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We analyze the effects of a nonlinear cubic perturbation onstkieked rotor. We consider two different
models, in which the nonlinear term acts either in the position or in the momentum representation. We
numerically investigate the modifications induced by the nonlinearity in the quantum transport in both local-
ized and resonant regimes and a comparison between the results for the two models is presented. Analyzing the
momentum distributions and the increase of the mean square momentum, we find that the quantum resonances
asymptotically are very stable with respect to nonlinear perturbation of the rotor’s phase evolution. For an
intermittent time regime, the nonlinearity even enhances the resonant quantum transport, leading to superbal-

listic motion.
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[. INTRODUCTION Our choice of units makes all the relevant quantitieslud-

ing the ones plotted in figurgslimensionless.

Owing to the periodicity of thes-kick perturbation, the
time t is measured in number of periodsand the evolution
f the wave function of the system over a time intervas

Recent and ongoing experimeig have started to inves-
tigate the interplay between the many-body induced self
interaction in an ultracold atomic gas and an external drivin
induced by time-dependent optical potentials. The natural , ~
setup is to use a Bose-Einstein condensate of alkali-met&€scribed by the operattk(r). o _
atoms, where the nonlinearity parameter can be t(i2¢s) A cubic modification of linear Schrédinger dynamics for
and pulsed optical lattices can be used to impart momentuf?® &-kicked rotor may be accomplished by two different
kicks to the atoms. For such a setup, the Gross-Pitaevskinodels, both considered in the present paper. The correct
(GP) equation[2,3] provides a good description of the sys- Way t0 approximate the evolution of the nonlinear
tem, as long as the nonlinearity is not too large, as a study opchrodinger equation is to evaluate the nonlinear term in the
the stability of linearized excitations around the GP solutionPOSition representatiofi0]. In the following we will refer to
has showr{4,5]. this first model as model (M1).

In this paper, we analyze the evolution of a cubic nonlin- _Since the Hamiltonian operator presents a time-dependent
ear Schrodinger equation, as present in the GP model, undBPnlinear parti|y{*y, in the numerical integration of E¢l),
the perturbation of time-periodié kicks, the lowest order split methdd 1] is used andJ is approxi-

mated by the time-ordered product of evolution operators

5 , (Trotter-Kato discretizatiof12]) on small time steps/L
— Ul +kcod9) 2 St —tn) |, (1) (with L intege):
t=0

400

|1
A | 2092
~ L ~
0(1)(7_) - k&(l)(q_) ~ gk cos(a)H e—i7ﬁ2/L2eiu(T/L)|w(19,I7/L)\2_
=1

whered andn=-id/ 9 are the position and the conjugated
momentum of the system; we chose units such &t and

the motion is considered on a ring with periodic boundary
conditionsy(9+2m) = y( ). The parameters andk are the 2

nonlinearity coupling and the kicking strength, respectively. . ) . o . .
In atom optics experiments, thtkicked rotor has been [N the numerical simulations, we use a finite Fourier basis of

realized with an ensemble of laser-cooled, cold atpéhsor dimensionN: the discrete momentum eigenvalues lie on the
recently also with an ultracold Bose-Einstein condenfhe  lattice p=(m-N/2) and the continuous angle variable is ap-
periodically driven with a standing wave of laser light. With Proximated by ¢#=(27/N)(m-1) with meZ,1<sm=<N.

the wave number of the laséy, the experimental variables Shifting between the coordinate and momentum representa-
are easily expressed in our units by noting that momentum itions, in the evaluation of the operatBf?(7), requires 2
usually measured in two photon recoi®ik, ), and position fast Fourier transforms oRN-dimensional vectors for each

