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SUMMARY

The shallow subsurface structure of the 2009 April 6 M, 6.3 L’Aquila earthquake surface
rupture at Paganica has been investigated with ground penetrating radar to study how the
surface rupture relates spatially to previous surface displacements during the Holocene and
Pleistocene. The discontinuous surface rupture stepped between en-echelon/parallel faults
within the overall fault zone that show clear Holocene/Pleistocene offsets in the top 10 m of
the subsurface. Some portions of the fault zone that show clear Holocene offsets were not
ruptured in 2009, having been bypassed as the rupture stepped across a relay zone onto a fault
across strike. The slip vectors, defined by opening directions across surface cracks, indicate
dip-slip normal movement, whose azimuth remained constant between 210° and 228° across
the zone where the rupture stepped between faults. We interpret maximum vertical offsets of
the base of the Holocene summed across strike to be 4.5 m, which if averaged over 15 kyr, gives
a maximum throw-rate of 0.23—0.30 mm yr !, consistent with throw-rates implied by vertical
offsets of a layer whose age we assume to be ~33 ka. This compares with published values
of 0.4 mm yr! for a minimum slip rate implied by offsets of Middle Pleistocene tephras, and
0.24 mm yr~' since 24.8 kyr from palaeoseismology. The Paganica Fault, although clearly an
important active structure, is not slipping fast enough to accommodate all of the 3—5 mm yr ™!
of extension across this sector of the Apennines; other neighbouring range-bounding active
normal faults also have a role to play in the seismic hazard.
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1 INTRODUCTION

The 2009 April 6 M,, 6.3 L’Aquila earthquake ruptured a fault
zone running through the town of Paganica, evidenced by field
observations of surface ruptures (Emergeo Working Group 2009;
Falcucci et al. 2009; Galli et al. 2009; ISPRA Report 2009; Messina
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et al. 2009; Boncio et al. 2010; Wilkinson et al. 2010), and fringe
geometries defined by InSAR (Atzori et al. 2009; Walters et al.
2009; Papanikolaou et al. 2010) (Fig. 1). The surface ruptures
exhibited maximum surface throws of 7-12 cm, which are con-
sistent with global values expected for earthquakes of this mag-
nitude (Fig. 2; Wells & Coppersmith 1994). The fault had been
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Figure 1. (a) and (b) Map of active faults with Holocene offsets in central Italy, with interpreted positions of historical surface ruptures. Holocene offsets are
commonly indicated by the presence of bedrock fault scarps that occur along most of the faults shown (see Table 1). Rupture traces are adapted from our own
interpretation of shaking intensities documented in http://storing.ingv.it/cfti4med/, with guidance from Pantosti et al. (1996); Pace et al. (2002); Basili et al.
(2008) ; Galli ef al. (2008) and a large number of papers cited therein. Note that the positions of many of the historical surface ruptures are equivocal and are
discussed in this paper. (c) InSAR fringes (28 mm) and modelled fault trace to the 2009 April 6 M, 6.3 L’Aquila earthquake from Walters et al. (2009) and
(d) Geological map around the town of Paganica, located in (b), modified from Vezzani & Ghisetti (1987); APAT 2005. Surface ruptures are schematic, but
are shown in more detail in Emergeo 2009, Falcucci et al. 2009, ISPRA Report 2009 and Boncio et al. 2010. (e) Detail of a 20 m DEM, showing the dramatic
geomorphic expressions of range-bounding normal faults, and the subdued geomorphic expression of the Paganica Fault. Rf = Rieti Fault; LeF = Leonessa
Fault; MRF = Montereale Fault; LF = Laga Fault; MMF = Mt Marine Fault; AsF = Assergi Fault; CIF = Campo Imperatore Fault; AF = L’Aquila Fault;
SeCoF = Sella di Corno Fault; FiF = Fiamignano Fault; CamF = Campo Felice Fault; CaF = Carsoli Fault; PP = Piano di Pezza fault; VF = Velino Fault;
ScF = Scurcola Fault; FuF = Fucino Fault; TF = Trassaco Fault; LF = Liri Fault; SuF = Sulmona Fault; MF = Maiella Fault; CMF = Cinque Miglia Fault;
SF = Scanno Fault; PF = Pescasseroli Fault; CaSF = Cassino South Fault; Parasano Fault; Roccapreturo Fault.
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Figure 2. Coseismic throw for the 2009 April 6 M, 6.3 L’Aquila earthquake plotted alongside data for other normal faulting earthquakes from Wells &

Coppersmith (1994).

