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We review the technique named heterodyne speckle velocimetry and present two applications for
testing the method with a fluid moving under the conditions of Poiseuille flow. The fluid was seeded
with small tracking particles �diameter 300 nm� and fluxed between the two parallel planes of a cell
with constant or variable cross section. In the first case the velocity distribution was constant along
the direction parallel to the planes and was in excellent agreement with the expected Poiseuille
profile along the orthogonal direction. In the second case, where velocity gradients were present also
along the planes, the technique was able to reconstruct both the orthogonal Poiseuille profile and the
in-plane two dimensional mapping of the velocity vectors, with the possibility of measuring the fluid
flux within an accuracy of 1%. © 2007 American Institute of Physics. �DOI: 10.1063/1.2786905�

I. INTRODUCTION

Experiments in modern fluid dynamics require fast and
possibly simple measurements of fluid flows in three dimen-
sional �3D� domains. This task is quite challenging and is
usually accomplished by seeding the fluid with small track-
ing particles, illuminating the sample with some light, and
detecting the scattered light.

There are many techniques devoted to this aim,1 the
most popular ones being particle imaging velocimetry
�PIV�,2 laser speckle velocimetry �LSV�,3 laser doppler ve-
locimetry �LDV�,4 holographic PIV �HPIV�,5 and all the
various implementations which have been proposed over the
years.6–8

In their simplest realizations, PIV and LSV work by il-
luminating the seeded fluid with a thin sheet of light and
imaging the particles along a perpendicular direction. De-
pending on the numerical aperture �NA� of the collection
optics as well as on the tracer concentration, the particles
may be resolved �PIV� or not �LSV�. In any case, by taking
the spatial cross correlation between two images acquired at
two closely spaced times, one can determine the local tracer
displacements and consequently recover the two dimensional
�2D� in-plane velocity mapping of the fluid. PIV can also be
implemented by using simultaneously two sheets of light at a
given angle: in this way 3D stereo reconstruction of the fluid
velocities can be carried out, but the apparatus and the over-
all procedure become rather complex.

LDV works by illuminating the seeded fluid with two
laser beams, which produce a set of straight fringes inside
the sample. Particles crossing the fringes produce a signal
whose periodicity carries information about the fluid velocity
component perpendicular to the fringes. Thus LDV appears
to be rather simpler than PIV or LSV, but the information is
necessarily averaged over the illuminated region and is re-
stricted to only one component of the velocity vector. Imple-

mentations for the measurement of all the three velocity
components can be done, but the full 3D mapping of the
fluid velocities is hard to be recovered.

A much powerful technique is represented by HPIV,
which, in principle, allows the complete recovery of the 3D
positions of all the tracers with a high spatial �diffraction
limited� resolution. However, this method presents various
nonsecondary drawbacks, related to its holographic nature:
the setup may be rather complex, the data reduction is usu-
ally not straightforward and it can be hardly carried out in
real time, and, finally, the scattering signal of each single
particle has to be strong enough to beat the noise of the
system. The last requirement is related to the system sensi-
tivity and, ultimately, determines the minimum size of the
tracers �microns�.

In a recent article9 we have proposed a velocimetry tech-
nique called heterodyne speckle velocimetry �HSV�, which
provides instantaneous 2D velocity mappings and velocity
distributions of a fluid moving in a plane. The method, de-
veloped in the context of the topic called near field
scattering,10–13 adopts a setup similar to the one used in the
in-line HPIV,14 in which the strong transmitted beam passing
through the seeded fluid interferes with the weak fields scat-
tered by the tracking particles. If the observation plane is
close enough to the sample, the heterodyne speckles origi-
nated from this interference process move rigidly with the
tracers, and a 2D mapping of fluid velocities can be recov-
ered by cross correlating two images taken at a close tempo-
ral distance. The method is clearly less informative than �ste-
reo� PIV or HPIV, but offers several advantages deriving
from the large statistical information contained in the speckle
field: it is fairly sensitive because it profits from the contri-
butions deriving from the whole sample thickness; it works
well with particles smaller than the wavelength of light
whose concentration can also be relatively high; it uses a
rather simple setup, in which the alignment requirements are
rather relaxed and the rejection of stray light is highly effi-
cient; the data analysis is fairly simple and fast, allowing for
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a real time data processing; and finally, the heterodyne con-
dition guarantees the linearity of the method with respect to
the number of particles, and this is a key ingredient when
velocity distributions are to be recovered.

