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Abstract

We consider the vector optimization problem @ifi(x), g(x) € —K, wheref :R" — R™ and
¢:R" > R? arec?1 (i.e. locally Lipschitz) functions and’ € R” andK  R” are closed convex
cones. We give several notions of solution (efficiency concepts), among them the notion of properly
efficient point (-minimizer) of orderk and the notion of isolated minimizer of order We show
that each isolated minimizer of ordee= 1 is a p-minimizer of orderk. The possible reversal of this
statement in the cage= 1 is studied through first order necessary and sufficient conditions in terms
of Dini derivatives. Observing that the optimality conditions for the constrained problem coincide
with those for a suitable unconstrained problem, we introduce sense | solutions (those of the initial
constrained problem) and sense Il solutions (those of the unconstrained problem). Further, we obtain
relations between sense | and sense Il isolated minimizerg-amithimizers.
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1. Introduction

In this paper we consider the vector optimization problem
n}!nf(x)v g(x)e_Kv (1)

where f:R" — R™, ¢:R" — RP. Heren, m and p are positive integers an@ C R™
and K C R? are closed convex cones. Often in the literature the consideration of vector
optimization problems is restricted to the case whéris a closed convex pointed cone
with nonempty interior. For the investigations of this paper both conditidopsinted and

with nonempty interior are too restrictive (they need not be satisfied in problem (14) below)
and we prefer to get rid of them at the beginning.

Usually the solutions of problem (1) are called points of efficiency. We prefer, as in
scalar optimization, to call them minimizers.

The solutions of a vector problem are often studied through a scalarization, i.e. reduc-
ing the vector problem to an equivalent scalar problem. A well-known approach is linear
scalarization, but several other ad hoc scalarization techniques have been used. It has been
shown [1-3] that more restrictive definitions of minimality for the considered scalarized
problem correspond to more restrictive notions of efficiency. In this paper we consider a
particular kind of scalarization which makes use of the so called “oriented distance” from a
point to a set. In terms of oriented distance the notion of isolated minimizaimimizer)
of a given order is introduced in [4], extending to the vector case a notion known in scalar
optimization [5-7]. Under the name of strict minimizer the same concept appears in [8-10].
In this paper we prefer the original name of isolated minimizer given by Auslender [5]. We
observe in Section 2, that the isolated minimizers for the vector problem are isolated mini-
mizers of an appropriate scalar problem. In this work we are interested in the links between
isolated minimizers of the scalarized problem and properly efficient pgintsifiimizers)
of the constrained problem (1). We will assume tifaand g are of classC%, i.e. lo-
cally Lipschitz functions and for such functions we apply some first-order necessary and
sufficient optimality conditions to clarify the relations between these concepts.

Observing that the optimality conditions of the constrained problem coincide with those
of a suitable unconstrained problem, we introduce sense | solutions (those of the initial con-
strained problem) and sense Il solutions (those of the unconstrained problem). We establish
some relations between sense | and sengertinimizers and -minimizers, which give
also a motivation for the “duplication” of the notions of solution (one prefers probably to
deal with the simpler unconstrained problem instead of the constrained one).

The outline of the paper is the following. Section 2 is devoted to notions of optimality
for problem (1) and their scalarization. Section 3 generalizes the notiopahaimizer
to a p-minimizer of orderk and starts the investigations of the links between isolated min-
imizers and proper efficiency by showing (Theorems 3.1 and 3.2) that @adtimizer is
a p-minimizer. The possible reversal of this statement in the £asé is the main subject
of investigation in the paper. In Section 4 with referenc€¥d" functions, we recall some
first order necessary and sufficient optimality conditions in terms of Dini derivatives, ob-
tained in [3]. Section 5 discusses a reversal of Theorem 3.2, shows that the given optimality
conditions are important to solve this problem and they lead to two approaches toward ef-
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ficiency concepts, defining sense | and sense Il concepts. The relation between sense | and
sense lk-minimizers andp-minimizers is investigated.

2. Vector optimality conceptsand scalar characterizations

We denote by - || and (-, -) the Euclidean norm and the scalar product in the consid-
ered finite-dimensional spaces. The open unit ball is denoteB.lyrom the context it
should be clear to which spaces these notations are applied. The results of the paper can be
immediately extended to finite-dimensional real Banach spaces.

There are different concepts of solution for problem (1). In the following definitions
we assume that the considered poifitis feasible, i.eg(x%) € —K (equivalentlyx® e
¢ Y(—K)). The definitions below are given in a local sense. We omit this specification in
the text.

Definition 2.1. (i) The feasible poink? is said to be weakly efficient (efficient), if there
is a neighbourhood of x0, such that ift € U N g~ 1(—K) then f(x) — f(x%) ¢ —intC
(respectivelyf (x) — f(x%) ¢ —(C \ {0})).