recognized prior to the earthquake, but its slip rate was poorly de-
fined (see Carta Geologica d’Italia Teramo 1962; Bagnaia et al.
1992; Vezzani & Ghisetti 1998; Boncio et al. 2004; APAT 2005;
Pace et al. 2006). The slip-rate was poorly defined because (1) the
ruptured fault displays a subdued geomorphic expression, lacking
an exposed fault plane along an extensive bedrock scarp, at least
near the centre of the ruptures at Paganica, that typifies other active
faults in the area (Galadini & Galli 2000; Roberts & Michetti 2004;
Papanikolaou et al. 2005) (see Table 1) and (2) to our knowledge,
no detailed palacoseismic studies of this fault zone had been pub-
lished prior to the earthquake. Thus, it was unclear how the Pa-
ganica fault zone related, in terms of its slip-rate, to neighbouring
range-bounding faults that have more obvious geomorphic signs
of Holocene activity such as bedrock scarps, and have published
values for their slip-rate defined by palaeoseismic studies (Fig. 1;
Table 1).

The observations in this paper address the uncertainty regard-
ing Holocene slip-rates, the rate of deformation and implied earth-
quake recurrence intervals associated with the Paganica fault zone.
We show that the portion of the fault zone within which the 2009
ruptures occurred contains faults whose individual Holocene verti-
cal offsets are small (<4.5 m) implying throw-rates averaged since
15 kyrs of 0.23-0.30 mm yr~'. These individual faults are arranged
in en-echelon/parallel geometries, so throw-rates should be summed
across strike. However, we find no evidence for summed throw-rates
high enough to accommodate measured rates of regional extension
(3-5 mm yr~!; D’ Agostino et al. 2008), implying that at least some
of the faults mapped by others (see Fig. 1a and Table 1; Bosi 1975;
Vittori 1994; Giraudi & Frezzotti 1995; Galadini & Galli 2000;
Michetti et al. 2000; Galli et al. 2002; Pizzi et al. 2002; Roberts &
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Michetti 2004; Papanikolaou et al. 2005; Pace et al. 2006; Roberts
2008) along range-bounding escarpments are active and contribute
to the extension, consistent with published palaecoseismic studies
(Galli et al. 2008).

2 BACKGROUND TO ACTIVE FAULTS,
EARTHQUAKE SURFACE RUPTURES,
SLIP-RATES AND FAULT SCARP
MORPHOLOGIES NEAR L’AQUILA

The area around L’Aquila is part of the zone containing active
normal faults that stretches from the northern Apennines to Cal-
abria (Anderson & Jackson 1987; Michetti et al. 2000; Valensise &
Pantosti 2001a; Pace et al. 2006; Basili et al. 2008; Roberts 2008)
(Fig. 1). Historical earthquakes, and those recorded by palaeoseis-
mology, have produced coseismic surface ruptures with vertical
offsets that are at least as large as 0.1-2.0 m (Uria de Llanos 1703;
Oddone 1915; Westaway & Jackson 1987; Pantosti et al. 1993;
Blumetti 1995; Pantosti et al. 1996; Galli et al. 2008; see Palumbo
et al. 2004 for possible evidence of even larger amounts of co-
seismic surface slip). Such coseismic surface offsets, if repeated in
large magnitude earthquakes, would produce a clear expression in
the geomorphology in the form of prominent scarps along the active
faults (Blumetti ef al. 1993). However, here we point out that the
form of the scarp varies, depending on the local lithologies, sedi-
mentation and erosion rates and the rates and cumulative amounts
of vertical offset (including the durations of interseismic periods)
across the active fault at each site in question. This suggests three
main scarp forms, which are described below, although note these

Q6

Q7

Q8




Q9

4  G.P Roberts et al.

Table 1. Throw-rates on faults around L’Aquila based on offsets across post-glacial fault scarps (12—18 kyrs), palacoseismological trench investigations and
offset landforms and sediments.

