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We analyze the effects of a nonlinear cubic perturbation on thed-kicked rotor. We consider two different
models, in which the nonlinear term acts either in the position or in the momentum representation. We
numerically investigate the modifications induced by the nonlinearity in the quantum transport in both local-
ized and resonant regimes and a comparison between the results for the two models is presented. Analyzing the
momentum distributions and the increase of the mean square momentum, we find that the quantum resonances
asymptotically are very stable with respect to nonlinear perturbation of the rotor’s phase evolution. For an
intermittent time regime, the nonlinearity even enhances the resonant quantum transport, leading to superbal-
listic motion.
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I. INTRODUCTION

Recent and ongoing experimentsf1g have started to inves-
tigate the interplay between the many-body induced self-
interaction in an ultracold atomic gas and an external driving
induced by time-dependent optical potentials. The natural
setup is to use a Bose-Einstein condensate of alkali-metal
atoms, where the nonlinearity parameter can be tunedf2,3g,
and pulsed optical lattices can be used to impart momentum
kicks to the atoms. For such a setup, the Gross-Pitaevskii
sGPd equationf2,3g provides a good description of the sys-
tem, as long as the nonlinearity is not too large, as a study of
the stability of linearized excitations around the GP solution
has shownf4,5g.

In this paper, we analyze the evolution of a cubic nonlin-
ear Schrödinger equation, as present in the GP model, under
the perturbation of time-periodicd kicks,
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whereq andn=−i] /]q are the position and the conjugated
momentum of the system; we chose units such that"=1 and
the motion is considered on a ring with periodic boundary
conditionscsq+2pd=csqd. The parametersu andk are the
nonlinearity coupling and the kicking strength, respectively.

In atom optics experiments, thed-kicked rotor has been
realized with an ensemble of laser-cooled, cold atomsf6g, or
recently also with an ultracold Bose-Einstein condensatef1g,
periodically driven with a standing wave of laser light. With
the wave number of the laserkL, the experimental variables
are easily expressed in our units by noting that momentum is
usually measured in two photon recoilss2"kLd, and position
in units of the inverse wave number of the standing wave
s1/2kLd. Hence, the scaled variablesq ,n and the physical
onesq8 ,p8 are related byq=2kLq8 and n=p8 /2kL" f7–9g.

Our choice of units makes all the relevant quantitiessinclud-
ing the ones plotted in figuresd dimensionless.

Owing to the periodicity of thed-kick perturbation, the
time t is measured in number of periodst and the evolution
of the wave function of the system over a time intervalt is

described by the operatorÛstd.
A cubic modification of linear Schrödinger dynamics for

the d-kicked rotor may be accomplished by two different
models, both considered in the present paper. The correct
way to approximate the evolution of the nonlinear
Schrödinger equation is to evaluate the nonlinear term in the
position representationf10g. In the following we will refer to
this first model as model 1sM1d.

Since the Hamiltonian operator presents a time-dependent
nonlinear partuucu2c, in the numerical integration of Eq.s1d,
the lowest order split methodf11g is used andÛ is approxi-
mated by the time-ordered product of evolution operators
sTrotter-Kato discretizationf12gd on small time stepst /L
swith L integerd:

Ûs1dstd = K̂R̂s1dstd < e−ik cossq̂dp
l=1

L

e−itn̂2/L2eiust/Lducsq̂,lt/Ldu2.

s2d

In the numerical simulations, we use a finite Fourier basis of
dimensionN: the discrete momentum eigenvalues lie on the
lattice p=sm−N/2d and the continuous angle variable is ap-
proximated by q=s2p /Ndsm−1d with mPZ ,1ømøN.
Shifting between the coordinate and momentum representa-

tions, in the evaluation of the operatorR̂s1dstd, requires 2L
fast Fourier transforms ofN-dimensional vectors for each
kick. In order to get stable numerical results, the splitting
intervalt /L has to be reduced when increasing the nonlinear
coupling constantu; typical values of the number of steps
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per period range betweenL=80 000 and 5 000 000. There-
fore, investigating either the effects of strong nonlinearities
or the dynamics of the system over long times is computa-
tionally quite expensive with M1.