(i) The feasible poink? is said to be properly efficient if there exist a closed (but not
necessarily convex) cor@C R”, with C \ {0} C intC and a neighbourhood of x°, such
thatifx € U N g~ 1(—K), thenf(x) — f(x%) ¢ —intC.

In this paper the weakly efficient, the efficient and the properly efficient points of
problem (1) are called respectively-minimizers,e-minimizers andp-minimizers. The
following chain of implications is known:

p-minimizer = e-minimizer = w-minimizer.

Remark 2.1. If we assume thaf is a pointed cone, in virtue of Definition 2.1amini-

mizer can be defined in the following way: the feasible paifitis said to be properly
efficient for the constrained problem (1) if there exists a closed convex€psach that

C\ {0} CintC andx® is weakly efficient for the problem mif (x), g(x) € —K. This is

the commonly accepted definition of a properly efficient point (see, e.g., Henig [11]). The
latter however does not work with non-pointed cones, hence it is too restrictive with regard
to our hypotheses.

Definition 2.2. The feasible poink® is said a strong-minimizer if there exists a neigh-
borhoodU of x9, such thatf (x) — f(x%) ¢ —C, forx e U \ {x°) N g (- K).

Obviously, every strong-minimizer ise-minimizer.
The unconstrained problem
mcinf(x), x eR", (2)

is a particular case of problem (1) and the defined notions of optimality concern also this
problem.
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For the coneV C RX its positive polar con@/’ is defined byM’ = {¢ e R¥ | (¢, ¢) >0
for all € M}. The coneM’ is closed and convex and it is well known thdt’ := (M’) =
clcoM; see, e.g., [12, Chapter Ill, 815]. In particular, for a closed convex aomee have
M=M"={pecRF|(¢,¢)>0forall¢ e M'}.

If ¢ € —clcoM, then(¢,¢) <Oforallc e M'. We setM’'(¢p) ={¢ e M’ | (¢, ¢) = 0}.
ThenM’(¢) is a closed convex cone aMi (¢) € M’. Consequently its positive polar cone
M(¢) = (M’ (¢)) is a closed convex cond/ C M(¢) and its positive polar cone satis-
fies (M (¢)) = M'(¢). In this paper we apply this notation fof = K and¢ = —g(x9).
Then we write for shork’ (x°) instead ofK’(—g(x%)) (and call this cone the index set of
problem (1) at®) and K (x%) instead ofK (—g(x9)).

Next results characterize the solutions of problem (1) in terms of a suitable scalarization.

Proposition 2.1 [3]. Define
o) =max{(&, f(x) — fF(O) & e, EII=1}. 3)

The feasible point® € R” is aw-minimizer for problentd), if and only ifx? is a minimizer
for the scalar problem

minp(x), gx)e—K. 4)

Proposition 2.2[3]. The feasible point® is a stronge-minimizer of problen(1) if and only
if x is a strong minimizer of problei@), i.e. if and only if there exists a neighborhobd
of x0, such thatp(x) — ¢(x%) > Oforall x € (U \ {x°})) N g~ 1(—K).

Recall that the feasible poinf is said to be an isolated minimizer of order 0 of
problem (4) when there exists a constant 0 such thatp(x) > ¢(x°) + A|x — x9| /% for
all x e U N g~1(—K). The concept of an isolated minimizer for scalar problems has been
popularized by Auslender [5]. It is natural to introduce a similar concept of optimality for
the vector problem (1).

Definition 2.3. We say that the feasible poir? is an isolated minimizer {minimizer) of
orderk for the vector problem (1) if it is an isolated minimizer of ordefor the scalar
problem (4).

To interpret geometrically the property thet is a minimizer of problem (1) of certain
type, we introduce the so called oriented distance. Given d seiR, then the distance
from y € R¥ to A is given byd(y, A) = inf{|la — y|| | a € A}. This definition works also
for A = ¢ puttingd(y, ¥) = inf@ = +o00. The oriented distance fromto A is defined by
D(y, A) =d(y, A) —d(y, RF\ A). This definition givesD(y, A) = +o00 whenA = ¢ and
D(y, A) = —oo whenA = Rk,

FunctionD is introduced in Hiriart-Urruty [13,14] and is used later in Ciligot-Travain
[15], Amahrog and Taa [16], Miglierina [17], Miglierina and Molho [18]. Zaffaroni [1]
gives different notions of efficiency and uses the functiorfor their scalarization and
comparison. Ginchev and Hoffmann [19] use the oriented distance to study approximation
of set-valued functions by single-valued ones and in the case of a convexCcshew
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the representatio® (y, —C) = SUR¢ =1 ¢’ (€, ¥). Turn attention that this formula works
also in the case of the improper conés= {0} (thenD(y, —C) = supg=1(§, y) = lI¥)
andC =R"™ (thenD(y, —C) = SUR.¢4(£, y) = —00).
In particular functiony in (4) is expressed by(x) = D(f (x) — f(x°), —C). Proposi-

tions 2.1 and 2.2 are easily reformulated in terms of the oriented distance, namely:

x®w-minimizer < D(f(x)— f(x%,-C)>0 forxeUng *(-K),

x0 stronge-minimizer &

D(f(x)— f(x9,-C)>0 forxe(U\{x%)Nngt(—K).