This article presents two applications of the HSV tech-
nique, aimed to show how the motion of a fluid moving
under the conditions of Poiseuille flow can be quantitatively
characterized. The article is organized as follows: Sec. II is
devoted to review and summarize the main feature of the
HSV technique; Sec. III describes two simulations that show
the conditions under which the technique can be profitably
used; the two experiments describing Poiseuille flows in a
square and funnel-shaped cell are described in Secs. IV and
V, respectively; and conclusions are reported in Sec. VI.

II. THE HETERODYNE SPECKLE VELOCIMETRY
„HSV… TECHNIQUE

The HSV technique and its optical setup �Fig. 1� are both
very simple: a large collimated laser beam �diameter D,
wavelength �� is sent onto a square cell containing small
tracking particles �diameter d� moving with the fluid. The
interference between the intense transmitted beam and the
weak wave fronts scattered by the particles generates a
speckle field, whose intensity distribution can be detected at
a close distance z from the cell by using a charge coupled
device �CCD� camera and an optical microscope objective. If
the particles are sufficiently small �d��� the NA of the mi-
croscope determines the maximum scattering angle ��max

�NA� collected by the optics, and in turn, the size � of the
�subjective� speckles, namely, ��� / �2�max�. If the distance
z of the observation plane is sufficiently small, the transver-
sal region from which the scattered light is collected, D*

�2z�max, is smaller than the beam size D. When this condi-
tion is strongly fulfilled �D*�D�, we are in the so called
near field condition, and the speckle pattern formed around
any given point r of the observation plane is determined only
by those particles lying within the region D* centered on the
back projection of r over the scattering cell. Thus, if the
sample moves transversally to the optical axis, the speckles
move accordingly, and by comparing two snapshots of these
speckle patterns at known times, one can recover the dis-
placements of the fluid during the time elapsed.

Let us indicate with eS�r , t� and e0 the scattered and the
transmitted fields, respectively. Under the assumption eS

�e0, we can write the intensity distribution f�r , t� as

f�r,t� = �e0�2 + 2 Re�e0
*eS�r,t�� , �1�

in which the term �eS�2 has been neglected. In Eq. �1� �e0�2
represents the strong static transmitted intensity while the
last term, being related to the random time-dependent par-
ticle positions, is a small stochastic zero-average fluctuating
term which is customarily called heterodyne signal. By tak-
ing the difference between two intensity distributions de-
tected at a time distance �, we can determine the differential
heterodyne signal

�f�r,t,�� = f�r,t + �� − f�r,t�

= 2 Re�e0
*�es�r,t + �� − es�r,t��� , �2�

which is clearly independent of �e0�2. By computing the au-
tocorrelation function of �f�r , t ,��, we get

g��x� = 4�e0�2 Re�2G�x,0� − G�x,�� − G�− x,��� , �3�

in which G�x ,�� is the mutual coherence function of the
scattered field defined as15

G�x,�� = 	eS�r,t�eS
*�r + x,t + ��
 , �4�

where 	·
. denotes ensemble average.
The first term in Eq. �3�, G�x ,0�, is positive and repre-

sents the spatial autocorrelation function of the �frozen� scat-
tered field. As known,15,9 G�x ,0� is linear in the number of
particles and, therefore, can be written as

G�x,0� = N�	�aS�2
h�x� , �5�

in which N* is the number of particles lying inside the region
D* and 	�as�2
 is the average intensity scattered by each par-
ticle and falling onto the sensor. The function h�x� is the
normalized �h�0�=1� autocorrelation function of the speckle
field and describes the shape of the speckles. In particular, its
width determines the average speckle size �. The last two
terms appearing in Eq. �3� are negative cross-correlation
terms, which depend on particle motion. Note that since the
latter terms are always present together, g��x� is symmetrical
with respect to x=0, and carries information only about the
direction and modulus of the fluid velocity, but not about its
sign.