A second modelfknown as the kicked nonlinear rotator
and called in the following model 2sM2dg was introduced in
f13g. This model, being a much simpler variant of the kicked
rotator sKRd model f14g, allows one to perform faster and
more efficient numerical computations.

The evolution operator over one periodt for M2 is given
by

Ûs2dstd = K̂R̂s2dstd < e−ik cossq̂de−itn̂2/2eiũtuĉnu2, s3d

whereĉn indicates thenth component of the wave function
of the system in the momentum representation. The change

in the phase of each componentĉn of the state vector, intro-
duced by the nonlinear term between two kicks, is propor-
tional to the amplitude of the component. In M1 instead, the
phase acquired at each instant by the wave function involves
all the Fourier components and the phase factor has as the

nth Fourier componentsu/2pdomĉm+n
* ĉm. The two models

coincide only if the wave function of the system is a plane
wave of fixed momentum; in this case, the relation between
the nonlinear coupling constants in M1 and M2 isũ=u/2p.

Both models M1 and M2 are nonlinear generalizations of
the KR and reduce to the KR in the limitu→0. Depending
on the commensurability of the periodt of the d-kick per-
turbation with 4p, the KR displays different regimes, deeply
studied both theoreticallyf14–16g and experimentallyf6,8g.
The quantum resonant regime, corresponding to values oft
being rational multiples of 4p, is characterized by a ballistic
transport: the mean energy of the system grows according to
a parabolic lawf15,17g. For generic irrational values oft, the
average energy grows linearly in time only within a charac-
teristic timesbreak timed, after which dynamical localization
sets in and the diffusion is suppressedf16g.

In this paper, we analyze in detail how the presence of the
nonlinearity affects the general properties of transport in re-
gimes that correspond to the localizedsSec. II, which is es-
sentially a warm up exercise in which the results off13g are
reproduced and additional numerical results about prefactor
scaling are presentedd and resonantsSec. IIId ones of the KR.
We focus our attention on the growth exponent of the mean
energy and on how the diffusion coefficient or the rate of
ballistic transport depends on the strength of the nonlinear
coupling constantu. While in Secs. II and III we are dealing
with the evolution of an initial state with fixed momentum,

chosen atn=0, i.e., ĉns0d=ds0d, Sec. IV is devoted to the
effects of a finite spread of initial conditions as strongly sug-
gested by state-of-the-art experiments using ultracold atoms
f1,19g.

The quantity we typically compute is the width of the

momentum distribution of the systemkp2stdl=on=−`
+` n2uĉnu2,

which gives the spreading of the wave packet over unper-
turbed levels or equivalently—apart from a constant factor
2—the expectation value of the energy. The time-averaged
spreadingP2sTd=s1/Tdot=1

T kp2stdl of the second moment has

been frequently usedssee, e.g.,f18gd, as it preserves the ex-
ponent of the power-law growth, while smoothing out oscil-
lations.

As pointed out inf13g the nonlinear shift is essential in
determining dynamical featuressproviding for instance a
mechanism for delocalization of the generic, irrational cased,
but when we deal with delocalized states it is typically quite
small se.g., for M2 the shift is proportional toû/Dn, where
Dn is the width of the distribution over unperturbed statesd.
So in general we may expect that, for moderate nonlineari-
ties, the precise form of the shift does not alter in an essential
way the nature of the asymptotic motion.