The definition ofi-minimizer gives

x% i-minimizer of ordeik &

D(f(x) — f(x%),—C) = Alx —x°|F forx e UNg 1 (~K).

We see that am-minimizers is a strong-minimizer. In the next section we explore
the links between-minimizers andp-minimizers. The next proposition has an immediate
proof and we omit it.

Proposition 2.3. The pointx? is ani-minimizer of orderk for problem(1) if and only if
there exists a constant > 0 and a neighborhood’ of x9, such that

(f)+C)NB(f0), Alx —x°1%) =0, VxeU\(x% (5)
(here B(f(x9), §) denotes the open ball with center ji{x®) and radiuss).
Remark 2.2. Points satisfying (5) are called strict efficient points of orklén [8—10].
Remark 2.3. In the important cas€ = IR’} it can be shown (see [2,3]) that statements like
those of Propositions 2.1 and 2.2 remain true if functios substituted by

o(x) = Maxici<n (fi (x) — £ (x9). (6)
In fact, there exist constands § > 0 such thatvg(x) < @o(x) < Bo(x).

3. Isolated minimizersand proper efficiency

Applying the oriented distance function we can generalize the concept of proper effi-
ciency. For giverk > 1 anda > 0 we define the set

C*@)={yeR"|D(.C) <alyl*}.
It is easily seen that wheln= 1 the seiC(a) is a closed cone (not necessarily convex;
see, e.g., [20]).

Definition 3.1. We say that the feasible poir? is a properly efficient pointg-minimizer)
of orderk > 1 for problem (1) if there exist a neighbourhobidof x° and a constant > 0
such thatift e U N g~ 1(—=K) then f (x) — f(x0) ¢ —intC*(a).
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The previous definition cannot be extended mechanically to the case© 1. In this
case, for arbitrary: > 0 and all sufficiently smal||y|| we would haveD(y, C) < |y <
ally||¥. Therefore, assuming is continuous, for: sufficiently close tax?, the inclusion
f(x) — f(x% ¢ —intC*(a) could not hold.

Proposition 3.1. The pointx? is a p-minimizer for problengl) if and only if it is ap-mini-
mizer of orderl.

Proof. If x9is ap-minimizer of order 1 then satisfies Definition 2.1 with respect to the
coneC = Cl(a), hencex® is a p-minimizer.

Conversely, lei® be ap-minimizer andC be the cone from Definition 2.1. Since the
setF ={y e C ||yl =1} is compact and d|SJomt from the closed &\ C, therefore
a :=dist(F, R"\ th) > 0. Now obV|oustC (a) € C. Sincex e U N g YH-K) |mpI|es
fx) — f(x% ¢ —intC and—intC > —intCl(a), we getf(x) — f(x°) ¢ —intCl(a).
Thereforex? is a p-minimizer of order 1. O

Definition 3.1 can be equivalently rephrased according to the following results.

Proposition 3.2. The feasible point? is a p-minimizer of order for problem(1) if and

only if there exist a neighbourhodd of x® and a constant > 0 such that for alls > 0 and

all x e U N g~ 1(—K) satisfying|| f(x) — f(xO)| > ¢ it holds D(f(x) — f(x0), —C) >
k

ag”.

Proof. Letx? be ap-minimizer of orderk. Then there exist a neighbourhobdof x° and
a constant > 0 such that for alk € U N g~1(—K) it holds f(x) — f(x°) ¢ —intC*(a).
Taking into account the definition @ (), we obtainD(f (x) — f(x°), —C) > al| f (x) —
SOOI Then| f(x) — f(x)] > & givesD(f (x) — f(x9), =C) > ag*.

