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Abstract

In recent years, the ETFs market has seen an impressive growth among
investors. In this paper, we propose a mixed integer linear programming
(MILP) model dealing with the ETF portfolio selection in a single invest-
ment periods. Our approach allows to optimize the portfolio minimizing
CVaR as a measure of risk for a given required return, considering the
level of transaction costs and minimum round lots. The model has been
tested on several di¤erent realizations of Monte Carlo simulated scenar-
ios. Results show a coherent behaviour of the model applied to ETFs and
consistency in portfolio selection.

Key Words: ETF, Portfolio Optimization, Integer Programmig, Min-
imum Transaction Lots.

1 Introduction

In the last few years, the Exchange-Traded Funds (or ETFs) market has seen an
impressive growth among investors, stimulating the creation of new benchmark.
ETFs are investment funds, traded as shares on most global stock exchanges,
such as the main European and USA Stock Exchanges. ETFs are character-
ized by the presence of an issuer that builds the basket of commodities, bonds
or stocks and issues certi�cates each of which represents a percentage of the
basket itself. Typically, ETFs try to replicate a stock market index such as
the S&P 500 or DJ Index1 . Moreover, the diversi�cation of the underlying is
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1 In the ETFs we consider there is no active management involved.
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usually large and it can also be representative, for example, of a sector of the
market (e.g., utilities, pharmaceutical companies, energy sector, blue chips..),
of a geographical region, of a set of bond maturities. Most of the ETFs pay
dividends periodically and are characterized by competitive management fees
with respect to the ones required by mutual funds2 . Because ETFs are traded
on stock exchanges, they can be bought and sold at any time during the day
(unlike most mutual funds). Their price will �uctuate from time to time, just
like any other stock price, and they are attractive to investors because they
o¤er the diversi�cation of mutual funds with the features of a stock. Thus,
popularity of ETFs is increasing, given their �exibility, low costs and the diver-
si�cation they o¤er. Various aspects di¤erentiate ETFs from stocks and from
mutual funds. In what follows, we try to identify some of them, which justify
a separate analysis3 . First, unlike mutual funds, ETFs are continuously priced
throughout the trading day, whereas mutual funds sales take place at the end
of trading day. Then, they both need to adjust their holdings in response to
changes in the companies included in the underlying index they track. However,
fund managers are also confronted with the need to provide liquidity to buyers
and sellers of their fund�s shares, which requires them to hold a percentage of
their assets in cash. ETF managers do not have to face with this problem, be-
cause purchases and sales of their funds�shares only take place in the secondary
market4 . Moreove, as long as they do not have to hold cash to provide liquidity,
they are able to track an index more closely than a mutual fund. Furthermore,
an investor can employ a wider range of trading techniques using them, such
as, e.g., stop loss, limit orders and short sales, because ETFs are traded like
a stock. Finally, the operating expenses on many ETFs tend to be lower than
on mutual funds which track the same index, because ETFs do not provide the
same level of service to their owners as those provided by mutual funds (e.g.,
telephone service centers, free fund transfers, check writing privileges, etc.).
In this paper, we analyse the problem of selecting an ETFs portfolio in a buy

and hold strategy, in order to minimize the portfolio Conditinal Value at Risk
(CVaR), given a minimum required return and an initial capital endowment.
As proved by Artzner et al.(1999), the CVaR5 is a "coherent risk measure".
Although CVaR has not yet become a standard in the �nancial industry, it
is widely accepted in the insurance industry. In our model the investor faces
constraints on minimum round lots, and on �xed and proportional costs6 . Ide-
ally, we can image a provider of one of these trading system that decides to

2They require only management fees in the range 0.2%-0.6% according to the capital
invested.

3For a detailed description of ETFs, see, e.g., www.borsaitaliana.it.
4ETFs are closed end funds.
5A simple description of the approach for CVaR minimization and optimization problems

with CVaR constraints can be found in Uryasev (2000), Krokhmal et al. (2001), Alexander
(2004).

6As a proxy for the transaction costs, we consider the average of the commission fees
required by the main Italian trading online system.
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o¤er to its clients a software that allow them to �nd the optimal portfolio com-
position in order to minimize the CVaR over a given horizon and to obtain a
minimum required return. The software mentioned could be implemented using
the suggested model.
The general methodology adopted in the paper is that of the general portfolio

selection problem in a buy and hold strategy (this is the typical strategy used
by small investors), whilst our basic assumptions can be contrasted with those
of Angelelli et al. (2004), Mansini et al. (1999,2001), Kellerer et al. (2000) and
Chang et al. (2000).
The paper is organized as follows. In Section 2 the general model is described.