When all the particles move with the same average ve-
locity 	v
 transverse to the optical axis, the scattered field at
the observation plane in r+�r at the time t+� is simply a
“shifted version” of the field in r at the time t. Under this
hypothesis, it is straightforward to show that9

G�x,�� = G�x − �r,0� , �6�

in which �r= 	v
�. Thus, the cross-correlation function
G�x ,�� is simply a shifted version of the autocorrelation
function G�x ,0� and, thanks to Eq. �5�, it is also linear in the
number of particles. As a consequence, G�x ,�� is propor-
tional to the number of particles that have been displaced by
x=�r during the time �, and, if particle motion is character-
ized by a distribution of displacements n��r����, the result-
ing cross-correlation function is given by the convolution
integral

FIG. 1. Schematic diagram of the experimental setup. A collimated laser
beam of diameter D illuminates the fluid moving inside a square cell. The
interference between the transmitted and the scattered light is recorded at a
close distance z from the cell by using the lens L. The maximum acceptance
angle 2�max together with the distance z determines the size D* of the region
from which the light reaching the CCD sensor is actually collected.
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G�x,�� � � n��r�h�x − �r�d�r , �7�

in which the convolving function is the normalized autocor-
relation function h�x� defined in Eq. �5�. The spatial resolu-
tion of the method is therefore set by the width of h�x�, i.e.,
by the average speckle size �, and two close displacements
�r apart can be resolved only if �r��.

The average speckle size � also determines the smallest
particle diameter suitable for the technique: if particle dis-
placements are to be detected with an accuracy of �, their
rms distance �s traveled by diffusion during the time �,
along any given direction ��s=�2D�, D being the diffusion
coefficient�, has to be smaller than �. Thus, imposing �s
	�, we find that the particle diameter d must be larger than

d 

2kBT

3��

�

� 2 � 0.88 �
m3/s�
�

� 2 , �8�

in which we have used the classical Stokes-Einstein
relation,16 with kB being the Boltzmann constant, T the ab-
solute temperature, and � the dynamical viscosity of the
fluid. The numerical factor appearing in the right-hand side
�rhs� of Eq. �8� helps to determine quantitatively the mini-
mum particle diameter usable under standard conditions �T
=300 K, �=0.01 g cm−1s−1�. In our case ��=0.1 s, �
�4.5 
m, see below� we have d
4.3 nm, which is by far
smaller than the particle diameter used in the experiment
�d=300 nm�.

III. SIMULATIONS

In this section we present two simulations aimed to show
how HSV works when a fluid seeded with small particles
moves orthogonal to the optical axis.

The first simulation describes what happens when the
fluid is uniformly displaced by the vector �r, or equiva-
lently, when all the particles move with the same average
velocity 	v
 over the time �, so that �r= 	v
 �. The simula-
tion is carried out as follows: we suppose to have Npart par-

ticles of diameter d, randomly distributed inside a circular
scattering cell of diameter D and thickness h. A CCD sensor
made of Npxl�Npxl pixels arranged onto a square grid is
placed at a distance z from the center of the cell. A uniform
laser beam of wavelength � and field amplitude e0 is shined
onto the sample and, for each particle, the �complex� scat-
tered field distribution in correspondence of the sensor plane
is computed by using the Rayleigh-Gans17 approximation.
The procedure is repeated for every particle, and the overall
scattered field es is obtained by summing up all the contri-
butions. Thus, the scattered intensity f1�r� falling onto the
sensor is computed by letting es interfere with e0 �after
propagation�. We then displace rigidly all the particles by the
vector �r, orthogonal to the optical axis, repeat the proce-
dure, and compute f2�r�. The differential heterodyne speckle
field can be finally recovered as �f12�r�= f2�r�− f1�r�.