Conversely, lek? satisfy the given condition. In particular, if we fixe U N g~1(—K)
in advance, the inequalityf (x) — £ (x%)|| > ¢ is satisfied foe = || f (x) — f (x°)||. Hence,
we getD(f(x) — f(x9), —=C) > all f(x) — f(x%|¥ which can be rephrased gx) —
Ff(x9 ¢ —intCk). O

Proposition 3.3. The feasible point? is a p-minimizer of orderk > 1 for problem(1) if
and only if there exist a neighbourhoad of x° and a constant > 0 such that for all
¢ > 0it holds

(f(UNg X =K)) - f(x%) N (ae*B — C) CeB. (7)

Proof. Let x° be ap-minimizer of orderk and let the neighbourhood of x° and the
constanta > 0 be those from Proposition 3.2. We show that (7) holds foreall 0.
Assume, on the contrary, that there exists U N g~1(—K) such thatf (x) — f(x% e
askB — C, or equivalentlyD(f(x) — f(x09), —C) < a&*, but f(x) — f(x°) ¢ ¢B, or
equivalently|| 7 (x) — f(x%]| > e. This inequality, according to Proposition 3.2 implies
D(f(x) — f(x9), —C) > ae*, a contradiction.

Assume now that fox? there exist a neighbourhodd and a constant > 0 for which
(7) holds. We show that also the condition in Proposition 3.2 is satisfied. Assume, on the
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contrary, that there exists> 0 andx € U N g~ 1(—K) satisfying| f (x) — f(x%)| > ¢, but
D(f(x) — f(x9), =C) < aek. This means thaf (x) — f(x%) belongs to the left-hand side
of (7) but not to the right-hand side, a contradictiom

As far as we know, the definition of proper efficiency of order 1 is a new one. Let
us however mention that from Proposition 3.3, it follows thamninimizers of ordek are
strictly efficient points in the sense of Bednarczuk [21].

When £ is aC%! function, the following relation holds betweéminimizers of ordek
and p-minimizers of ordek.

Theorem 3.1. Let f be of classC®?. If a pointx? is ani-minimizer of orderk > 1 for
problem(1) thenx® is a p-minimizer of ordetk.

Proof. Assume, on the contrary, thaf is ani-minimizer of orderk but not p-minimizer
of orderk. Let f be Lipschitz with constank in x® + r ¢l B. Take sequencet, — 0+

ande, — O+ and consider the sets*(¢,). Sincex? is not a p-minimizer of orderk it

follows that there exists a sequence of feasible paihts (x°+8, B)Ng~1(—K) such that
f(x") — f(x9 e —intC*(e,), and in particularf (x*) — £ (x%) # 0. From the definition
of Ck(e,) we get

D(f(x") = f(x9), —=C) <&, F(x") — FO| < e LFIx” — xO)IF

which contradicts ta® i-minimizer of orderk. O
We formulate separately the particular case obtained by Theorem 3 Har

Theorem 3.2. Let f be of clas<C?1. If x0 is ani-minimizer of first order for problerfi)
thenx? is a p-minimizer.

Next Examples 3.1 and 3.2 show respectively that the Lipschitz assumption in Theo-
rems 3.1 and 3.2 cannot be dropped and the result of Theorems 3.1 and 3.2 in general
cannot be reverted. As for the used notations, let us say that we prefer to denote the fixed
value of the variable by x® whenx is vector-valued (themi0 stands for theéth coordinate
of x9) andxg whenx is real-valued.

Example 3.1. Let f:R — R?, g:R — R, be defined asf (x) = (V/Ix]), —&Ix]) and
gx)=x.LetC= Ri and K = R,. The pointxg = 0 is ani-minimizer of first order,
but not ap-minimizer for problem (1).

From f(x) = f(—x) we see that the conditigg(x) = x < 0 does not introduce changes
on the efficiency properties ap = 0 for the constrained problem (1) in comparison with
the unconstrained problem (2). It is obvious from the definition #fas not a p-mini-
mizer. SinceD(f (x) — f(xo), —Ri) > /Ix] > |x| for |x| < 1, the pointxg is ani-mini-
mizeroolf first order. Thus, the conclusion of Theorem 3.2 does not hold, but obvigusly
notC*-.
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Example3.2. (i) Let f :R — R?, g:R — R be defined ag (x) = (x?, —x?) andg(x) = x.
Let C =R2 andK = R;. Hence,f andg are of clasx%1, xo = 0 is ap-minimizer, but
xo is not ani-minimizer of first order.

(i) Consider the function f:R — R2, f(x) = (fi(x), f2(x)), with fi(x) =
—x2sint —xZ and fo(x) = [f1(x)1?, if x # 0, andf1(0) = f2(0) = 0. The pointxg =0 is
a p-minimizer of any ordek > 2, but there exists no positive numbersuch thatyg is an
i-minimizer of orderk.