In Section 3 the problem is described. In Section 4 the experiments and the
results on historical data relative to 142 ETFs are discussed. Section 5 concludes
and remarks on future research are discussed.

2 The Problem Analysis

In this section, we analyse the problem of selecting a portfolio consisting of
ETFs in a buy and hold strategy, i.e. the portfolio is bought and held without
investments�modi�cation. In this sense, the number of selected ETFs is �xed
over a single period. The problem is that of deciding which ETF to select and
how much to invest in each of them in order to minimize the risk, measured by
CVaR, given a required rate of return, r. The inclusion of transaction costs and
minimum lots in the portfolio selection of ETFs constitute essential issues to
trackle this kind of problem.
Di¤erent aspects should be considered to model ETFs portfolio selection.

First, it is usually possible to invest in ETFs every desired amount regardless
any initial threshold. However, to avoid trivial solution, we require that a
minimum percentage of the total capital must be invested in ETFs. Then, each
ETF in the portfolio can be bought in multiples of the minimum lot (1 ETF).
Moreover, the capital invested in ETFs is divided into shares quoted from time
to time on the market. The quotation of a share depends on the quotation of
the underlying stocks composing the ETF. Finally, since commissions constitute
a relevant aspect of the �nal performance, we consider both the �xed and the
proportional transaction costs.

3 The Problem Formulation

In this section we provide the mathematical formulation of the problem above
described.
Let J = f1; 2; :::; Ng be the set of ETFs available for the investment. Let

x =(x1:::; xn) 2 <n be the decision vector which represents a portfolio of ETFs,
where xj is the number of the minimum lot position in ETF j. Thus, it must
than be:
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xj > 0; xj 2 N
Let q =(q1:::; qn) 2 <n be the price vector of the ETF portfolio x: Thus, the

inner product qTx represents the portfolio value. The expected rate of return for
each ETF j 2 J is represented by a random variable yj with density p(yj). Thus,
the gross expected returns of a portfolio over a given period is represented by
x � yT , where the vector y = [y1:::yn] 2 <n represents the collection of expected
return of the ETF j: As the analytical representation of the density funcion p(y)
is not available, we can have M scenarios, yk; k = 1; :::m, sampled from the
density f(x;y)7 : The model also takes into account the presence of �xed costs8

(fj � 0), operational costs (gj) and proportional costs (cj) for each transaction
over a given ETF lot. Thus, if a number xj > 0 of lots of ETF j is selected, the
investor is required to pay fj + cj � xj + qj �xj ; operational costs gj are impicit
in the quoted price qj .
In order to take such a cost structure into account we introduce a vector of

binary variables z = [z1:::zn] 2 <n, de�ned as:

zj =

�
1 if xj > 0
0 otherwise

This allows us to de�ne the loss function over a period for each possible
portfolio9 :

f(x;y) = �
X
j

[(yjk � cj) qjxj � fjzj ] for each k (1)

It is worth noticing that for each x the loss function f(x;y) is a random
variable having a distribution in R induced by that of y: The probability of
f(x;y) not exceeding a threshold � is given by

	(x; �) =

Z
f(x;y)��

p(y)dy

Thus, 	(x; �) is a cumulative distribution function for the loss associated
with x10 as a function of �: It completely determines the behavior of this random
variable and it is fundamental in de�ning CVaR. Given the quantile size �;
0 < � � 1;the performance function considered is de�ned as follows11 :

7The existence of the density funcion is not critical for the considered approach. It is
enough to have a code which generates random sample for p(y). A two step procedure can
be used to derive analytical expression for p(y) or construct a Monte Carlo simulation code
for drawing samples from p(y); as, for instance, in RiskMetrics (1996). See Rockafellar et al.
(1999) for a detailed exposition.

8 It captures the situation in which an individual investor asks a broker to invest money on
the stock exchange, paying a �xed sum for the service. The payment might include brokerage
fees, information processing costs, or taxes, which are independent of the amount invested in
each security.

9For a detailed description of the loss function, see Uryasev (2000).
10See Rockafellar et al. (1999) for a detailed exposition.
11See Uryasev (2000) for a detalied exposition of the crucial features of F�(x; �).
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F�(x; �) = �+ (1� �)�1
Z
y2<n

[f(x;y)� �]+ p(y)dy (2)

where [t]+ = t when t > 0 but [t]+ = 0 when t � 0. Following Rockafel-
lar et al. (2000), we now consider the approximation of F�(x; �) obtained by
sampling the probability distribution in y. A sample set y1;y2... ym yields the
approximate function:

~F�(x; �) = �+
1

m(1� �)

mX
k=1

[f(x;yk)� �]
+ (3)