Throw-rate
Fault name Observation (mm yr~ 1) Reference
Paganica GPR and trench data <0.23-0.3 This paper
Paganica Offset Quaternary terraces with Tephras >0.4 Messina et al. (2009)
Assergi Quaternary? Holocen offset 0.7-1.0 Barchi et al. (2000); Pizzi et al. (2002)
Cinque Miglia Trench into Holocene 0.3-0.5 D’Addezio et al. (2001)
Mte. Marine Post-glacial scarp 15 + 3 ka 0.7+£0.3 Faure Walker (2010)
Mte. Marine Offset of late Pleistocene slopes and trenches 0.25-0.43 Galadini & Galli (2000)
Campo Felice Post-glacial scarp 15 + 3 ka 0.6 £0.2 Faure Walker (2010)
Campo Felice Offset moraines 0.8-1.3 Galadini & Galli (2000)
Campo Imperatore Post-glacial scarp 15 + 3 ka 1.7+0.7 Faure Walker (2010)
Campo Imperatore Post-glacial scarp 18 ka 0.8-1.0 Giraudi & Frezzotti (1995)
Campo Imperatore Trench into Holocene >0.68 Galli et al. (2002)
Assergi Post-glacial scarp 15 & 3 ka 09+0.3 Papanikolaou et al. (2005)
Fiamignano Post-glacial scarp 15 + 3 ka 1.0 Papanikolaou et al. (2005)
Fucino Offsets of late-Pleistocene and Holocene deposits 0.37-0.43 Galadini & Galli (2000)
Fucino (Ovindoli-Pezza) Offsets of 0.5 Ma tephras 0.5-1.0 Valensise & Pantosti (2001)
Fucino Trench into Holocene 0.7-1.2 Pantosti et al. (1996), D’ Addezzio et al. (1996)
Fucino Summed rate on the San Benedetto dei Marsi Holocene 2.0 Roberts & Michetti (2004)
trench and Parasano and Ventrino post-glacial scarps
Laga Offsets of late-Pleistocene and Holocene deposits 0.7-0.9 Galadini & Galli (2000)
Mte. Ocre GPR, trench and scarp data 0.2+0.1 Salvi et al. (2003)
Parasano Post-glacial scarp 15 + 3 ka 0.6 +£0.2; Faure Walker et al. (2009)
0.7 £ 0.0.3;
04£02
Pescasseroli Post-glacial scarp 15 £ 3 ka 0.6+0.2 Roberts & Michetti (2004)
Pettino Offset of alluvial terrace 0.47-0.86 Galadini & Galli (2000)
Roccapreturo Post-glacial scarp 15 & 3 ka 03+0.7 Faure Walker (2010)
Roccapreturo Offset of 0.15-1.5 Ma landforms 0.33-0.43 Bertini & Bosi (1993), Galadini & Galli (2000)
Trassaco Fault Post-glacial scarp 15 & 3 ka 05+0.2 Faure Walker (2010)
Tre Monti Post-glacial scarp 15 + 3 ka 0.2-0.5 Faure Walker (2010)
Velino-Magnola Post-glacial scarp 15 & 3 ka 0.7 Piccardi et al. (1999)
Velino-Magnola Post-glacial scarp 15 & 3 ka 0.6 £0.2 Faure Walker (2010)

Notes: Where a fault has several values, the values do not conflict because values are reported for different positions along the strike of the fault in question,
reflecting throw-rate gradients along strike. A more complete review of throw-rates in Lazio Abruzzo is given in Faure Walker (2010). Alternative reviews are

given by Galadini & Galli (2000) and Pace et al. (2006).

forms are a continuum of scarp morphologies (values given for rates
are indicative rather than exact values; refer to Table 1 for examples
near L’ Aquila).

(1) Type 1 Scarps—with high throw-rates (>0.2-0.4 mm yr '),
low erosion and sedimentation rates (<0.2-0.4 mm yr ') and cu-
mulative offsets of several hundred metres or more of pre-rift strata
(Mesozoic/Tertiary), bedrock scarps form along the active normal
faults (if the bedrock is carbonate that is resistant to erosion) (see
Piccardi et al. 1999; Galadini & Galli 2000; Roberts & Michetti
2004; Papanikolaou et al. 2005 or examples, such as those along
the Velino, Assergi, Mt Marine, Campo Imperatore, L’ Aquila and
Sulmona faults shown in Fig. 1b). Such bedrock scarps offset slopes
formed during the high erosion and sedimentation rates that existed
during the last glacial maximum (ca. 18 ka) (see Roberts & Michetti
2004 for details), and hence post-date this age. Such ages have been
proved through in situ 3°Cl cosmogenic exposure dating, with fault
planes on the bedrock scarps dated to ~12 ka in the Apennines (e.g.
Palumbo et al. 2004; Schlagenhauf 2010). Such sites will form
where there is a relatively small sediment flux from the footwall of
the normal fault, and as such, will be characterized by the lack of
local footwall drainage courses.