in units of the inverse wave number of the standing wavekick. In order to get stable numerical results, the splitting
(1/2k.). Hence, the scaled variableks n and the physical interval 7/L has to be reduced when increasing the nonlinear
onesd’,p’ are related byy=2k 9’ andn=p’/2k % [7-9].  coupling constant; typical values of the number of steps
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per period range betwedn=80 000 and 5000 000. There- been frequently usetsee, e.g.[18]), as it preserves the ex-
fore, investigating either the effects of strong nonlinearitiesponent of the power-law growth, while smoothing out oscil-
or the dynamics of the system over long times is computatations.
tionally quite expensive with M1. As pointed out in[13] the nonlinear shift is essential in
A second mode[known as the kicked nonlinear rotator determining dynamical featureroviding for instance a
and called in the following model @12)] was introduced in  mechanism for delocalization of the generic, irrational gase
[13]. This model, being a much simpler variant of the kickedbut when we deal with delocalized states it is typically quite
rotator (KR) model [14], allows one to perform faster and small (e.g., for M2 the shift is proportional ta/An, where

more efficient numerical computations. An is the width of the distribution over unperturbed states
The evolution operator over one perieador M2 is given  So in general we may expect that, for moderate nonlineari-
by ties, the precise form of the shift does not alter in an essential

o o oS T2 TR way the nature of the asymptotic motion.
U¥9(7) =KR“9Y(7) = € e eUmvn (3)

where fzrn indicates thenth component of the wave function Il. LOCALIZED REGIME
of the system in the momentum representation. The change . . . .
In this section, we consider the regime where the value of

in the phase of eac_:h componafy of the state vector, intro- the period of thes-kick perturbation is incommensurate with
duced by the nonlinear term between two Kicks, is propory . o petter comparison we fix= 1 for all numerical com-

tional to the_ amplitude of the component. In M1 mste.ad, theputations shown in the following. The corresponding system
phase acqu!red at each instant by the wave function involves, o ,_, 0 limit is characterized by the phenomenon of
all the Fourier components and the phase factor has as g, mical localizatiof16] caused by quantum interference
nth Fourier componentu/2m)2 .- The two models  effects. Previous theoretical predictions and numerical simu-
coincide only if the wave function of the system is a planelations[13,2( indicate that, above a critical bordag~ 27
wave of fixed momentum; in this case, the relation betweeror the nonlinear coupling constant, dynamical localization is
the nonlinear coupling constants in M1 and MZliisu/27.  destroyed. The delocalization takes place in the form of
Both models M1 and M2 are nonlinear generalizations ofanomalous subdiffusion with an exponent of 2/5{13] an
the KR and reduce to the KR in the limit— 0. Depending asymptotic law(p3(t)) ~ c(u)t?> [where c(u) ~u*5] is pre-
on the commensurability of the periadof the &-kick per-  dicted for both models; this is confirmed for both models by
turbation with 47, the KR displays different regimes, deeply the data reported in Fig. 1. In Fig(a a bilogarithmic plot of
studied both theoreticalljl4—16 and experimentally6,8].  the time-averaged second moment vs time is shown for in-
The quantum resonant regime, corresponding to values of creasing values of the nonlinear coupling constanh spite
being rational multiples of 4, is characterized by a ballistic of Jarge oscillations, both models fit the predicted asymptotic
transport: the mean energy of the system grows according t§ehavior with a power-law exponent equal to 2/5. For non-
a parabolic law15,17). For generic irrational values ef the  jinear coupling larger than the critical bordey, marked by
average energy grows linearly in time only within a characthe vertical line, the dependenceattl) vs u is confirmed for
teristic time(break time, after which dynamical localization poth models by Fig. (b). Log;qc(u)] is obtained by a one-
sets in and the diffusion is suppresgae. parameter linear fitting of the logarithm of the second mo-
In this paper, we analyze in detail how the presence of thenent, once an anomalous diffusion exponent equal to 2/5 is
nonlinearity affects the general properties of transport in rezssyumed.
gimes that correspond to the localizegkc. Il, which is es- The results obtained by calculating the evolution of the
sentially a warm up exercise in which the result§ 3] are  system with either M1 or M2, starting from the same state
reproduced and additional numerical results about prefactot” , .\ .
) 2(0)=48(0) and parameters, appear to be different on short
scaling are presentgdnd resonaniSec. Ill) ones of the KR. ! i
We focus our attention on the growth exponent of the mea@rsnyemSf(ili(ezsl,)euea\\//ie(:trhoeﬁsz t?rr;ee gil/c())h?t]igge(l? tﬁgir:cg;lz ;e(t)me
energy and on how the diffusion coefficient or the rate of ent and of the dependence affi) vs u. The effect of the

ballistic transport depends on the strength of the nonlineal" i it is th tor both model el b
coupling constantl. While in Secs. Il and 1l we are dealing nonlinearity is the same for both models onlytall, because

with the evolution of an initial state with fixed momentum of the common initial state. As explained in the Introduction,