II. LOCALIZED REGIME

In this section, we consider the regime where the value of
the period of thed-kick perturbation is incommensurate with
4p. For better comparison we fixt=1 for all numerical com-
putations shown in the following. The corresponding system
in the u→0 limit is characterized by the phenomenon of
dynamical localizationf16g caused by quantum interference
effects. Previous theoretical predictions and numerical simu-
lations f13,20g indicate that, above a critical borderuc,2p
for the nonlinear coupling constant, dynamical localization is
destroyed. The delocalization takes place in the form of
anomalous subdiffusion with an exponent of 2/5: inf13g an
asymptotic lawkp2stdl,csudt2/5 fwhere csud,u4/5g is pre-
dicted for both models; this is confirmed for both models by
the data reported in Fig. 1. In Fig. 1sad a bilogarithmic plot of
the time-averaged second moment vs time is shown for in-
creasing values of the nonlinear coupling constantu. In spite
of large oscillations, both models fit the predicted asymptotic
behavior with a power-law exponent equal to 2/5. For non-
linear coupling larger than the critical borderuc, marked by
the vertical line, the dependence ofcsud vs u is confirmed for
both models by Fig. 1sbd. Log10fcsudg is obtained by a one-
parameter linear fitting of the logarithm of the second mo-
ment, once an anomalous diffusion exponent equal to 2/5 is
assumed.

The results obtained by calculating the evolution of the
system with either M1 or M2, starting from the same state

ĉns0d=ds0d and parameters, appear to be different on short
time scales; nevertheless the two models share the same
asymptotic behavior of the time evolution of the second mo-
ment and of the dependence ofcsud vs u. The effect of the
nonlinearity is the same for both models only att=1, because
of the common initial state. As explained in the Introduction,
the way nonlinearity acts on the wave function is essentially
different for M1 and M2, at least before the state becomes
delocalized: so deviations are qualitatively expected for in-
termediate times, while we expect a closer analogy in the
models’ behavior in the asymptotic regime. Actually the
close behavior exhibited by both models in Fig. 1 after a few
time steps extends to more general features than the second
moment: in Fig. 2 we provide a comparison between full
distributions over momentum states foru=10.

We remark that nonlinearity-induced delocalization has
recently been explored also in studying survival probability
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on a finite momentum samplef21g: while the authors use M2
to cope with computational difficulties, our findings suggest
that their results are probably relevant for true nonlinear
Schrödinger equation dynamics too.

III. RESONANT REGIME

In this section, we examine in detail the response of the
system to nonlinear perturbation in the resonant regime of
the KR st=4pr /q with r ,q relatively prime integersd, char-
acterized by a parabolic growth in time of the variance of the
momentum distributionf15,17g. The value oft is chosen
equal to 4p, corresponding to the first fundamental quantum
resonance of the KR.

In Fig. 3sad a bilogarithmic plot of the time-averaged sec-
ond moment of the momentum distribution for different val-
ues of the nonlinearity is shown. The nonlinear coupling con-
stant u varies from 1 to 400. As already noticedf20g, the
resonant behavior survives even in the presence of nonlin-
earity, although generically the spreading is slowed with re-
spect to the linear case. On asymptotically long time scales,
resonant growth with a quadratic exponent is reached even
for strong nonlinear perturbations, though we observe that
the time needed to reach the asymptotic regime grows with

u. The results in Fig. 3sad obtained from M2, shown in full
lines, allow us now a more detailed analysis of the behavior
of the system at quite long times. It can also be seen in Fig.
3sad that the time evolution of the second moment of M1,
shown with circle symbols, approaches the same asymptotic
growth, even if some differences between the two models
appear especially for large nonlinearitysu*50d.

The persistence of the resonant behavior in the presence
of nonlinearity can be explained intuitively as follows. In the
linear si.e., u=0d resonant case the width of the momentum
distribution increases linearly in time. Therefore, from the
normalization condition, the probability amplitude to find the

system in a momentum eigenstaten decays asuĉnu2,1/Dn

,1/spktd f7,13g. The nonlinear phase shifttuuĉnu2 decreases
with the same rate and its effects become irrelevant on long
time scales, i.e.,t@ su/pkdt.

Nevertheless, the nonlinearity affects the evolution of the
second moment on smaller time scalest& su/pkdt and intro-
duces au dependence in the prefactor of the parabolic
growth law kp2stdl,asudt2. Increasing nonlinear coupling
manifests in a slower quadratic growth. In Fig. 3sbd the func-
tion Dsūdstd=fkp2stdlsũd−kp2stdls0dg / t2 is plotted for different
values of the nonlinearity. Increasing asymptotic absolute
values ofDstmaxd give an estimate of the modifications in the
transport induced by the nonlinearity. The coefficientsaD,
calculated from the functionDst= tmaxd with tmax=20 000, are
shown in the inset of Fig. 4.