All the optical parameters of the simulation were chosen
so to closely reproduce the conditions of the setup of Fig. 1,
in which the light is collected by using a microscope objec-
tive �4�, NA=0.1� and imaged onto a CDD sensor with
physical squared pixels of size 6.67 
m. A summary of all
the used parameters is reported in Table I.

The differential heterodyne speckle field �f12�r� and the

TABLE I. Optical parameters used for simulation Nos. 1 and 2 described in
Sec. III.

Laser wavelength � 0.6328 
m
Cell diameter D 2 mm
Cell thickness h 1.0 mm
Cell-sensor distance z 2 mm
Collecting optics aperture NA 0.1
CCD effective side L 854 
m
CCD number of pixels Npxl�Npxl 512�512
Particle diameter d 300 nm
Number of particles Npart 104

Scattering approximation Rayleigh-Gans
es /e0 �rms� 10−4

Displacement �sim. No. 1� �r 100 
m
Displacement �sim. No. 2� �r± 	�r2
1/2 100±5 
m

FIG. 2. Results of simulation No. 1 corresponding to a horizontal rigid displacement �r=100 
m of all the tracking particles: �a� differential heterodyne
signal �f12�r�, appearing as uniform speckle field where particle displacement is completely hidden; �b� autocorrelation function g12�x� showing one central
positive peak corresponding to G�x ,0� and two lateral negative symmetric peaks corresponding to G�x ,��; �c� horizontal section of g12�x� passing through the
centers of the three peaks; and �d� comparison between radial profiles of G�x ,0� �open circles, left scale� and G�x ,�� �solid circle, right scale�. For the sake
of clarity, the G�x ,�� peak has been multiplied by 2 and inverted. As expected �see Eq. �6��, the two peaks appear to be identical, with a FWHM speckle size
��4.5 
m.
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corresponding correlation function g12�x� are shown in Figs.
2�a�–2�d�, respectively. As one can notice, �f12�r� is a uni-
form speckle field where particle displacement is completely
hidden. Conversely, g12�x� does carry this information in the
double twin dark negative spots �Fig. 2�b��, which are lo-
cated at the same distance �r=100 
m from the central
white positive spot, as shown by the horizontal section of
g12�x� �Fig. 2�c��. One can also notice that the amplitude of
the central positive peak associated with the autocorrelation
G�x ,0� is twice the amplitude of two negative lateral peaks
associated with the cross correlation G�x ,��, consistent with
Eq. �3�. However, Fig. 2�c� is a rather poor sampling of Fig.
2�b�, and a much better analysis can be carried out by taking
the radial profiles of the positive and negative spots, each
one around its own center. The result is reported in Fig. 2�d�,
in which the profile relative to G�x ,�� �solid circles, right
scale� has been doubled, inverted, and compared with the
G�x ,0� profile �open circles, left scale�. Figure 2�d� shows
that shapes of the two peaks are identical, consistent with the
expectation that a single particle displacement �r appears as
convolved with the speckle field autocorrelation function
G�x ,0�, i.e., the white central spot. Finally from Fig. 2�d�,
we can estimate the size of the speckles as the full width at
half maximum �FWHM� of G�x ,0�, obtaining ��4.5 
m.