A . the way nonlinearity acts on the wave function is essentially
chosen an=0, i.e., §;,(0)=5(0), Sec. IV is devoted to the iterent for M1 and M2, at least before the state becomes
effects of a finite spread of initial conditions as strongly Sug-ye|ocalized: so deviations are qualitatively expected for in-

gested by state-of-the-art experiments using ultracold atomg,mediate times, while we expect a closer analogy in the
[1,19]. _ i . ) models’ behavior in the asymptotic regime. Actually the
The quantity we typically compute is the width of the ¢j5se hehavior exhibited by both models in Fig. 1 after a few
momentum distribution of the systep?(t))==}"_.n°#|°>,  time steps extends to more general features than the second
which gives the spreading of the wave packet over unpemmoment: in Fig. 2 we provide a comparison between full
turbed levels or equivalently—apart from a constant factodistributions over momentum states ior 10.
2—the expectation value of the energy. The time-averaged We remark that nonlinearity-induced delocalization has
spreadingDZ(T):(1/T)EtT:1(p2(t)> of the second moment has recently been explored also in studying survival probability

036220-2



DELOCALIZED AND RESONANT QUANTUM TRANSPORT.. PHYSICAL REVIEW E 71, 036220(2005

S0 @
=
S
£-5
A
= -10
g n
SN0 |
=
5
0 2 4 g5
log,,t
-10
(b) n
1 § 0|(c)
3 &
20 5|
g
_ -1 . St
1 0 -50 0 50
n
0 1 2

FIG. 2. Comparison between the momentum distributions for
M1, circles, and M2, full line, aftet=10 (a), 100 (b), and 1000(c)

. . . . kicks. The parameters are the same as in Fig. 1; the nonlinear cou-
FIG. 1. (Color online (a) Bilogarthmic plot of the time- pling is fixed to the valuai=10.

averaged second moment vs time in the localized regime. Time is
measured in number of periods. The dashed and full lines refer tg. The results in Fig. @ obtained from M2, shown in full
M2 with N=2"" and M1, withN=2° and L=80 000, respectively. |ines, allow us now a more detailed analysis of the behavior
Values ofu=8,10,12,14,16,20 areonsidered; generally higher of the system at quite long times. It can also be seen in Fig.
nonlinearity values yield bigger spreading. The dashed line has thg(a) that the time evolution of the second moment of M1,
theoretically predicted slope 2/5. The values of the parameters arg,own with circle symbols, approaches the same asymptotic
=1 andk=2.5; the initial state ig/,(0)=4(0). (b) The logarithm of  growth, even if some differences between the two models
the coefficient of the sub-diffusion as a function of {g{@), for the appear especially for large nonlinearity= 50).
second momerftircles and its time averagesquares Empty and The persistence of the resonant behavior in the presence
fuk:l Synp]bOIS :je.fer' drzspectclively, to M1 and M2. The dashed linesof nonlinearity can be explained intuitively as follows. In the
show the predicted dependeneer. linear (i.e., u=0) resonant case the width of the momentum
distribution increases linearly in time. Therefore, from the

on a finite momentum sampf@1]: while the authors use M2 normalization condition, the probability amplitude to find the

to cope with computational difficulties, our findings suggest

. 4 system in a momentum eigenstatelecays asy,|2~ 1/An
that their results are probably relevant for true nonllneary ¢ yS asi|

Schrodinger equation dynamics too. ~ 1/(mkt) [7,13]. The nonlinear phase shi7f1;1|z_ﬂn|2 decreases
with the same rate and its effects become irrelevant on long
time scales, i.et> (u/ 7k)r.