A detailed analysis of the dependence of the coefficient
asud of kp2stdl is presented in Fig. 4. The numerical calcula-
tion of log10fasudg is obtained by a one-parameter linear fit-
ting of the logarithm of the second moment vs the logarithm
of time with a straight line of fixed slope 2. The fitting is
performed on a time intervalDt=200; this rather small time
interval was chosen in order to make a comparison between

FIG. 1. sColor onlined sad Bilogarthmic plot of the time-
averaged second moment vs time in the localized regime. Time is
measured in number of periods. The dashed and full lines refer to
M2 with N=217 and M1, withN=29 and L=80 000, respectively.
Values of u=8,10,12,14,16,20 areconsidered; generally higher
nonlinearity values yield bigger spreading. The dashed line has the
theoretically predicted slope 2/5. The values of the parameters are

t=1 andk=2.5; the initial state isĉns0d=ds0d. sbd The logarithm of
the coefficient of the sub-diffusion as a function of log10sud, for the
second momentscirclesd and its time averagessquaresd. Empty and
full symbols refer, respectively, to M1 and M2. The dashed lines
show the predicted dependence,u4/5.

FIG. 2. Comparison between the momentum distributions for
M1, circles, and M2, full line, aftert=10 sad, 100 sbd, and 1000scd
kicks. The parameters are the same as in Fig. 1; the nonlinear cou-
pling is fixed to the valueu=10.
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the results from both modelssempty and full symbols refer
to M1 and M2, respectivelyd. The accordance between the
two models is satisfying up tou&50. Foru.50 the lowest
order split methodf11g to evaluate the Floquet operator in
M1 becomes less stable and the numerical errors around the
borders of the finite basis propagate faster.

Numerical data are compatible with an algebraic law
asud.k2/ f2s1+u/cdgg, whereg is 4/5 andc is a constant of
the order of 10sfor the time-averaged moment the constant
k2/2 is substituted byk2/6d. This law has the required
asymptotic behavior foru→0: in this limit asud tends to the
well-known value of the coefficient of the resonant KR, i.e.,
as0d=k2/2. In Fig. 4 the values ofas0d are marked by ar-
rows. For large values ofu, asud decreases for increasing
nonlinearity with the inverse power law,u−4/5. At the mo-
ment we have no explanation for the minimum observed in
the intermediate regionslog10 u,0.85d.

Up to now, we discussed only the case of attractive inter-
actions, i.e.,u.0. It turns out that the fundamental quantum
resonance att=4p is insensitive to the sign of the nonlin-
earity as can be seen in the inset of Fig. 5. The same is true
for the momentum distributions, which are not presented
here. On the other hand, the next order resonance att=3p is
sensitive to the sign ofu. For u,0 in Fig. 6sbd, the momen-

tum distribution is slightly different fromu.0. Asymptoti-
cally, however, the same ballistic growth of the mean square
momentum is obtained. This means that the details of the
effect of nonlinearity depend on the resonance type as far as
the sign ofu is concerned. This originates from the fact that
while at the fundamental quantum resonancest=4pm sm
.0 integerd the free evolution phase in the linear rotor is

FIG. 3. sColor onlined sad Resonant growth of the time-averaged
second moment vs time in the presence of nonlinearity, fort=4p

and k=2.5. The initial momentum distribution isĉns0d=ds0d. The
symbols and the full lines refer to M2 withN=217 and M1 with
N=210 and L=5 000 000, respectively. The straight black line
shows the resonant asymptotic behaviort2. The values of the non-
linear parameter areu=1,5,10,20,50,100,400. The inset is a
magnification foru=1 and 50slower partd. A slight deviation be-
tween the two models can be seen foru=50. sbd The function
Dsũdstd vs time for M2. Starting from above in the lowt,5000
region, the values of the nonlinear parameter areũ
=0.1,5,10,20,30,40,50,60,70,80,100,400.

