in set-valued optimization, sub

for publication.
[21] E.M. Bednarczuk, A note of lower semicontinuity of minimal points, Nonlinear Anal. 50 (2002) 285–2
[22] L. Liu, The second-order conditions of nondominated solutions forC1,1 generalized multiobjective pro
gramming, J. Systems Sci. Mat. Sci. 2 (1991) 128–138.



368 I. Ginchev et al. / J. Math. Anal. Appl. 309 (2005) 353–368

ul-

ec 14

998)

995.

ppl.

1982
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