In the second simulation, we repeated the procedure de-
scribed above, i.e., displacing all the particles by the same
vector �r, but also letting them diffuse transversally accord-
ing to a Gaussian distribution characterized by a root mean
square displacement a= 	�r2
1/2=5 
m. All the other param-
eters were kept identical to the ones used in the first simula-
tion and reported in Table I. Figure 3�a� reports the differen-
tial heterodyne signal �f12�r�, which appears to be
statistically undistinguishable from the one of Fig. 2�a�, car-
rying no evident information on particle motion. Figures 3�b�
and 3�c� show that the correlation function g12�x� exhibits
the same white central spot of Fig. 2�b�, but the lateral spots
are much dimmer and somewhat wider, though centered
around the same displacement vector �r=100 
m. Finally,
Fig. 3�d� compares the radial profiles of G�x ,�� describing

the displacement distributions of the particles �open circles�
with the expected theoretical distribution �solid circles�. The
latter one has been determined by convolving �2D� the
Gaussian distribution used for generating the particle dis-
placements with the autocorrelation function G�x ,0�. The
matching of the two curves is remarkably good, showing that
the method is able to accurately recover particle displace-
ment �or velocity� distributions.

IV. EXPERIMENTAL STUDY OF THE POISEUILLE
FLOW

Let us consider a fluid confined between two parallel
vertical plates distant h and centered in z=0. If a pressure
gradient �dp /dy� is present along the y axis, under the hy-
pothesis of laminar flow, the velocity profile along z is given
by16

v�z� =
1

2�

dp

dy

h2

4
− z2� , �9�

where � is the dynamical viscosity. From Eq. �9� it can be
easily worked out that the probability density function for the
velocity distribution is

P�v� =
1

2v0
�1 − v/v0

, �10�

where v0 is the maximum velocity located in the middle of
the cell �z=0�, given by v0= �dp /dy�h2 /8�. As it can be
seen, the only free parameter appearing in the function P�v�
is the maximum velocity v0, which is ultimately determined
by the experimental conditions and related to the average
velocity by

	v
 = �2/3�v0, �11�

as it can be easily demonstrated by integrating Eq. �10�.
To implement a system exhibiting a Poiseuille flow, we

assembled a homemade cell �1.0 mm thick, 15 mm wide�,
made of two optical windows separated by a compressed and
straightened O-ring �see Fig. 4�. The fluid was a water sus-

FIG. 3. Results of simulation No. 2 corresponding to a particle horizontal displacement �r=100±5 
m: �a� differential heterodyne signal �f12�r�, statistically
identical to Fig. 2�a�; �b� autocorrelation function g12�x� characterized by a central peak �G�x ,0�� identical to the one of Fig. 2�b�, and by two lateral peaks
�G�x ,��� much dimmer and wider than the ones of Fig. 2�b�; �c� horizontal section of g12�x� passing through the centers of the three peaks; �d� comparison
between the radial profiles of G�x ,�� describing the displacement distributions of the particles �open circles, left scale� and the expected theoretical distribution
�solid circles, right scale�. For the sake of clarity, the G�x ,�� peak has been multiplied by 2 and inverted.
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pension of latex particles �diameter 300 nm� and a laminar
flow �Reynolds number Re�1� was induced by the differ-
ence �y in the levels of the fluids in the two jars. The vials’
diameter was much larger than the cell cross section, so that,
in spite of the fact that the pressure gradient �and conse-
quently v0� progressively reduces, it could be considered
constant during the time interval �. The cell was illuminated
with a He–Ne laser beam ��=0.6328 
m, D=20 mm at
1/e2�, the collection optics was a 4� microscope objective
�NA=0.1�, and the observation plane was set at a distance
z=2 mm. The frames were acquired at a rate of 10 Hz and
the overall measuring time was T�30 s. Figure 5�a� shows a
typical differential heterodyne signal �f�r , t ,�� obtained for
�=0.1 s, in which no fluid motion is evident. Conversely, the
fluid flow becomes evident in the spatial 2D-correlation
function g��x� �obtained by averaging ten frames�, as shown

in Fig. 5�b�. This figure shows, besides the central positive
spot associated with the speckle autocorrelation function,
two symmetrical negative elongated streams that start from
the center and become more and more intense, up to a maxi-
mum distance, beyond which they disappear. This feature
indicates the presence of a velocity distribution inside that
region, as expected for a Poiseuille flow. From Fig. 5�b� we
estimated that the maximum fluid velocity was v0

�817 
m/s, which corresponds to an average velocity 	v

= �2/3�v0�545 
m/s. Thus, taking into account that the
thickness and the width of the cell were 1 and 15 mm, re-
spectively, the fluid flux �	v
 times cell cross section� was
8.18 mm3/s.