For Example 3.2(i), as an application of Proposition 3.2 we observe that

D(f(x) = f(x0), —C) = D((x?, —x?), ~R%) > x* = %2 |(x2, —x?)|

= 25w - feo)
—ﬁfx f(xo) |l

Therefore f(x) — f(xo) ¢ —intC1(1/4/2), whencexg is a p-minimizer. On the other
hand,xo is not ani-minimizer of first order for problem (1), since is not an isolated
minimizer of first order for the scalar problepgx) — min, x < 0, which easily seen from
X2 <p(x) <V2x2

For Example 3.2(ii), we observe that, for evéry 2, we have
k/2

D(f(x) = f(x0), —C) > o) = [ A = | AW [ ([ A]* +2)
= |f - oo,

for x in a suitable neighbourhood af. Hence, f (x) — f(xo) ¢ —intC*(1), andxg is a
p-minimizer of orderk > 2. On the other hand, it is easily seen thats not an:-mini-
mizer of any ordek > 0.

In the sequel we consider onlyminimizers of first order and for this reason sometimes
we call them simply-minimizers. Similarly, we consider only-minimizers of first order,
which as we know are jugi-minimizers.

4. Dini derivatives and first-order optimality conditions

Problem (1) has been investigated in [3] under the hypothesigthat g are of class
€1, The authors obtained optimality conditions in terms of the first-order Dini directional
derivative.

Given aC%! function @ : R" — R¥ we define the Dini directional derivative (we use
to say just Dini derivative®/, (x°) of @ atx? in directionu € R”, as the set of the cluster
points of (1/£)(® (x° + ru) — @ (x%)) asr — 0+, that is as the Kuratowski limit

@/ (x% =Lim sup}(qﬁ(xo +tu) — &(x9)).
-0+ 1

It can be shown (see, e.g., [3]) thatdf is of classC®?, then®/ (x°) is a nonempty
compact subset d&*, whateven € R”.
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In connection with problem (1) we deal with the Dini directional derivative of the
function @ :R" — R™*?, &(x) = (f(x), g(x)) and then we use to Writ@;(xo) =
(f, ), (x9). If at least one of the derivativeg/ (x%) and g/ (x°) is a singleton, then
(f, 8), (9 = (f1(x9), g/ (x9)). Let us turn attention that alwayg, g),,(x°) € f/(x%) x
g (x9), but in general these two sets do not coincide.

Theorem 4.1 gives first-order optimality conditions in terms of the Dini derivative and
is useful in clarifying the links betweanRminimizers andp-minimizers. It uses the condi-
tions denoted below by ; andS 4, in which all cluster points of the differential quotient

of (f, g) play a role. This justifies the usage of the set-valued Dini deriva;fyg);(xo).
The set-valuedness appears in fact when in problem (1) we consider arbitrary funftions
andg of classC%1. When the considerations are restricted to directionally differentiable
functions f and g, the Dini derivative is a singleton and is expressed through the direc-
tional derivative, i.e(f, g)/ (x®) = (f'(x% u), ¢’(x%, u)). Let us mention that the use of
set-valued derivatives (of first and second order) in vector optimization is known in the
literature (see, e.g., [22-25]). The importance of set-valued derivatives for vector functions
is stressed also in Rockafellar and Wets [26, p. 327], where the authors define the notion
of graphical derivative. In opposite to the introduced Dini derivative, the graphical deriva-
tive involves in its definition also a variation in the direction (compare with formula 8.20,
p. 327 in [26]). In a simplified setting Demyanov and Rubinov [27] apply the name of Dini
derivative when a variation in the direction does not appear and of Hadamard derivative
otherwise. Following this convention we use the name of Dini derivative for the notion
defined in this section, while the graphical derivative in [26] is in fact an Hadamard type
derivative.

In the formulation of Theorem 4.1 we use the following constraint qualification, which
is a generalization fo€ %1 constraints of the well-known Kuhn—Tucker constraint qualifi-
cation (compare with Mangasarian [28, p. 102]):

. 1
Q01(x%:  ifgx%e-kK andg(g(x‘) + 1% — g(x9) = 2 —K (%)
thendu* — 1% ko e N: Vk > ko: g(x0 + nu®) € =K.

Theorem 4.1[3]. Let £, g be C%1 functions.
Necessary conditionset x® be aw-minimizer for problen(1). Then for each: € R”
the following condition is satisfied

b YO e(f 9, 3E% Y e x K"
E%n0#0,0, (% ex®)=0 and (%% + %% >0

Sufficient conditionsLet x? € R” and suppose that for eache R” \ {0} the following
condition is satisfied

Soxt Y020 e (£, 3E% %) e x K"
En%#£0,0, % ex®)=0 and %%+ °:% > 0.

Thenx® is ani-minimizer of first order for problerti).
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Conversely, ifx0 is an i-minimizer of first order for problengl) and the constraint
qualification Qo‘l(xo) holds, then conditior;i;(’l1 is satisfied.

Theorem 4.1 is valid and simplifies in an obvious way when instead of (1) we consider
the unconstrained problem (2). Let us underline that in this case the reversal of the sufficient
conditions does not require the use of constraint qualifications.