The minimization of (3) is performed in order to get a solution. Expres-
sion (3) represents a Mixed Integer Problem (MIP) that can be easily reduced
to a Linear Problem (LP)12 by introducing the auxiliary real variables uk for
k = 1; :::;m. The minimization of (3) is therefore equivalent to minimize the
following linear expression13

~F�(x; �) = �+
1

m(1� �)
X
k

uk (4)

subject to the linear constraints

uk � 0 (5)

X
j

[(yj;k � cj)xjqj;]�
X
j

(fjzj) + �+ uk � 0 8k (6)

X
j

[(yj � cj)xjqj ]�
X
j

(fjzj)�
X
j

(gjzj) � r
X
j

xjqj; (7)

C1 �
X
j

xjqj +
X
j

cjxj +
X
j

(fjzj) � C (8)

X
j

zj �M (9)

zj lj � xj � zjuj 8j; (10)

xj 2 N (11)

zj 2 f0; 1g (12)

12LP approaches are routinely used in portfolio optimization with various criteria such as
mean absolute deviation, maximum deviation and mean regret (see, among the others, Konno
et al. (1991), Young (1998), Dembo et al. (1992)).
13Several case studies have demonstrated that this formulation provides a very powerful

and numerically stable technique which can solve problem with a large number of instruments
and scenarios.
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The objective function (4) and the �rst group of constraints (6) determine the
minimization of risk. Constraint (7) imposes that the net portfolio mean return
has to be greater or equal to the required return (minimum return constraint),
where yj is de�neded as the mean of yj;k , k = 1; :::m. Note that the proportional
costs cj , j 2 J , de�ned as percentages of the amount invested in each security
j, directly in�uence the portfolio return. The constraint (8) enstablishes that
the capital invested in the portfolio of ETFs must be included between the
lower bound, C1; and upper bound, C: Constraint (9) expresses the "cardinality
condition" imposing that the number of ETFs selected in the portfolio cannot be
grater thanM 2 N . If an ETF j is selected in the portfolio, then constraint (10)
forces the number of stock units for ETF j to be included between lj and uj ; i.e.
respectively the minimum an maximum purchaseable lots for ETF j. Finally,
constraint (12) means that the binary variable zj is set equal to 1 whenever the
corresponding security is selected in the portfolio and 0 otherwise14 .

4 Computational Results on Stock Market Data

This section is devoted to the computational analysis of the described model15 .
We have tested16 the heuristics model on historical data of 142 ETFs17 quoted
with continuity on the international �nancial market over the time period de-
cember 2003- december 2005. The data consist of 13 ETFs from Italy, 11 ETFs
from France, 15 ETFs from Germany and 103 ETFs from US Stock Exchanges.
Since in the common �nancial practice the ETFs performance in the short

horizon is assumed to be misleading, we have tested the a portfolio selection
in the long run: the quotations of ETFs span a period of two years for a total
of 728 daily returns for each ETF in the sample. For the same period of time,
we consider the evolution of Eur/Usd foreign exchange rate, that will then be
simulated to convert dollar returns into euro. The CVaR model with integer
constraints has been solved for di¤erent values of �, i.e. � = (0:99; 0:95; 0:9). We
use scenarios generation18 to �nd the optimal portfolios that minimize CVaR
on a 1-month trading horizon.
As �rst, data time series have been analyzed using PcGive descriptive statis-

tics package. Jacque Bera test statistics rejects the null hypothesis of normality
of returns for the majority of time series19 ; at the 5% con�dence level the null
hypothesis has been accepted for 15% of the ETFs, while at 1% con�dence level,

14Notice that all values are homogeneous monetary values.
15The model has been solved by using MATLAB 7.1 and GLPK mixed integer linear pro-

gramming solution engine on a 3.00 Ghz Pentium 4 with 2 Gb DDR RAM. The maximum
computational time has been set equal to 3 hours.
16See Jamshidian et al (1997), Glasserman (2003) and Jorion (2005) for methodological

issues and implementation of the model.
17Data Source: Reuters.
18See Glasserman (2003) for details.
19The Jarque Bera statistic has a X-squared distribution with two degrees of freedom. Its

critical values at the 5% and 1% con�dence levels are 5.991 and 9.210 respectively. There-
fore, the normality hypothesis is rejected when the JB statistic has a higher value than the
corresponding critical value at the respective con�dence level. See Riskmetrics (1996).