The velocity probability density distribution P�v�
was recovered by extracting, for each g��x�, the one-
dimensional �1D� section along the flow direction so that
P�v�=g��x=0,y /��. Then, in order to take into account the
time dependence of the maximum velocity v0, for each sec-
tion we determined v0, multiplied P�v� times v0, and res-
caled the velocities by v0. In this way we obtained a time-
independent master curve, which was averaged over the
entire measuring time ��300 frames�. The result is shown in
Fig. 6 �circles�, in which we report, as a function of �
=v /v0, the flow velocity rescaled density distribution v0P�v�.
The data corresponding to the autocorrelation peak ���1�
have been omitted. The typical noise level for this kind of
measurements is indicated by the behavior of fluctuating data
around zero �dots�, which were obtained by taking a �aver-
aged� section of g��x�, not passing for the flow direction. As
it is evident from Fig. 6, the maximum velocity turns out to
be also the most probable one, while the velocities in the
limit �=0 are also populated. Both these are features ex-
pected for a viscous fluid moving between two parallel walls,
that is, faster in the middle and stationary at the boundaries.

A comparison between the data shown in Fig. 6 and the
theoretical prediction of Eq. �10� was carried out by taking

FIG. 4. Schematic picture of the cell used for studying the Poiseuille flow
described in Secs. IV and V. The two vertical optical windows are separated
by an O-ring, compressed, and straightened so to make a cell with a constant
�inset a� and a variable �inset b� cross section. The flow is controlled by the
difference in the liquid levels of the two jars. The upper left and right insets
show the shapes of the cell used for the experiments described in Sec. IV
and V, respectively.

FIG. 5. Experimental heterodyne signal �f�r , t ,�� �a� and the corresponding autocorrelation function g��x� �b� obtained for �=0.1 s, describing the Poiseuille
flow inside the cell of Fig. 4 �inset a�. While in �f�r , t ,�� no fluid motion is evident, g��x� carries this information. Note that the white central peak associated
with G�x ,0� is quite similar to the ones shown in the simulations �Figs. 2�b� and 3�b��; the negative contributions associated with G�x ,�� are completely
different, appearing as elongated streams that die beyond a maximum distance indicated by the white arrows.
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into account the convolution integral given by Eq. �7�. Fol-
lowing the same procedure described in Sec. III, we com-
puted numerically the 2D-autocorrelation function of the
setup, and then convolved this function with the theoretical
probability density distribution P�v� given by Eq. �10�.

In this way we obtained a 2D image whose section, re-
ported in Fig. 6 as a continuous line, exhibits the typical
oscillations that characterize the autocorrelation function.
The matching between this curve and the experimental data
is excellent, showing the effectiveness of the technique for
recovering velocity density distributions.

V. 2D MAPPING OF THE POISEUILLE FLOW

The second important feature of the HSV technique
comes from the almost local character of Eq. �5�. Indeed the
displacement of the speckles at a given position r of the
sensor is determined only by the motion of the N* scatterers
inside the portion D* of the illuminated sample �see Fig. 1�.
Thus, if we locate the �effective� sensor plane very close or
inside the sample �z=0�, it is possible to establish almost a
one-to-one mapping between pixel position and transverse
position inside the cell. In this way it is possible to realize a
mapping of the fluid velocities in the plane transverse to the
optical axis and study velocity gradients present in the fluid.