Theorem 4.2. Necessary conditionset f be aCc%1 function. Letx? be aw-minimizer of
problem(2). Then for eactx € R”" the following condition is satisfied
vyle £/(x%: 3e%ec”: £°%0 and (£°,y%) >0
Sufficient conditionsLet x° € R” and suppose that for eache R” \ {0} the following
condition is satisfied
vyle f/(x%: 3% s £9°+£0 and (£°,y% >0. (8)

Thenx? is ani-minimizer of first order for problern(2). Conversely, i is ani-mini-
mizer of first order for problen2) then condition(8) is satisfied.

As an application of Theorem 4.1 we get the next Proposition 4.1.

Proposition 4.1. Let f andg be %1 functions. If for some pai£®, n%) € (C’ x K'(x%))\
{(0, 0)}, the feasible point? is an isolated minimizer of first order for the scalar function
y () = (&% f£(0))+(n° g(x), ©)

thenx? is a p-minimizer of(1).

Proof. Letu e R"\ {0} and let(y°, z%) € (£, g)/, (x%). Hence, for some sequenge—> 0+,

we have
0 0 0 0
i SO+t — f . + fxu) —
yo l (x «U) (x )’ Z0 l gx ) — g(x )
k—+o0 tr k—+00 173

Sincex? is an isolated minimizer of first order for the scalar function (9), there exists a
numberA > 0, such that (x® + rru) — y (x%) > Az, whence

1 1
<s°, ;(f(xO + 1) — f(xo))> + <n°, ;(g(xO + tgu) — g(xo))> >A>0.
Passing to the limit we ge€®, y%) + (3%, 2% > A > 0. Now the Sufficient condition in
Theorem 4.1 gives that® is ani-minimizer of first order for problem (1), and according
to Theorem 3.2 it is also a-minimizer. O

5. Two approachestoward proper efficiency

It is natural to put the question, under what condition Theorem 3.2 admits a reversal,
that is under what conditiar® p-minimizer impliesx® i-minimizer. Example 3.2(i) shows
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that in general such a reversal does not hold. To answer the posed question we consider
first the unconstrained problem (2). Then a crucial role plays the propQWLijo).

Theorem 5.1. Let f be a locally Lipschitz function and lef® be a p-minimizer for the
unconstrained probler?), which has the propert9 ¢ fu’(xo) for all u € R" \ {0}. Then
x¥ is ani-minimizer of first order fo2).

Proof. We prove separately the particular case witeis a pointed cone, in order to
demonstrate an application of Theorem 4.2.

The caseC pointed.According to Remark 2.1, we may assume that the oGrie
Definition 2.1 is closed and convex, such thatGrb C \ {0} andx? is w-minimizer for
the problem mip f(x), x € R". According to the Necessary conditions of Theorem 4.2,
this means that for eadne R” \ {0} andy° € f/(x), there exist£® € C’ \ {0}, such
that (£, y%) > 0. This inequality, together with® = 0 (implied by property G f.(x?)),
shows thaty® ¢ —intC U {0}. SinceC < intC U {0}, we see that® ¢ —C. This implies,
that there exist§® € C’, such that£®, y%) > 0. According to the reversal of the Sufficient
conditions of Theorem 4.2, the point? is ani-minimizer of first order.

The general cas@ he general case assumes that the ¢omeonly closed and convex.

Assume on the contrary thaf is a p-minimizer for the unconstrained problem (2), but
it is not ani-minimizer of first order. Choose a monotone decreasing sequgnee0+.
Hence, there exist sequenags> 0+ andu*, ||u*|| = 1, such that

D(f 2+ th) — f(x0), —C) = Snggx(s, GO+ by — F(xO) < e, (10)
C/

wherel'cr = {& € C' | ||€]| = 1}. We may assume that8¢, < r and f is Lipschitz with
constantL in x®+ r ¢l B. Passing to a subsequence, we may assume also‘thatu®,

||| = 1, and thaty® = lim; y%k, wherey%* = (1/1)(f (x° + t,u®) — £ (x©)). From the
definition of the Dini derivative we have® € £/ (x% and from the assumptiong # 0.

We show thaty* — y9, wherey* = (1/1)(f (x° + rru*) — £(x9)). This follows from the
estimation

1
lIy* =0l < - | £ GO+ by — £ 0 + @] + 105 = ¥O)

< LluF = u®) + 1y%% — 0.
Let nowé& € I'cr. Then

1
<s,yk>=g<s,.f(x°+tku - faY)< = max(s FEO+nuk) — £(x0)

—D(f(xo—i—tkuk) — f(xo), —C) < %sktk = &.
k

Passing to a limit withk — co we get (£, y%) < 0 for arbitrary £ € I'cr, whence
D(y°, —C) = maxer,, (§,y%) <O0.