FIG. 4. sColor onlined Bilogarithmic plot of the coefficientasud
of the quadratic growth of the second momentscirclesd and its time
averagessquaresd as a function of the nonlinear parameteru. Empty
and full symbols refer to M1 and M2, respectively. The dashed lines
show the algebraic behavior ofasud for large u with an exponent
equal to −4/5. Notice that foruø1 the coefficients approach the
theoretical values of the KR model, marked by arrows. In the inset
the empty symbols refer toaD calculated using the functionDst
= tmaxd with tmax=20 000.

FIG. 5. Kinetic energy at the fundamental quantum resonance
t=4p, k=p, pinitial =0, and nonlinearitiesũ=0 ssolidd, −0.2 sdia-
mondsd, −1 sdashedd, −10 sdottedd, and −100sdash-dottedd. The
short dashed line shows a superballistic increase proportional tot2.6

for the caseũ=−10. The inset presents the results forũ=0.2,1,10,
and the case ofũ=−10 sthin solid lined for better comparison.
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exactly 1, at higher order resonances there is a nontrivial
phase evolution between two successive kicks. The inset of
Fig. 6sad highlights thatkp2l /2 either decreases or increases
with respect to the caseu=0 at the second and fourth kicks.
This is related to the fact that att=3p the rephasing in
momentum space occurs only every second kick, not be-
tween two successsive kicks as att=4p.

In Figs. 5 and 6 the time scales relevant for experiments
st&500d are investigatedsresults refer to M2d. In Fig. 5, we
generically observe three regimes.sid There is an initial
stage, where the mean square momentum increases much
more slowly than in the caseu=0. This stage is followed by
stagesii d where the increase can be faster than ballistic, and
the mean square momentum can even be larger for larger
nonlinearitysseeuũu=10 as compared touũu=1 in Fig. 5d.

The observed superballistic growth of the second moment
of the momentum distribution is quite surprising, in particu-
lar, having in mind that such a growth is forbidden in the
usual KRsi.e., u=0d f22g. The results in Fig. 5 are reminis-
cent of the observed superballistic spreading in one-
dimensional tight-binding modelsf23g; however, here the su-
perballistic behavior is caused by thenonlinear term in the
time evolution, in contrast to the linear Hamiltonian models
in f23g. In terms of the model studied inf23g, the nonlinear-
ity u would act as a finite size trapping regionscf. alsof21gd,
outside of which the motion is ballisticswe already showed
how nonlinearity does not essentially modify highn compo-
nentsd.

The final stagesiii d we call the asymptotic regime, be-
cause there the growth exponent approaches the one for van-
ishing nonlinearitysonly for ũ=−100 is this stage not yet
reached in Fig. 5d.

In Fig. 6sbd we notice distinct peaks close to the very edge
of the momentum distribution forũ=0.2. Such peaks have
been found for sufficiently large kicking strengthk*2.5 and
correspondinguũskdu=0.2, . . . ,2, and it turns out than they
can be up to one order of magnitude higher than the maxi-
mum of the momentum distribution for the linear KR at the
resonancest=4p and 3p. Figure 7 compares the momentum
distribution uĉnu2 at the fundamental quantum resonancet
=4p, and at the resonancet=3p for small nonlinearityũ
=−0.2 with the case of the linear KR. The distributions are
shown after 50 and 200 kicks, respectively, to stress their
evolution in time. For both resonances, we observe a very
interesting feature, namely, the small nonlinearity sharpens
the edge peaks, which move ballistically, i.e., with a speed
that is proportional to the number of kickst fwe recall that
whenu=0 the distribution is characterized by a largest mo-
mentum component also moving according to a linear law
nmaxstd.ktp /2 f7gg. The peaks are more pronounced than in
the linear case, and are remarkably stable, i.e., their height
decreases very slowly with increasing number of kicks in
Fig. 7scd, or even increases initially as in Fig. 7sad. While we
focused our discussion on the model M2, the structure of the
probability distribution is quite similar for M1ssee Fig. 8d.