Nevertheless, the nonlinearity affects the evolution of the

In this section, we examine in detail the response of thesecond moment on smallgr time scalex(u/ k)7 and intro- ,
system to nonlinear perturbation in the resonant regime Oqsluces au depz)endence ;n the prgfactor ‘?f the parapohc
the KR (r=4mt/q with r,q relatively prime integejs char- ~ 9rowWth law (p*(t)) ~a(u)t*. Increasing nonlinear coupling
acterized by a parabolic growth in time of the variance of thgnanifests in a szlower qugdra’gc ggo_wth. In FigbBthe func-
momentum distributior{15,17. The value ofr is chosen tion AY®)=[(p(t)®@—(p*1))©1/t* is plotted for different
equal to 4r, corresponding to the first fundamental quantumvalues of the nonlinearity. Increasing asymptotic absolute
resonance of the KR. values ofA(t,,a) give an estimate of the modifications in the

In Fig. 3(a) a bilogarithmic plot of the time-averaged sec- transport induced by the nonlinearity. The coefficieats
ond moment of the momentum distribution for different val- calculated from the functioA(t=t,,,) with t,,,=20 000, are
ues of the nonlinearity is shown. The nonlinear coupling conshown in the inset of Fig. 4.
stantu varies from 1 to 400. As already noticgd0], the A detailed analysis of the dependence of the coefficient
resonant behavior survives even in the presence of nonlirg(u) of (p(t)) is presented in Fig. 4. The numerical calcula-
earity, although generically the spreading is slowed with retion of log;Ja(u)] is obtained by a one-parameter linear fit-
spect to the linear case. On asymptotically long time scalesing of the logarithm of the second moment vs the logarithm
resonant growth with a quadratic exponent is reached eveof time with a straight line of fixed slope 2. The fitting is
for strong nonlinear perturbations, though we observe thaperformed on a time intervalt=200; this rather small time
the time needed to reach the asymptotic regime grows witinterval was chosen in order to make a comparison between

log,u

IIl. RESONANT REGIME
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FIG. 3. (Color onling (a) Resonant growth of the time-averaged ayeraggsquaresas a function of the nonlinear parameteEmpty
second moment vs time in the presence of nonlinearityrfodm  ang full symbols refer to M1 and M2, respectively. The dashed lines
andk=2.5. The initial momentum distribution ig,(0)=4&(0). The  show the algebraic behavior efu) for large u with an exponent
symbols and the full lines refer to M2 witN=217 and M1 with  equal to —4/5. Notice that fon<1 the coefficients approach the
N=21° and L=5000000, respectively. The straight black line theoretical values of the KR model, marked by arrows. In the inset
shows the resonant asymptotic behatforThe values of the non- the empty symbols refer ta, calculated using the functioA(t
linear parameter arei=1,5,10,20,50,10@400. The inset is a =t With ty,,=20 000.
magnification foru=1 and 50(lower par}. A slight deviation be-
tween the two models can be seen for50. (b) The function
ADt) vs time for M2. Starting from above in the low< 5000
region, the values of the nonlinear parameter ate
=0.1,5,10,20,30,40,50,60,70,80,1800.

tum distribution is slightly different fronu>0. Asymptoti-

cally, however, the same ballistic growth of the mean square
momentum is obtained. This means that the details of the
effect of nonlinearity depend on the resonance type as far as

the sign ofu is concerned. This originates from the fact that
the results from both model@mpty and full symbols refer | 1ie "at the fundamental quantum resonaneeghrm (m

to M1 and M2, respectively The accordance between the - ntegej the free evolution phase in the linear rotor is
two models is satisfying up ta=<50. Foru>50 the lowest

order split method11] to evaluate the Floquet operator in

M1 becomes less stable and the numerical errors around the 10 1
borders of the finite basis propagate faster. 107}
Numerical data are compatible with an algebraic law 10l
a(u)=k?/[2(1+u/c)?], wherey is 4/5 andc is a constant of s
the order of 1Q(for the time-averaged moment the constant 10°}
k?/2 is substituted byk?/6). This law has the required <p72> |
asymptotic behavior fou— 0: in this limit a(u) tends to the )
well-known value of the coefficient of the resonant KR, i.e., 10"}
a(0)=k?/2. In Fig. 4 the values 0&(0) are marked by ar- 100 L

rows. For large values afi, a(u) decreases for increasing
nonlinearity with the inverse power lawu 5. At the mo-
ment we have no explanation for the minimum observed in 10°5 - = .
the intermediate regioflog,qu~ 0.85). 10 10 10
; . . number of kicks t