On the other hand is a p-minimizer, which according to Definition 3.1 and Proposi-
tion 3.1 means that there exists a constasnt0, such that for sufficiently largeit holds
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P+ u) — F(x% ¢ —intcla)

%D(f(xo + k) — f(x0),-C) = a

1
E(f(xo + k) — f(x9) H

Applying the positive homogeneity of the oriented distance and taking the linitaso
we get the contradiction

0= DH° —C) = aly°| >0, (11)

which shows that? is ani-minimizer. O
Now we generalize Theorem 5.1 for the constrained problem.

Theorem 5.2. Let f and g be C%! functions and let® be a p-minimizer for the con-
strained problen{l), which has the property

0% ef, 9% and e —-Kkx% implies y°0. (12)

Thenx® is ani-minimizer of first order fol(1).

Proof. Assume on the contrary thaf is a p-minimizer for the constrained problem
(1) but it is not ani-minimizer. Choose a monotone decreasing sequepce 0+.

By assumption, there exist sequenags— 0+ and u*, ||u¥| = 1, such thatg(x® +
nu*) e —K and (10) holds. We may assume thakQ; < r and f and g are lo-
cally Lipschitz with constant. in x + rcl B. Passing to a subsequence we may as-
sume also that* — u9, ||| = 1, and thaty® = lim; y®* and z® = lim; z%*. Here
YO = /) (f (0 + 1) — £(x0)) and similarlyz®* = (1/5) (g (x° + ) — g(x%)).
Obviously (¥°, %) e (/, g);o(xo) and similarly to the general case proof of Theorem 5.1
we havey® = lim; y* andz® = lim; z*, wherey* = (1/1)(f (x® + nu*) — £(x0) and
= 1/1) (g (x% + 1) — g(x9)). Furtherz® e —K (x9), which is true since € K’ (x9%)
implies (n, 25) = (1/%) (n, g(x° + ru®)) < 0. Therefore condition (12) giveg +# 0. Re-
peating now the general case proof of Theorem 5.1, we get the contradictory chain of
inequalities (11), which proves the thesisa

As we see from Theorems 5.1 and 5.2, the conditio;tlj;(xo) plays an important
role for the implicationx® p-minimizer implies that° is an i-minimizer of first order
However, as next Example 5.1 shows, in the constrained case this condition is not necessary
for this implication (while it is in the unconstrained case as Theorem 4.2 shows).

Example 5.1. Consider the constrained problem (1) withR — R, f(x) = —x?, C =
R4, g:R - R, g(x) = |x|, K = R4. The pointxg = 0 is the only feasible point and
according to the definitions in Section 2 it is botlpaminimizer and an-minimizer of
first order. The Dini derivative atg in directionu is (f, g)!,(x0) = (O, |u|).

The sufficient conditionb“(’) 1 in Theorem 4.1 involves in fact the condition

0,0) ¢ (f,2),(x% forallu eR"\ {0} (13)
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(which is weaker than (12)). Indeed,(i#°, z°) = (0, 0) € (f, g),,(x®), then the strong in-
equality (9, y°) + (19, z0) > 0 for (¢9, n°) € €’ x K’ (x%) cannot be satisfied. Therefore,

it seems natural, for the investigated implication, to apply condition (13), instead of condi-
tion (12). The next example shows however, that the conclusion of Theorem 5.2 does not
hold, if we replace condition (12) with condition (13).

Example 5.2. Consider problem (1), withf:R — R?, f(x) = (x2, —x?), C = RZ2,

g R—R, g(x) =—|x|, K =R, and letxo = 0. Foru € R \ {0} we havef; (xo) = (0, 0)
and(f, g),, (x9) = (0, 0; —|u|) # 0. Therefore condition (13) holds, but (12) does not. Fur-
ther g(xo) = 0, whencek (xg) = R,.. The constraint qualificatio@o,l(xo) is satisfied,
sinceg (xo+tu) = —t|u| € =R for everyu € R andt > 0. The pointxg is a p-minimizer,

but not ani-minimizer of first order. Therefore, the conclusion of Theorem 5.2 does not
hold.

In virtue of Example 5.2, to obtain a result similar to Theorem 5.2 under condition (13)
we need a new approach toward the conceptswihimizer andp-minimizer. For this pur-
pose, we relate to the constrained problem (1) and the feasiblex¥oitiite unconstrained
problem

min )(f(x),g(x)). (14)

CxK(x0

Definition 5.1. We say thai? is a p-minimizer of orderk in sense Il (or jusp-minimizer
in sense Il, whert = 1) for the constrained problem (1)4f is a p-minimizer of orderk
for the unconstrained problem (14).