(2) Type 2 Scarps—where sedimentation rates are higher, such
as where active faults cross alluvial fans at the mouths of footwall

drainage courses, yet throw-rates are still >0.2-0.4 mm yr ', the
scarp may be subtle, or obscured. In such cases activity on the fault
can be proven if a palacoseismic trench is excavated with a view to-
wards examining offsets of Holocene sediments (see Michetti et al.
1996; Pantosti et al. 1996; Galli et al. 2002; Galli et al. 2008 for
examples along the Fucino/Piano di Pezza, Campo Imperatore and
Cinque Miglia Faults). At such sites, Holocene organic-rich sed-
iment, with human artefacts in places, such as ceramics, overlie
organic-poor Pleistocene conglomerates/breccias that formed dur-
ing and prior to the last glacial maximum. Alternatively, geophysical
techniques such as ground-penetrating radar can be used to image
offsets of the Holocene (e.g. Salvi et al. 2003; Jewell & Bristow
2004).

(3) Type 3 Scarps—if throw-rates on the fault are low (<0.2—
0.4 mm yr '), subtle scarps in Quaternary/Holocene sediment
can be preserved if the sedimentation/erosion rates are also
<0.2-0.4 mm yr . Such low throw-rates typically result in rel-
atively small cumulative vertical offsets (<1 km) in the Apen-
nines because faults have only been active since ~2-3 Ma or
less, and relatively small vertical offsets of the Holocene (<
~4-6 m if organic-rich sediments started to form during the
demise of the last glacial maximum at 15-18 ka). Such sites
will form where there is a very low sediment flux from the
footwall of the normal fault (<0.2-0.4 mm yr ! sedimentation
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rate), and as such, will be characterized by the lack of obvious
footwall drainage courses. Such sites are relatively uncommon in
the literature (although see Salvi et al. 2003 for a possible example).
Offsets of the Holocene are needed to prove activity, and this can be
achieved by palaeoseismic trenching or using shallow geophysical
techniques. Such subtle scarps can be disturbed and hence obscured
by human activity.

Prior to the 2009 L’Aquila earthquake, the ruptured fault near
Paganica, downthrowing Holocene and Pleistocene continental de-
posits against post-Mesozoic sediments, where exposed NW of the
large, incised footwall drainage course of the Raiale gorge (Fig. 1d),
was considered by some of the present authors to be a possible ex-
ample of a Type 3 morphology. This is because no clear bedrock
scarp was obvious near Paganica (the nearest being on en echelon
structures to the NW—see Boncio et al. 2010), yet the lack of ob-
vious drainage courses immediately in the footwall of the scarp has
allowed preservation of a subtle and perhaps equivocal 4—5-m high
scarp in colluvium on a ca. 150-m wide, 20-30-m high escarpment
(Figs 3c and d). If this equivocal scarp was indeed an indicator of
fault activity, and not modified by human activity, the above im-
plies that the throw-rate would be relatively low compared to other
faults around L’ Aquila (Table 1), perhaps with a throw-rate value of
<0.2-0.4 mm yr ', although we emphasize that we are aware of no
palaeoseismic study confirming such values published prior to the
earthquake. Such low rates of activity on the Paganica fault zone
may be supported by the observation that the total vertical offset
of Mesozoic-Cenozoic strata across the fault is 200-300 m, a value
that is small compared to neighbouring faults that have throws of
600—-1200 m (e.g. Mt Marine & Assergi Faults; see Pizzi et al. 2002;
Roberts & Michetti 2004). If it is assumed that all the faults started
to slip at the same time (2-3 Ma or less; see Roberts & Michetti 2004
for a discussion), the observation of relatively small post-Mesozoic
throw is consistent with low throw-rates and a Type 3 Scarp at
Paganica. Despite the low throw-rates envisaged for the Paganica
fault zone, evidence for active faulting was present and recognized,
in the form of incised footwall drainage. The Raiale gorge (Figs 1d
and e), incises down into the footwall of the Paganica fault zone,
with incision ending at the fault trace, indicating differential verti-
cal motions across the fault in the Quaternary. We are aware of no
studies published prior to the earthquake that used observations of
incision to derive a throw-rate for the Paganica fault zone. Since the
earthquake, Messina et al. (2009) have examined tephras around
the Paganica fault zone to study rates of vertical offset. Through
microprobe and lithological comparison of fresh glass shards with
dated tephras from elsewhere in Italy, they identify tephras that may
correlate with eruptions of the Colli Albani and Sabatini volcanoes
in western Italy at ~560, ~456, ~450 and ~360 ka. Messina ef al.
(2009) use these ages alongside the elevations of the tephras to
suggest a few hundred metres of offset across the Paganica fault
zone since the Middle Pleistocene, stating a ‘minimum slip-rate of
~0.4 mm yr ’. Also, a palaeoseismic study of faults in a trench
across the ruptures published since the earthquake (Boncio et al.
2010), suggests a throw-rate of 0.24 mm yr ! for post-24.8 kyr
activity based on radiocarbon dates.