Up to now, we discussed only the case of attractive inter-
actions, i.e.u>0. It turns out that the fundamental quantum |G, 5. Kinetic energy at the fundamental quantum resonance
resonance at=4 is insensitive to the sign of the nonlin- =47, k==, p,,iw=0, and nonlinearitie§i=0 (solid), —0.2 (dia-
earity as can be seen.in _the_inset of Fig. 5. The same is tru@onds, -1 (dashed) —10 (dotted, and —100(dash-dotted The
for the momentum distributions, which are not presentedshort dashed line shows a superballistic increase proportiot&f to
here. On the other hand, the next order resonanee &tris  for the cas@i=-10. The inset presents the results®er0.2,1, 10,
sensitive to the sign ai. Foru< 0 in Fig. 6b), the momen- and the case dfi=-10 (thin solid line for better comparison.
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FIG. 6. (a) Kinetic energy as a function of the number of kicks, g1 7. Momentum distributions for zero initial momentukn,
and (b) the corresponding momentum distributions after 200 kicks,— 7, T=-0.2 (a),(c) and u=0 (b),(d), and =4 (a),(b), r=3m
for the quantum resonance= 3. S{me parameters as in Fig. 5, ©)
apart from the nonlinearity, which i8=-0.2 (diamonds and 0.2 ih small nonlinearity. The distribution are shown after(86tted
[(a) dotted,(b) solid]. In (a) we show also data far=0 (dashed for and 200(solid line) kicks in each panel.
comparison, and the inset illustrates the opposite effect of the sec-
ond and fourth kickgthe rephasing in momentum space occurs for  In Fig. 6(b) we notice distinct peaks close to the very edge
the u=0 case only every second kick at3m) depending on the of the momentum distribution foi=0.2. Such peaks have
sign of T. been found for sufficiently large kicking strendtke 2.5 and
orrespondingti(k)|=0.2, ...,2, and it turns out than they

exactly 1, at. higher order resonances the're is a nqntriviaian be up to one order of magnitude higher than the maxi-
phase evolution between two successive kicks. The inset Qb m of the momentum distribution for the linear KR at the
Fig. 6(a) highlights that(p?)/2 either decreases or increasesyesonances=4+ and 3r. Figure 7 compares the momentum
Wlth r_espect to the case=0 at the second and fourth kIC'kS. distribution |;2/n|2 at the fundamental quantum resonance
This is related to the fact that at=3w the rephasing in  —4. "and at the resonance=3w for small nonlinearityt
momentum space occurs only every second kick, not be=_q 2 with the case of the linear KR. The distributions are
tween two successsive kicks asatdar. _ shown after 50 and 200 kicks, respectively, to stress their

In Figs. 5 and 6 the time scales relevant for experimentgyolution in time. For both resonances, we observe a very
(t=500 are investigatedresults refer to M2 In Fig. 5, we interesting feature, namely, the small nonlinearity sharpens
generically observe three regime$) There is an initial the edge peaks, which move ballistically, i.e., with a speed
stage, where the mean sgquare momentum increases mutifat is proportional to the number of kick§we recall that
more slowly than in the case=0. This stage is followed by whenu=0 the distribution is characterized by a largest mo-
stage(ii) where the increase can be faster than ballistic, andnentum component also moving according to a linear law
the mean square momentum can even be larger for larg@madt) =ktm/2 [7]]. The peaks are more pronounced than in
nonlinearity (see[l| =10 as compared tfii|=1 in Fig. 5. the linear case, and are remarkably stable, i.e., their height