6



it has been accepted for 21% of the ETFs. For each time series of returns, we
then derive an estimate of expected return, standard deviation and covariance
matrix. We �nally generate correlated monthly returns of the 142 ETFs and
of proportional variations of EurUsd exchange rate. Stochastic processes for
ETFs and EurUsd has been approximated under the assumption of constant
drift and volatility; the obtained returns are correlated and charatcterized by a
normal distribution, as a quite common market practice20 . Asset returns over
an interval of length dt are given by:

dS=S = �dt+ ��
p
dt (13)

where S is the asset price, � is the expected rate of return, � is the volatility
of the asset price and � represents a random draw from a standard normal
distribution. The optimization problem has been solved for an italian investor
who pays lower commisions when buying on Italian market with respect to
foreign ones. Fixed transaction costs have been set to 0 Euro for Italian ETFs
(fj = 0), 9 Euro for European ETFs(fj = 9), and 19 Euro for US ones(fj = 19),
while proportional costs cj are 0:2% for Italian ETFs, 0:25% for European ETFs
and 0% for US ETFs in order to re�ect the actual average propotional costs for
the di¤erent kinds of ETFs21 . We use these level of costs as an approximation
of the real costs requested by Italian online trading systems. We have assumed
the investor to dispose of a capital of 100; 000 Euro of which at least 90% has to
be invested. We have considered di¤erent values for minimun required monthly
return, setting r to 1:0%, 1:5%, 2:0% respectively; the number of simulated
scenarios has been set equal to 1; 000 and to 5; 000. In the default setup, lower
and upper bounds on the number of each selected ETF have been set equal
to 20 and 500 respectively (see Fig. 1). The obtained results show that the
more relevant constraint is, as expected, the one on minimum portfolio return,
while the portfolio selection appears to be sensitive to capital requirement and
lower or upper bounds (see Fig. 2 below). The problem becomes infeasible for
r = 3%, nonetheless this is a high monthly return. In fact, in the historical
period considered, we observe realized average monthly returns in the range
[�0:10%; 3:65%] and standard deviations22 in the range [0:39%; 8:41%].
Figure 1 shows that no Italian ETFs have been selected; USA ETFs always

constitute the biggest part of the portfolios. This is a quite interesting result
considering that we are taking into account the foreign exchange risk. Fixed
costs are thus almost irrelevant in the portfolio selection, given that the highest
costs are associated with USA ETFs and the lowest with the Italian ones. The
number of each selected ETF requires an investment such that the �xed cost
represent a negligible part of the necessary capital, thus �xed costs cannot
signi�cantly decrease the return on the investment. In addition, USA ETFs
have null proportional costs, thus favouring the selection of a big number of the
20See Riskmetrics Tec. Doc. for a VaR detailed description.
21These assumptions are consistent with the time period considered, namely december 2003

- december 2005.
22The availability of longer time series would have made possible a better estimate of the

drift and volatility parameters used as inputs in the scenario generation.
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same USA ETF. In the default setup, the model built portfolios made by, at
most, 7 di¤erent ETFs, i.e. at most 5% of the 142 ETFs has been selected.
Given that ETFs represent diversi�ed indexes, a selection of portfolios made by
at most 7 ETFs and at least 5 is considered acceptable. By requiring a lower
value for upper bound u; by lowering u from 500 to 100, it is possible to obtain
a more diversi�ed portfolio with up to 9 di¤erent ETFs and, coherently, the
CVaR and VaR raise since a stricter constraint to the model is posed. Such
a restriction on u is not realistic with the considered value of C (see Fig. 3)
since the investor is limited in purchasing only up to 100 ETF of a selected
kind. When we increased the number of generated scenarios, for given �, r, uj
and lj , we found portfolios with lower CVaR and VaR, but with very similar
chosen ETFs (see Fig. 1). As expected, increasing the minimum return r leads
to greater VaR and CVaR (see Fig. 3).
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Figure 4 shows that also incrementing � always leads to an increment in the
value of VaR and CVaR.
Finally incrementing Computational time for 5; 000 simulations can be greater

than 90. Thus the model can be computational expensive but it is well known
that GLPK engine is as e¢ cient as CPLEX for linear programming problems,
while its e¢ ciency is equal to 1=10 of the Cplex one for MILP problems.
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5 Conclusions

In this paper we consider the problem of the initial selection of an ETF optimal
portfolio, minimizing CVaR as a measure of risk. The contribution of this paper
is two fold. First, from a methodological point, we solve the problem in a mixed
integer linear problem framework Then, we implement the procedure on market
data and over a single period analysis. Results show a coherent behavior of the
model applied to ETFs and consistency in portfolio selection.
This paper open several possible future directions of research. On the one

hand, it would be interesting to consider the portfolio rebalancing problem. On
the other hand, the model presented, opportunely modi�ed, can be used to build
a more reasonable portfolio, based not only on ETFs, but also on shares, bonds,
mutual funds and derivatives, which implies a higher degree of reality as well as
a higher di¢ culty of implementation.
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