Other studies discuss the possibility of higher rates of activity
on the Paganica fault zone. Pace ef al. (2006) suggested a possible
slip-rate of 0.6 mm yr~! for what they term the ‘Paganica Fault’.
However, Pace et al. (2006) did not provide new data on the rates of
deformation, instead citing reviews of regional active fault locations
as the source of the value (Barchi et al. 2000; Valensise & Pantosti
2001b). Chiarabba et al. (2009) suggest that, ‘The present obser-
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vation that the Paganica fault is accommodating the extension in
the central Apennines area [3-5 mm yr ! according to D’ Agostino
et al. (2008)] poses unambiguous evidence that at least some of
the mapped faults are no longer active’ (presumably referring to
faults shown in Fig. 1b). Chiarabba ef al. (2009) also point out that
‘the role of the large normal faults, mainly mapped by geomorpho-
logic approach, still needs to be understood’ (see Figs 1b and e for
maps of such ‘large normal faults’); ‘Are they representing poten-
tial structure for M > 6.5 earthquakes, or do they include fossil
or creeping segments?’ Also, following this theme, that emphasizes
the possibility of high rates of activity across the Paganica fault, Ter-
tulliani et al. (2009) suggest that the Paganica fault may have been
the source of previous > M 6 historical earthquakes that have caused
damage to L’Aquila in 1461 A.D. and 1762 A.D.. However, these
authors note that ‘~three-centuries recurrence time of the events
would be too-short rate when compared to mean recurrence times
calculated for other seismogenic faults in peninsular Italy (Galli
et al. 2008)’.

The above shows that there is some debate regarding the rate of
activity on the Paganica fault zone and surrounding faults, and
this has implications for the seismic hazard represented by the
structures. If the rate of throw accumulation is low compared to
other faults in the area, the probability of surface rupture on the
Paganica Fault will be low in a given time period compared to
that for faults with Type 1 or Type 2 scarp morphologies which
are common in this part of the Apennines (see Roberts et al.
2004 and Table 1), assuming similar-sized slip events for all these
faults. The 2009 L’Aquila earthquake would then be an example
of rupture on a fault that had a relatively low probability of rup-
ture. However, the high activity rates suggested by the work of
Tertulliani et al. (2009) and Chiarraba et al. (2009), and the rela-
tively high slip-rate and probability of rupture suggested by Pace
et al. (2006), mean that the low slip-rate scenario for the Pagan-
ica fault suggested above should be re-examined. We have inves-
tigated the rates of Holocene activity around the ruptured fault in
the Paganica fault zone using ground-penetrating radar to augment
observations from a trench produced by water-escape from a pipe
ruptured by the L’Aquila earthquake main shock (Falcucci et al.
2009; Boncio et al. 2010).

3 GEOLOGICAL SETTING OF SURFACE
RUPTURES ALONG THE PAGANICA
FAULT ZONE

The Paganica fault zone is not composed of a single fault trace; here
we describe the architecture of the fault zone in detail. A ca. 20 km-
long Paganica fault zone is clearly shown on published geological
maps of the area (Fig. 1d; Vezzani & Ghisetti 1998; APAT 2005).
Where exposed in the Raiale gorge near Paganica, the fault separates
a hangingwall succession of Upper Eocene-Miocene marly lime-
stones and calc-arenites overlain by Holocene-Pleistocene fluvio-
glacial, alluvial, colluvial and lacustrine sediments, from footwall
Miocene carbonates and calc-arenites overlying Mesozoic bioclastic
carbonates (Fig. 1d). The hangingwall Holocene-Pleistocene sed-
iments are suggested to be a few hundred metres thick (Messina
et al. 2009), implying that the total throw of the Mesozoic across
the Paganica Fault is 200-300 m; however, note that the value
may be less as drill holes for water research penetrated limestones
(Miocene?) at 30-70 m depth. Importantly, the surface ruptures
occurred about 300 m into the hangingwall of the fault offsetting
the Mesozoic marked on the map of Vezzani & Ghisetti (1998)
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Figure 3. (a) Map of surface ruptures/cracks and subsurface faults inferred from ground-penetrating radar data, overlain on an Ikonos image (located in
Fig. 1d). Surface ruptures are schematic as individual cracks spaced a few metres apart across strike cannot be shown at this scale. (b) Inset map showing
the location of the water pipe and roads. H = Houses that may be responsible or refraction hyperbolae on Fig. 6. (c) View of the gorge excavated by water
escape from the ruptured water pipe. (d) Topographic profile from LiDAR data showing the subtle morphology of the scarp [located in (a)]. Fault 1 and Fault
2 correlate with the same in (a). F2, F3, F4 and F5 in red correlate with fault numbers in Boncio et al. (in press). (e) Along-strike-profiles of the rate of
vertical Holocene offset (throw-rate) measured with ground-penetrating radar data (summarizing Figs 5, 6, 7 and 8). Uncertainty in throw-rate interpretation
is indicated. Note that if the rates from Sites 2 and 3 are summed across strike, a value of 0.2-0.3 mm yr~! is gained; thus the throw-rate profile remains at a
constant rate across the relay zone, showing that the faults are sharing the deformation over a Holocene timescale. A tentative correlation between the faults
visible in the water-pipe gorge and those interpreted from GPR is shown (compare d and e).
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(Fig. 1d). At this location, a fault downthrows Holocene-Pleistocene
fluvio-glacial, alluvial, colluvial and lacustrine sediments against
an Upper Pleistocene alluvial sequence of sand, silt and conglom-
erate overlying Oligocene-Miocene carbonates and calc-arenites.
It is here that the fault may be expressed as a subtle and perhaps
equivocal 4-5-m high scarp on a ca. 150-m wide, 20—30-m high
escarpment, although the 4-5-m high scarp may be modified by
human activity. It appears that most of the post-Middle Pleistocene
activity has occurred in this portion of the fault zone (Messina et al.
2009). However, it may be that the fault that ruptured in 2009 and
the fault offsetting the Mesozoic in the Raiale gorge merge at depth,
so we refer to both structures as being part of the Paganica fault
zone.