The observed superballistic growth of the second momendecreases very slowly with increasing number of kicks in
of the momentum distribution is quite surprising, in particu- Fig. 7(c), or even increases initially as in Fig(&J. While we
lar, having in mind that such a growth is forbidden in the focused our discussion on the model M2, the structure of the
usual KR(i.e.,u=0) [22]. The results in Fig. 5 are reminis- probability distribution is quite similar for M1see Fig. 8.
cent of the observed superballistic spreading in one- The intermediate time scaling properties look in this case
dimensional tight-binding mode[23]; however, here the su- more complex than in the kicked rotator dynamics in the
perballistic behavior is caused by thenlinearterm in the  presence of sticking accelerator modes, where the same ex-
time evolution, in contrast to the linear Hamiltonian modelsponent appears both in the classical and in the quantum cases
in [23]. In terms of the model studied [i23], the nonlinear- (where a new modulation appear$Vork is in progress to
ity u would act as a finite size trapping regitef. also[21]),  see whether there exist classical mappings that reproduce the
outside of which the motion is ballistiave already showed peak dynamics we observe in the intermediate time quantum
how nonlinearity does not essentially modify higltompo-  behavior[24].
nents.

The final stage(iii) we call the asymptotic regime, be-
cause there the growth exponent approaches the one for van-
ishing nonlinearity(only for T=-100 is this stage not yet All the above results have been obtained for an initial
reached in Fig. b state in the form of a plane wave of null momentum. In a

,(d). Note the stable peaks at the largest momenta in the case

IV. MOMENTUM DIFFUSION IN THE RESONANT
REGIME
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@) ‘ ‘ ‘ tem. The linear KR rotofu=0) exhibits the quantum reso-
-2 . . . R
0° f‘ P'& ] nance only for a finite set of quasimomenta, i.858
L i "sum.:j‘ g "TV‘:’.’,‘} A1 =m/2p with m<2p [7,15,28. A slight deviation of the qua-
:g:JO P .?‘«4. w\:, 0,""."‘"*\'601":0 ‘,‘, W . simomentum fromgR changes the evolution of the system
= s A T Aia 0 LA completely. For values oB+ R, after a transient regime,
10 ! ’T‘ | +# M the suppression of the resonant growth of the energy of the
S . . | . linear B rotor through dynamical localization occurs; at fixed
B P . . + : : e : R
200 100 0 100 time t, only quasimomenta within an intervat1/t of 8

mimic the ballistic behavior proportional 6 and a rough
estimate of the time up to which the quadratic growth of the
B-rotor energy persists is~1/AB, where AB=|8-pR|
[7,25].

In the following, we investigate the mean square momen-
tum distribution of the generalized M2 model, fi(s) for a
singleB rotor with fixed quasimomentum, and thég) for an
incoherent ensemble @# rotors whose initial state in mo-
mentum space is a Gaussian distribution with zero mean and
rms spreadind\3=0=0.01. We choose=41, and the reso-
nance condition is then met f@R=0 andgR=1/2. Thecase
with BR=0 fixed was considered in Sec. lll. As in the local-

FIG. 8. (a) Momentum distribution aftet=50 kicks, and(b)  ized regime, considered in Sec. II, the introduction of the
mean square momentum f@p,=0, u=-0.2, r=4m, andk==.  Nonlinearity causes a delocalization in the system with a non-
Shown are the evolutions induced by M@iamonds and by M1~ resonant value of the quasimomentim= 5). For small
(full lines). nonlinearities, the appearance of an anomalous asymptotic

diffusion with an exponent of 2/5, after the initial ballistic
typical experiment, one can create a Bose condensate with &¢havior, is confirmed by data of Fig(ed for a 8 rotor with
initial spread of momentum which is much less than twoB8=~0.009. On the contrary, greater nonlinear coupliigs
photon recoils(which can be imparted as momentum kicks =50) introduce an excitation of diffusive type, starting from
to the atoms by the kicking laseWe ask ourselves what the first kicks. In Fig. &) the quasimomentum of th@rotor
happens if such a spread is taken into account. The momeis varied andu is kept fixed. The arrows mark the timées
tum variablep, varying on a discrete lattice in the case of adepending on the value g8, approximately bounding the
single rotor, becomes a continuous variable. For the linearegion of the ballistic growth.
KR, the eigenvalues ob can be written, distinguishing the We then consider the dynamics of an incoherent ensemble
integer and fractional part§quasimomentum as p=[p] of B rotors. The mean square displacement of the distribution
+{p}=n+pB. Owing to the conservation of quasimomentumis (pz(t)>/3:fd/3<p§(t)>. The average oveB has been calcu-
B, the system dynamics can be decomposed into a bundle tdted using 5000 quasimomenta. In Fig. 10 the time evolu-
rotors [26] (called in the followingg rotors, each param- tion of the averaged second moment of the initially Gaussian
etrized by a value of the quasimomentum, evolving incoherwave packet is shown for M2. The behavior in the corre-
ently with operators with the same functional form as Eqgssponding linear case of the KR is theoretically kno(see