The intermediate time scaling properties look in this case
more complex than in the kicked rotator dynamics in the
presence of sticking accelerator modes, where the same ex-
ponent appears both in the classical and in the quantum cases
swhere a new modulation appearsd. Work is in progress to
see whether there exist classical mappings that reproduce the
peak dynamics we observe in the intermediate time quantum
behaviorf24g.

IV. MOMENTUM DIFFUSION IN THE RESONANT
REGIME

All the above results have been obtained for an initial
state in the form of a plane wave of null momentum. In a

FIG. 6. sad Kinetic energy as a function of the number of kicks,
andsbd the corresponding momentum distributions after 200 kicks,
for the quantum resonancet=3p. Same parameters as in Fig. 5,
apart from the nonlinearity, which isũ=−0.2 sdiamondsd and 0.2
fsad dotted,sbd solidg. In sad we show also data foru=0 sdashedd for
comparison, and the inset illustrates the opposite effect of the sec-
ond and fourth kickssthe rephasing in momentum space occurs for
the u=0 case only every second kick att=3pd depending on the
sign of ũ.

FIG. 7. Momentum distributions for zero initial momentum,k
=p, ũ=−0.2 sad,scd and u=0 sbd,sdd, and t=4p sad,sbd, t=3p
scd,sdd. Note the stable peaks at the largest momenta in the case
with small nonlinearity. The distribution are shown after 50sdottedd
and 200ssolid lined kicks in each panel.
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typical experiment, one can create a Bose condensate with an
initial spread of momentum which is much less than two
photon recoilsswhich can be imparted as momentum kicks
to the atoms by the kicking laserd. We ask ourselves what
happens if such a spread is taken into account. The momen-
tum variablep, varying on a discrete lattice in the case of a
single rotor, becomes a continuous variable. For the linear
KR, the eigenvalues ofp̂ can be written, distinguishing the
integer and fractional partssquasimomentumd, as p=fpg
+hpj=n+b. Owing to the conservation of quasimomentum
b, the system dynamics can be decomposed into a bundle of
rotors f26g scalled in the followingb rotorsd, each param-
etrized by a value of the quasimomentum, evolving incoher-
ently with operators with the same functional form as Eqs.

s2d ands3d, in which n̂ is substituted byn̂+b̂. Such a decom-
position is not easily accomplished when we introduce a
nonlinear term in the dynamics. The general task we have to
face becomes the study of a nonlinear evolution equation
with periodic coefficients. This is a quite a complex problem
that cannot be tackled in full generality, even though differ-
ent approximation schemes have been proposed, e.g., by
mapping the problem into a discrete lattice, which turns out
to be useful if the wave function is expanded in a suitable set
of localized functions related to the linear problemf27g. We
generalize M2 in such a way that its linear limit is the evo-
lution operator corresponding to a quasimomentumb sas for-
merly specifiedd, and assumethat eachnonlinear b rotor
evolves independently. In this way we study the influence of
nonlinearity onrealistic initial conditions in a highly simpli-
fied way, by means of ageneralizedM2 model: further work
is obviously needed to check whether our findings extend to
a full GP dynamicsf28g.

The quantum resonance phenomenon in the KR is
strongly sensitive to the values of the parameters of the sys-

tem. The linear KR rotorsu=0d exhibits the quantum reso-
nance only for a finite set of quasimomenta, i.e.,b=bR

=m/2p with m,2p f7,15,26g. A slight deviation of the qua-
simomentum frombR changes the evolution of the system
completely. For values ofbÞbR, after a transient regime,
the suppression of the resonant growth of the energy of the
linearb rotor through dynamical localization occurs; at fixed
time t, only quasimomenta within an interval,1/t of bR

mimic the ballistic behavior proportional tot2 and a rough
estimate of the time up to which the quadratic growth of the
b-rotor energy persists ist̄,1/Db, where Db= ub−bRu
f7,25g.