Surface ruptures produced by the 2009 earthquake in the vicinity
of the town of Paganica are best displayed NW and SE of the Raiale
gorge on an abandoned Pleistocene alluvial fan surface that has been
incised by the modern river. The ruptures are a set of discontinuous
ground cracks and surface faults that, individually, can be traced
for distances of 15-20 m. Together, these discontinuous features
form a NW-SE trending zone of surface rupture that, as a semi-
continuous structure, can be traced for ~2.5 km along strike, and
are considered to be the un-ambiguous primary surface expression
of the earthquake rupture due to its consistency and continuity
(Emergeo Working Group 2009; Falcucci et al. 2009; ISPRA Report
2009). However, note that other, less continuous ground cracks and
ruptures have been reported along a zone that may be as long as
13-19 km in length (see Galli et al. 2009; Boncio et al. 2010).
Vertical offsets of up to 12 cm were measured, as were horizontal
opening values across cracks of a similar amount (Boncio et al.
2010).

We have chosen to study sites around a water pipe that was rup-
tured in the earthquake (Fig. 3). The ~70 cm diameter pipe was
at ~40 bars water pressure, carrying water to the city of L’Aquila
from the nearby mountains. The water pipe ruptured in the main
shock, as reported by local people, who heard water escaping from
the pipe during the early morning of April 6. The ensuing water
jet excavated a gorge through Holocene and Pleistocene gravels,
allowing examination of the subsurface stratigraphy (Fig. 3c). In
the vicinity of the water pipe, the ruptures occurred along a subtle
fault escarpment, with the ground rising by 20-30 m over dis-
tance of about 150 m (Figs 3c and d). The ruptures occurred about
15 m into the hangingwall of a poorly defined 4-5 m scarp that
exists about halfway up the 20-30-m high escarpment (Fig. 3d). In
the vicinity of the area we study near the ruptured water pipe, there
are no significant footwall drainage courses, and the fan surface has
abandoned due to incision of the modern river, so we expected the
site to have a very low Holocene sedimentation rate (see below).
It is important to note that the scarp and escarpment are not easy
to recognize in the field, as the area contains many concrete con-
structed houses, tarmac/concrete roads and small quarries (Fig. 3a),
and has therefore been modified by human activity; the topographic
profile we scanned with LiDAR (Fig. 3d), is probably the only rel-
atively un-disturbed portion of the scarp for hundreds of metres
along strike, and itself does not cover the entire across-strike width
of the escarpment due to building and road construction.

4 METHODS

We scanned the topography using a Riegl 420 terrestrial laser scan-
ner (LiDAR) to make topographic profiles for ground-penetrating
radar, supplementing these data with a total station. We used the
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PulseEkko 100 GPR system, with 200 MHz antennae at five sites
along the rupture, of which we report four here, to concentrate on
the area shown in Fig. 3. The 200 MHz antennae were spaced
50 cm apart and were repositioned every 10 cm on stepwise-
transects. We used Ekko_View Deluxe 42 and EKKO_View soft-
ware to process the raw data and produce depth converted GPR
images of the subsurface. We used a value of 0.Im ns™! to depth
convert the data, as this is a typical value for sediment, and we
conducted a common midpoint survey (CMP) and a study of short
wavelength reflection hyperbolae to constrain this value. We used
the following steps and filters to process the data:

(1) Data sets were saved in different files, so the data were
merged.