(2) and(3), in which i is substituted byi+ 3. Such a decom- Appendix A of [26]): for u=0, the kinetic energy of the sys-
position is not easily accomplished when we introduce dem increases diffusively in time with a coefficient propor-
nonlinear term in the dynamics. The general task we have t§onal to k*/4, and dependent on the initial distribution of
face becomes the study of a nonlinear evolution equatiofuasimomentd?]. The presence of the nonlinearity mani-
with periodic coefficients. This is a quite a complex problemfests itself in a faster than linear growth, at least on short
that cannot be tackled in full generality, even though differ-time intervals. After this transient regime, the asymptotic
ent approximation schemes have been proposed, e.g., [§jowth is expected to become approximately linear. The
mappmg the pr0b|em into a discrete lattice, which turns oup'&Ck Straight line is drawn for better Comparison. At fixed
to be useful if the wave function is expanded in a suitable sefime t and assuming a uniform distribution of the quasimo-
of localized functions related to the linear problg#¥]. We  menta, the resonant rotors whose quasimomenta lie within
generalize M2 in such a way that its linear limit is the evo-the intervalAB, enter in the average @b with a contri-
lution operator corresponding to a quasimomenfifas for-  bution of ~t* and a weightw~ 1/t, while the nonresonant
merly specifiedy and assumethat eachnonlinear 8 rotor ~ rotors give a contribution of1 -w)t”. The exponents of the
evolves independently. In this way we study the influence ofransport in the limitt— +o reach the values(«)=2 and
nonlinearity onrealistic initial conditions in a highly simpli- 2/5=<y=<1. Therefore, asymptotically in time, the global
fied way, by means of generalizedVi2 model: further work  transport exponent reaches the value 1. In the inset of Fig. 10
is obviously needed to check whether our findings extend tohe exponents of the algebraic growth of the second moment
a full GP dynamicg28]. are plotted as a function of the nonlinear coupling condiant
The quantum resonance phenomenon in the KR i he fitting time interval is 1000 kicks. Full and open circles
strongly sensitive to the values of the parameters of the sysefer to 5000 and 500 quasimomenta of the initial Gaussian

t
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FIG. 10. (Color online Average over 5000 quasimomenta of the
second moment of the distribution vs time for M2:4« and k
=2.5. Starting from below (referring to high t values T
=200,100,60,40,20,0,1,5,10; thdtial wave packet in Fourier
space is a Gaussian distribution centered=a® with rmso=0.01.

FIG. 9. (Color online (a) Bilogarithmic plot of the second mo-
ment of a singleB rotor with a fixed quasimomentum for increasing
nonlinear coupling(from below, referring to hight values, U
=0,1,5,10,50,100The two lines have slope 2 and 2/5. Note that

in the KR casqu=0), the localization occurs for times=1/8. The The inset shows the power-law exponents of the second moment as

— — —nl7 H H
parameters are=4m, k=2.5, andN=2"". The initial state is an a function ofU. The fitting is performed on time intervalat

terllge_nfurlcttllqon Oflthf tmomentum V\Ilm":O danB;O.OOQTé;;GS 56b' In q =1000 (circles and 6000(squares Open symbols refer to 500
€ Inset he calculations are prolongea ten Umes. The unbounde uasimomenta. Stars refer to a uniform distribution of

growth forti=50, 100 can be clearly seefl) The same a&) with .
u fixed (U=5) and variableg (from above, referring to high val- quasimomenta.
ues, 3=0.0001, 0.001, 0.01, and 0.IThe arrows mark the times
1/B.
model is correct after some initial stage, the ballistic motion

distribution: a slight rise in the exponents can be noted orshould cease but the dynamics will show the influence of the
increasing the number of quasimomenta, because a greafedllistic quantum resonant transport.
number of them approach the valgB=0, yielding the qua-
dratic growth of thes-rotor energy. Note that the exponent
approches faster the value 1 for a uniform initial distribution 0 5 10 15 20 25 30
of quasimomentdstarg, confirming the previous argument. T