In the following, we investigate the mean square momen-
tum distribution of the generalized M2 model, firstsad for a
singleb rotor with fixed quasimomentum, and thensbd for an
incoherent ensemble ofb rotors whose initial state in mo-
mentum space is a Gaussian distribution with zero mean and
rms spreadingDb=s=0.01. We chooset=4p, and the reso-
nance condition is then met forbR=0 andbR=1/2. Thecase
with bR=0 fixed was considered in Sec. III. As in the local-
ized regime, considered in Sec. II, the introduction of the
nonlinearity causes a delocalization in the system with a non-
resonant value of the quasimomentumsbÞbRd. For small
nonlinearities, the appearance of an anomalous asymptotic
diffusion with an exponent of 2/5, after the initial ballistic
behavior, is confirmed by data of Fig. 9sad for a b rotor with
b<0.009. On the contrary, greater nonlinear couplingssu
ù50d introduce an excitation of diffusive type, starting from
the first kicks. In Fig. 9sbd the quasimomentum of theb rotor
is varied andu is kept fixed. The arrows mark the timest̄,
depending on the value ofb, approximately bounding the
region of the ballistic growth.

We then consider the dynamics of an incoherent ensemble
of b rotors. The mean square displacement of the distribution
is kp2stdlb=edbkpb

2stdl. The average overb has been calcu-
lated using 5000 quasimomenta. In Fig. 10 the time evolu-
tion of the averaged second moment of the initially Gaussian
wave packet is shown for M2. The behavior in the corre-
sponding linear case of the KR is theoretically knownssee
Appendix A of f26gd: for u=0, the kinetic energy of the sys-
tem increases diffusively in time with a coefficient propor-
tional to k2/4, and dependent on the initial distribution of
quasimomentaf7g. The presence of the nonlinearity mani-
fests itself in a faster than linear growth, at least on short
time intervals. After this transient regime, the asymptotic
growth is expected to become approximately linear. The
black straight line is drawn for better comparison. At fixed
time t and assuming a uniform distribution of the quasimo-
menta, the resonant rotors whose quasimomenta lie within
the intervalDb, enter in the average ofkp2lb with a contri-
bution of ,ta and a weightw,1/t, while the nonresonant
rotors give a contribution ofs1−wdtg. The exponents of the
transport in the limitt→ +` reach the valuesas`d=2 and
2/5øgø1. Therefore, asymptotically in time, the global
transport exponent reaches the value 1. In the inset of Fig. 10
the exponents of the algebraic growth of the second moment
are plotted as a function of the nonlinear coupling constantũ.
The fitting time interval is 1000 kicks. Full and open circles
refer to 5000 and 500 quasimomenta of the initial Gaussian

FIG. 8. sad Momentum distribution aftert=50 kicks, andsbd
mean square momentum forpinitial =0, u=−0.2, t=4p, and k=p.
Shown are the evolutions induced by M2sdiamondsd and by M1
sfull linesd.
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distribution: a slight rise in the exponents can be noted on
increasing the number of quasimomenta, because a greater
number of them approach the valuebR=0, yielding the qua-
dratic growth of theb-rotor energy. Note that the exponent
approches faster the value 1 for a uniform initial distribution
of quasimomentasstarsd, confirming the previous argument.

Figure 11 presents a closer look at the dynamics on a
shorter time scale: the results refer to the case in which we
found stable momentum peaks in Fig. 7. Part of the peak is
still preserved for the used spreadDb.0.01, which can be
realized in state-of-the-art experimentsf1,19g. After about 15
kicks, more weight lies, however, now in the center of the
distribution made up of rotors which do not exactly satisfy
the rephasing condition due to nonzero quasimomenta. Also
the increase of the mean square momentum, which is aver-
aged incoherently over all the independently evolved initial
conditions, is then not any more quadratic but closer to linear
ssee inset in Fig. 11d, as was found in the case of a uniform
initial distribution of quasimomenta for theu=0 casef7,25g.
The mean square momentum still increases much faster than
for nonresonant values of the kicking periodt, where dy-
namical localization occurs. The latter may be destroyed by
the nonlinearity but the above observed growth ofkp2l /2
~ t2/5 scf. Sec. IId is much slower than linear. On short time
scales thus quantum resonance is very robust with respect to
nonlinear perturbations. If our incoherent superposition

model is correct after some initial stage, the ballistic motion
should cease but the dynamics will show the influence of the
ballistic quantum resonant transport.