To show this feature, we modified the cell of Fig. 2 by
moving the O-ring so to taper the cell width similar to the
shape of a funnel �see inset of Fig. 4�. The rest of the setup
was identical to the one described in Sec. IV, but with z=0.
An example of the signal �f�r , t ,�� detected for �=0.1 s is
reported in Fig. 7�a�, which shows a quite uniform speckle
field inside the entire funnel profile. As for the case of Fig.
5�a�, no evidence of fluid motion is appreciable. The analysis
was carried out by dividing the entire frame of Fig. 7�a� into
16�16 patches of 107�107 
m2, and, for each patch, the
autocorrelation function g��x� was carried out. The result is
shown in Fig. 7�b�, in which the Poiseuille streams are fairly

evident �see insets�. As expected, the velocity is higher in the
middle of the channel than at the boundaries, and increases
as the funnel neck gets narrower.

The quantitative analysis of Fig. 7�b� is shown in Fig.
7�c�, in which each dotted segment indicates modulus and
direction of the fluid velocities corresponding to each sub-
frame. The dots indicate the flow direction �entering the fun-
nel from top� that was clearly known a priori from the ex-
periment, and not recovered from the analysis. Note that
some segments fall outside the funnel boundaries: this hap-
pens for those patches that partially intersect the funnel but
have their centers outside the funnel. An overall rendering of
the fluid flow was carried out by adopting the method for
streamline visualization of vector fields proposed some years
ago by Sparavigna et al.18 for showing liquid crystal defects.
The method allows to obtain, starting from a 2D grid of the
vector field �such as that of Fig. 7�c��, a continuous texture of
oriented streamlines which depicts the overall features of the
flow, and, at the same time, contains quantitative information
about its orientation and strength. This is shown in Fig. 7�d�,
in which we used a scale of false colors similar to that of Fig.
7�c�.

In order to check flux conservation, we measured the
fluid flow passing through the various horizontal sections of
the funnel. This check was carried out by recovering, from
the data of Fig. 7�c�, the vertical components of all the ve-
locities, computing the flux in correspondence of each patch,
and summing up the contributions of all the patches lying
along each section. The calculation was worked out by tak-
ing into account Eq. �11� and by considering the effective
cross sections of the patches located across the funnel border.
The result is shown in Fig. 8 �open circles, left scale�,
in which the values of the flux are reported for the 16 hori-
zontal sections of Fig. 7�c�. As one can notice, with the ex-
ception of the last three points �top of the funnel�, the flux is
conserved remarkably well, with an average value of
0.235±0.003 mm3/s and a corresponding accuracy of the or-
der of 1%.

Finally, we also estimated the Reynolds number at the
various horizontal sections. As known, for a noncircular
duct, the Reynolds number can be defined empirically as,19

Re =
	v
dh�

�
, �12�

where 	v
 is the average fluid velocity, � is the fluid density,
� the fluid dynamical viscosity, and dH is the hydraulic
diameter,19 of the duct defined as dh=4�Acs / Pwt�, being Acs

the duct cross section and Pwt the duct wetted perimeter. By
using �=1 g/cm3, �=0.01 g cm−1 s−1, the values for 	v
 re-
covered above, and considering that the cell has a square
cross section of constant thickness �1 mm�, we retrieved the
values of Re at the various horizontal sections. The result,
reported in Fig. 8 �solid squares, right scale�, shows that the
Reynolds number is almost constant along the funnel sec-
tions and is so small to ensure that the flux is fully laminar.

FIG. 6. Master curve describing the velocity distribution of the Poiseuille
flow occurring inside the cell of Fig. 4 �inset a�. The experimental data
�circles� are compared with the expected Poiseuille profile �solid curve� after
taking into account the finite spatial resolution of the optical setup. Typical
noise of the system is shown by the data fluctuating around zero �dots�.
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VI. CONCLUSIONS

We have reviewed and discussed through numerical
simulations and experiments the main features and perfor-
mances of the technique heterodyne speckle velocimetry
�HSV�, which has been recently proposed as a new method
for real-time velocimetry. HSV provides 2D mappings of the
fluid velocities in the direction orthogonal to the optical axis
and, at the same time, distributions of the fluid velocities
over the entire sample thickness �longitudinal direction�.
HSV works well with small �submicron� particles and high
particle concentration can be used as well. When compared

with other classical velocimetry techniques such as PIV,
LSV, LDV, or HPIV, our method appears to be somewhat
less informative �for example, 2D instead of 3D�, but offers
several advantages related to its simplicity, sensitivity, and
linearity. The last feature is probably the most important one,
and it has been directly exploited in this work for the experi-
mental characterization of a fluid moving under the condi-
tions of Poiseuille flow.