Similarly, we say that? is an isolated minimizer of ordér in sense Il for the con-
strained problem (1) it© is an isolated minimizer of ordérfor the unconstrained problem
(14).

We will preserve the names for the concepts used so far, but sometimes we will refer to
them as sense | concepts, saying, ezgminimizer in sense |, instead of jugtminimizer.
As an immediate application of Theorem 5.1 we get the following result.

Theorem 5.3. Let f andg be €% functions and lex® be ap-minimizer in sens# for the
constrained problenil), which has property13). Thenx? is ani-minimizer of first order
in sensdl for (1).

Next, under the hypotheses of Theorem 5.3, we show tfds ani-minimizer in
sense |. We state also relations between sense | and semgaitimizers andp-mini-
mizers.

Theorem 5.4. Let f andg be C%1 functions and lex® be ap-minimizer in sens# for the
constrained problenil), which has property13). Thenx? is ani-minimizer of first order
in sensd for (1) and hence? is also ap-minimizer in sensé
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Proof. According to Theorem 5.3, is ani-minimizer of first order for the unconstrained
problem (14). The reversal of the Sufficient conditions part of Theorem 4.2 gives a condi-
tion, which coincides with the sufficient conditic)‘j’jl1 of Theorem 4.1, whence® is an
i-minimizer in sense | for the constrained problem (1). Theorem 3.2 gives now&hisit

also ap-minimizer in sense | for (1). O

Thus, within the set of points satisfying (13), the set of faminimizers in sense Il is
a subset of thep-minimizers in sense I. The reversal does not hold. In fact, the following
reasoning shows, that in Example 5.2 the paiits a p-minimizer in sense |, but it is not
a p-minimizer in sense Il. Now, for the corresponding problem (14) we have

(Lo R=>R  (f(r),g() = (x% —x2 —|x])

andC x K (xo) = RZ x Ry =R3. Each pointx € R is feasible and we have? < ¢(x) <
V2x2, whencexg is ani-minimizer of order 2 in sense Il, but it is not asminimizer of
first order in sense Il. Therefore, according to Theorem 5.3, in spitedtigt p-minimizer
in sense |, it is not @-minimizer in sense Il (the assumption thatis a p-minimizer in
sense Il would imply thatg is ani-minimizer of first order in sense II).

Let us now make some comparison between Theorems 5.2 and 5.4. In spite that condi-
tion (13) is more general than condition (12), Theorem 5.4 does not imply Theorem 5.2.
Indeed, the assumption in Theorem 5.4 is ttfhis a p-minimizer in sense II, which does
not imply the more general assumption in Theorem 5.2.tRa a p-minimizer in sense I.

Next we compare theminimizers in senses | and Il.

Theorem 5.5. Let f andg beC%? functions. Ifx¥ is ani-minimizer of first order in sendé
for the constrained problerfl), thenx? is ani-minimizer of first order in sensefor (1).
If the constraint qualificatiorQo,l(xO) holds, then also the converse is true.

Proof. Let x° be ani-minimizer of first order in sense Il. The reversal of the Sufficient
conditions part of Theorem 4.2 gives the sufficient condit‘jg’ri of Theorem 4.1, whence

x¥ is ani-minimizer in sense .

Conversely, letx® be ani-minimizer of first order in sense |. Under the constraint
qualification Qo 1(x%), we can apply the reversal of the Sufficient conditions part of
Theorem 4.1, getting conditio, ;, which is identical with the sufficient conditions of

Theorem 4.2 applied to problem (14), when®ds ani-minimizer in sense Il. O

We conclude the paper with the following remark. The comparison opth@nimizers

and thei-minimizers has been a motivation to “duplicate” the notions of optimality in-
troducing sense Il concepts. As we have shown, sense Il concepts are related to the usual
concepts of optimality and they are simpler to some extent, since they are defined through
an unconstrained problem. The complexity of the vector optimization problems has caused
the appearance of many notions of optimality. Each of them stresses a particular quality of
the minimizer. Thep-minimizers enjoy stability properties as it is shown in Benson and
Morin [29], Podinovskiy and Nogin [30] and Miglierina and Molho [18]. For scalar prob-
lems Auslender [5] shows that the isolated minimizers also obey some stability properties.
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The study of the stability properties of tireminimizers and-minimizers of ordek on one

hand, and of sense | and sense Il concepts on the other hand, is in our opinion an interest-
ing subject for research. One can observe here a qualitative advantage of sense Il concepts,
which gives for them an additional “right for existence.” Namely, senserinimizers and
i-minimizers obey stability with respect to the objective data, while sense Il concepts obey
stability with respect to both objective and constraint data. We intend to demonstrate this
in a separate issue.
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