Figure 11 presents a closer look at the dynamics on &
shorter time scale: the results refer to the case in which we
found stable momentum peaks in Fig. 7. Part of the peak is )
still preserved for the used sprea@=0.01, which can be 07 ¢ )
realized in state-of-the-art experimepis19]. After about 15
kicks, more weight lies, however, now in the center of the
distribution made up of rotors which do not exactly satisfy .
the rephasing condition due to nonzero quasimomenta. Alsc S e
the increase of the mean square momentum, which is aver Ll

1500
1 1000

500

10

Lk " "
NS s W e,
o |

<wl>,

aged incoherently over all the independently evolved initial ¢ !
conditions, is then not any more quadratic but closer to linear L ‘ ‘ ‘ ‘ ‘
(see inset in Fig. 11 as was found in the case of a uniform -170 -128 -85 -42 0 42 8 128 170

initial distribution of quasimomenta for the=0 casg7,25|. n

The mean square momentum still increases much faster than £ 11, Momentum distribution aftér 10 (solid), 30 (dashed

for nonresonant values of the kicking periadwhere dy- - ang 50 kicks(dash-dottey for the same parameters as in Figa)7
namical localization occurs. The latter may be destroyed by, incoherently averaged over independently evolved initial condi-
the nonlinearity but the above observed growth(pf)/2  tions (Gaussian initial momentum distribution with rms=0.01
«t?/5 (cf. Sec. 1) is much slower than linear. On short time centred around=0). The inset shows the correspondifpg) 5/ 2 as
scales thus quantum resonance is very robust with respect &éfunction of the number of kicks foi=—0.2 (solid) and u=0
nonlinear perturbations. If our incoherent superposition(dashed
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V. CONCLUSIONS [28], for small enough kicking strengthso as to avoid a too
fast spread in momentum space which cannot be monitored
In summary, we have numerically analyzed in great detaiby standard time-of-flight detectiofi7,8]. Our results are
the quantum transport occurring in two nonlinear generalizafy|ly consistent with the few published experimental data,
tions of the famouss-kicked rotor model, with a cubic non- \yhich show that both resonant and antiresonant dynamics
linearity as present in the Gross-Pitaevskii equation. We congssentially survive the presence of small nonlinearities, apart
firm pTEViOUS results in the regime of localized transport, anqrom other effects which damp, for instance, the periodic
show the validity of the predictions ¢.3] for a wide range  ogcillations at the antiresonance. Such effects are, e.g., the
of nonlinear coupling strengths. In addition, we found thatyncertainty of the center of the initial momentum distribu-

the quantum resonances of the kicked rotor are very stablgon, and fluctuations in the experimental kicking strength
with respect to the nonlinear phase perturbation, which Ioseg]_

its effect in the asymptotic limit of large interaction times
with periodic driving. Surprising phenomena like pro-
nounced peaks in the momentum distributions at quantum
resonance and superballistic intermittent growth of the mean L.R. and R.A. acknowledge partial support from the
square momentum have been found. Both phenomena aMIUR-PRIN project “Order and Chaos in Nonlinear Ex-
caused by cubic nonlinearity in the evolution, which showstended Systems: Coherent Structures, Weak Stochasticity and
that the analyzed models bear a rich dynamical behavior il\nomalous Transport,” and the INFM Advanced Project
parameter space. “Weak Chaos: Theory and Applications.” S.W. thanks Pro-

Experimental work on the kicked rotor using a Bose-fessor Ken Taylor for his hospitality and financial support at
Einstein condensaféd ] has mostly concentrated on the shortthe Queen’s University of Belfast, where part of the present
time behavior at quantum resonance or on the so-called anvork originated. Enlightening discussions with Professor E.
tiresonance, where the motion is exactly periodic in the cas@rimondo and O. Morsch on the experimental possibilities
u=0. But an experimental observation of the ballistic quan-and with R. Mannella on Lévy statistics are gratefully ac-
tum resonance dynamics up to 1030 kicks seems possible knowledged.
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