(2) The ‘chop time’ data option was used to remove the air wave
(first layer).

(3) The data were shifted using a velocity of 0.1 m ns™!.

(4) We applied a ‘dewow’ filter.

(5) The time window was reduced to remove noise from depth.

(6) A vertical time filter was applied to remove high frequency
noise.

(7) A spatial median filter (width: 7, Mean: 3): was applied to
eliminate noise.

(8) We applied either an Automatic Gain Control (AGC) or a
Spreading and Exponential Compensation Gain (SEC) to enhance
the quality of the GPR image (Window width: 0.15, Max. value:
800).

(9) We added topography using a.top file of the elevations and
distances obtained from the LiDAR and/or total station.

We also mapped the ruptures in the field within a few hundred
metres of the ruptured water pipe using hand-held GPS receivers
(see Emergeo Working Group 2009; Galli et al. 2009, ISPRA Re-
port 2009; Boncio et al. 2010 for more extensive mapping), and
measured the kinematics of the ruptures using a compass and cli-
nometer.

5 RESULTS

First, we augment the observations of Emergeo Working Group
(2009); Falcucci et al. (2009); Galli et al. (2009); ISPRA Report
(2009) and Boncio ef al. (2010) with slip-vector azimuths measured
with a compass and clinometer (Fig. 4). Slip-vector azimuths were
in the range of 210-232° over a distance of ca. 2.5 km along the
strike of the fault, with a mean vector azimuth of 218°. The slip-
vector azimuth is almost perpendicular to the strike of the ruptures
(~127°), indicating a pre-dominant dip-slip normal motion. This
slip-vector azimuth was maintained despite the fact that the rupture
was discontinuous and appeared at different heights on the subtle
escarpment along the Paganica fault zone. For example, in the area
100 m to the east of the ruptured water pipe, the rupture deviated
from its general NW—SE orientation, to run as discontinuous cracks
in an E-W direction, climbing in elevation by ca. 20-30 m between
the water pipe and a hairpin bend on a tarmac road (Figs 3a and
b). This elevation was maintained as the discontinuous cracks con-
tinued to the SE near and/or through some houses and into a small
quarry, before they turned into a NNW-SSE orientation, descend-
ing by ca. 30 m as the cracks crossed a concrete road (Fig. 3a, Site
4), and then the main tarmac road in the Raiale gorge (Fig. 1d).
This change in elevation and strike of the zone containing the dis-
continuous surface ruptures suggested that the subtle escarpment
along the ruptured portion of the fault zone was formed as a result
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Figure 4. (a) Map of sites from which the kinematics of the 2009 surface ruptures were measured (UTM coordinates). (b) Variation in the slip-vector azimuth
along strike measured across ground cracks. Error is similar in size to the symbols. (¢) Lower hemisphere stereographic projection of opening vectors across
ground cracks from the 2009 ruptures. (d) Typical field measurements supporting (a), (b) and (c) (from the concrete road at Site 4).

of activity on an anastomizing set of small faults that make up the
overall fault zone. This is consistent with observations of the fault
zone in the trench excavated by water escape from the ruptured wa-
ter pipe, where at least four faults can be seen at outcrop within the
conglomerates, sandstones and soils (Boncio et al. 2010; Fig. 3d).
It is also consistent with relay zone, en-echelon geometries for the
mapped surface ruptures reported along strike, south east of the
Raiale gorge (Emergeo Working Group 2009; ISPRA Report 2009,
see their Annex 3, (Boncio et al. 2010). This prompted the second
part of our study to investigate the shallow subsurface structure
using ground-penetrating radar to ascertain how the 2009 ruptures
relate spatially to previous Holocene and Pleistocene slip within
the Paganica fault zone, and possible relay zone structures in the
subsurface that do not have a prominent geomorphic expression.
Ground-penetrating radar revealed a clear fault zones at four sites

(Fig. 3).