In the first experiment we have shown that the velocity
distribution expected in a liquid flowing between the two
parallel vertical planes of a square cell with a constant cross

FIG. 7. �Color online� Images and analysis of the fluid flow through a funnel-shaped cell: �a� example of a differential heterodyne signal �f�r , t ,�� for �
=0.1 s. �b� 2D mapping of the correlation function g��x� obtained by dividing panel �a� into 16�16 subframes; the insets show the Poiseuille streams �see
text�. �c� Velocities mapping obtained from panel �b� by measuring length and directions of the Poiseuille streams. �d� Color rendering of the velocity
streamline texture obtained from panel �c� as described in the text.
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section can be easily recovered and matches rather accurately
the Poiseuille theoretical expectations. In the second experi-
ment the same investigation was carried out onto a funnel-
shaped cell, in which velocity gradients are present. The
technique is able to reconstruct the 2D mapping of the ve-
locity vectors, with the possibility of measuring the fluid flux
within an accuracy of 1%.

ACKNOWLEDGMENTS

We thank A. Sparavigna for having drawn to our atten-
tion the method for streamline visualization and for the
analysis of the data reported in Fig. 7�d�.

1R. J. Adrian, Annu. Rev. Fluid Mech. 23, 261 �1991�.
2M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry: A
Practical Guide �Springer, Berlin, 1998�.

3T. D. Dudderar, R. Meynart, and P. G. Simpkins, Opt. Lasers Eng. 9, 163
�1988�.

4Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 �1964�.
5D. H. Barnhart, R. J. Adrian, and G. C. Papen, Appl. Opt. 33, 7159 �1994�.
6Particle Image Velocimetry: Recent Improvements, edited by M. Stanislas,
J. Westerweel, and J. Kompenhans �Springer-Verlag, New York, 2004�.

7H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler
and Phase Doppler Measurement Technique �Springer, Berlin, 2003�.

8H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673
�2004�.

9M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, Appl. Phys.
Lett. 88, 191101 �2006�.

10M. Giglio, M. Carpineti, and A. Vailati, Phys. Rev. Lett. 85, 1416 �2000�.
11D. Brogioli, A. Vailati, and M. Giglio, Appl. Phys. Lett. 81, 4109 �2002�.
12F. Ferri, D. Magatti, D. Pescini, M. A. C. Potenza, and M. Giglio, Phys.

Rev. E 70, 041405 �2004�.
13J. W. Goodman, Speckle Phenomena in Optics �Roberts, Greenwood Vil-

lage, CO, 2006�.
14J. O. Sherer and L. P. Bernal, Appl. Opt. 36, 9309 �1997�.
15J. W. Goodman, Statistical Optics �Wiley, New York, 1985�, p. 174.
16L. D. Landau and E. M. Lifshitz, Fluid Mechanics �Butterworth-

Heinemann, Oxford, 2002�.
17M. Kerker, The Scattering of Light and Other Electromagnetic Radiation

�Academic, New York, 1969�.
18A. Sparavigna, A. Sanna, B. Montrucchio, and A. Strigazzi, Liq. Cryst. 26,

1467 �1999�.
19G. Gioia and F. A. Bombardelli, Phys. Rev. Lett. 88, 014501 �2001�.

FIG. 8. Fluid flux �open circles, left scale� and Reynolds number �solid
squares, right scale� as a function of the 16 horizontal sections of Fig. 7�c�.
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