FIG. 9. sColor onlined sad Bilogarithmic plot of the second mo-
ment of a singleb rotor with a fixed quasimomentum for increasing
nonlinear couplingsfrom below, referring to hight values, ũ
=0,1,5,10,50,100d. The two lines have slope 2 and 2/5. Note that
in the KR casesu=0d, the localization occurs for timet*1/b. The
parameters aret=4p, k=2.5, andN=217. The initial state is an
eigenfunction of the momentum withn=0 andb=0.009 465 56. In
the inset the calculations are prolonged ten times. The unbounded
growth for ũ=50,100 can be clearly seen.sbd The same assad with
u fixed sũ=5d and variableb sfrom above, referring to hight val-
ues,b=0.0001, 0.001, 0.01, and 0.1d. The arrows mark the times
1/b.

FIG. 10. sColor onlined Average over 5000 quasimomenta of the
second moment of the distribution vs time for M2;t=4p and k
=2.5. Starting from below sreferring to high t valuesd ũ
=200,100,60,40,20,0,1,5,10; theinitial wave packet in Fourier
space is a Gaussian distribution centered atn=0 with rmss=0.01.
The inset shows the power-law exponents of the second moment as
a function of ũ. The fitting is performed on time intervalsDt
=1000 scirclesd and 6000ssquaresd. Open symbols refer to 500
quasimomenta. Stars refer to a uniform distribution of
quasimomenta.

FIG. 11. Momentum distribution aftert=10 ssolidd, 30 sdashedd,
and 50 kickssdash-dottedd, for the same parameters as in Fig. 7sad,
but incoherently averaged over independently evolved initial condi-
tions sGaussian initial momentum distribution with rmss=0.01
centred aroundn=0d. The inset shows the correspondingkp2lb /2 as
a function of the number of kicks forũ=−0.2 ssolidd and u=0
sdashedd.
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V. CONCLUSIONS

In summary, we have numerically analyzed in great detail
the quantum transport occurring in two nonlinear generaliza-
tions of the famousd-kicked rotor model, with a cubic non-
linearity as present in the Gross-Pitaevskii equation. We con-
firm previous results in the regime of localized transport, and
show the validity of the predictions off13g for a wide range
of nonlinear coupling strengths. In addition, we found that
the quantum resonances of the kicked rotor are very stable
with respect to the nonlinear phase perturbation, which loses
its effect in the asymptotic limit of large interaction times
with periodic driving. Surprising phenomena like pro-
nounced peaks in the momentum distributions at quantum
resonance and superballistic intermittent growth of the mean
square momentum have been found. Both phenomena are
caused by cubic nonlinearity in the evolution, which shows
that the analyzed models bear a rich dynamical behavior in
parameter space.

Experimental work on the kicked rotor using a Bose-
Einstein condensatef1g has mostly concentrated on the short
time behavior at quantum resonance or on the so-called an-
tiresonance, where the motion is exactly periodic in the case
u=0. But an experimental observation of the ballistic quan-
tum resonance dynamics up to 10,…,30 kicks seems possible

f28g, for small enough kicking strengthk so as to avoid a too
fast spread in momentum space which cannot be monitored
by standard time-of-flight detectionf7,8g. Our results are
fully consistent with the few published experimental data,
which show that both resonant and antiresonant dynamics
essentially survive the presence of small nonlinearities, apart
from other effects which damp, for instance, the periodic
oscillations at the antiresonance. Such effects are, e.g., the
uncertainty of the center of the initial momentum distribu-
tion, and fluctuations in the experimental kicking strength
f1g.
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