5.1 Site 1-20-30 m N'W of the ruptured water pipe across
a field

In this location, ruptures from the April 6 earthquake were found
as three parallel discontinuous fractures spaced 2-3 m apart, as-
sociated with bending of the ground surface (Boncio ef al. 2010).
Three palaeoseismological studies of the trench exposed through
rupture of the water pipe published since the earthquake have pro-
vided radiometric ages for sediments deformed by faults exposed
in the trench (Falcucci et al. 2009; Galli et al. 2009; Boncio et al.
2010). Fig. 3d summarizes their findings, showing that a number
of faults contribute to the deformation. Boncio et al. (2010) sug-
gest a throw-rate of 0.24 mm yr' for post-24.8 kyr activity mea-
sured in the water pipe trench, that is shared between the faults
that they name F5, F4 and F3 (see Fig. 3d). The three paral-
lel fractures exposed on the ground surface 20-30 m to the NW
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appear to correlate with F5 and faults in its footwall (Boncio et al. A 46-m long GPR survey running NE-SW across the ruptures
2010). Below, we attempt to correlate faults and rates of deforma- achieved depth penetration of about 10 m on a topographic slope
tion between the water pipe trench and our GPR line 20-30 m to that decreased in elevation by 20 m over a horizontal distance of
the NW. 46 m (Fig. 5).
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Figure 5. Site 1 (a) Un-interpreted, and (b) interpreted depth converted ground-penetrating radar profiles. Vertical scales are time in nanoseconds and depth
in metres. The GPR data were collected on a soil covered slope.
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A stratigraphy of cemented, white conglomerates lying beneath
ceramic-bearing Holocene colluvium that is exposed in the trench
excavated by water escape from the ruptured water pipe (Fig. 3c),
has also been imaged in the subsurface using GPR. The cemented,
white conglomerates (probably Unit U9 of Boncio et al. 2010), are
characterized by thin, continuous and parallel radar returns in both
the footwall and hangingwall of the rupture. At depth, these returns
are offset by a steeply dipping fault(s) on the GPR profile; the ver-
tical offset of this unit is § m. As the 2009 earthquake produced
only ~10 cm of vertical motion at this site, the rest of the 8 m off-
set must be attributed to previous surface faulting along this active
fault. Overlying the cemented, white conglomerates both at out-
crop and imaged by the GPR, are organic-rich colluvial conglom-
erates and soil that in places contain ceramic fragments (Boncio
et al. 2010). These organic-rich colluvial deposits have been dated
to 5718 B.C./5467 B.C. to 5403 B.C/5387 B.C. via radiocarbon
dating (Falcucci et al. 2009), ~5 kyrs by Boncio et al. (2010) and
2.5ka-900 A.D. with AMS (Galli et al. 2009). These Holocene ages
are consistent with the organic-rich nature of the sediments and the
fact that they contain fragments of ceramics, which must be asso-
ciated with the youngest reported ages. The base of this Holocene
unit is clear in the footwall of the rupture on the GPR profile.
The basal contact dips towards the rupture, and incises down into
the underlying cemented, white conglomerate in the 4 m closest to
the interpreted fault. The base of the Holocene is less easy to inter-
pret in the hangingwall of the fault on the GPR profile. The base
Holocene is either (1) a subhorizontal radar return defining the top
of the aforementioned white, cemented conglomerate (Interpreta-
tion B in Fig. 5b), or (2) is a SW-dipping radar return that is above,
and separated from the white, cemented conglomerate by a wedge-
shaped unit, truncating the white-cemented conglomerate between
40-46 m along the profile at an angular unconformity (Interpreta-
tion A in Fig. 5b). If the former is correct, the vertical offset of the
base Holocene across the fault is 8 m implying a throw-rate of 0.53
mm yr !, assuming an age for this contact of 15 ka (the oldest prob-
able age of organic-rich sediments that would have formed after the
demise of the last glacial maximum) (Interpretation B on Fig. 5b).
If the latter is correct, the vertical offset of the base Holocene across
the fault is a maximum of 3.5 m implying a maximum throw-rate
of 0.23 mm yr~!, again assuming an age for this contact of 15 ka
(Interpretation A on Fig. 5b). We are unsure which of these two
interpretations is correct as we have no age control along the line of
the GPR profile. However, combined “C dating of organic material
(34 970 + 470 BP) and U/Th dating of a tufa fragment (33 000 £+
4100 yr BP) by Falcucci ef al. (2009) in the neighbouring trench
suggests that the wedge-shaped unit may date from ~33 ka (this
probably correlates with units U7 and U8 of Boncio et al. 2010, that
they dated to 24 890 £ 140 yr BP), supporting our Interpretation
A. Thus, we prefer Interpretation A on Fig. Sb, where the rate of
Holocene vertical offset is 0.19-0.23 mm yr !, depending on the
age assigned to the base of the ceramic-bearing, organic-rich sed-
iments (15-18 ka). Importantly, this rate is similar to that implied
from the offset of the top of the cemented white conglomerate (8 m
offset; 33 ka; 0.24 mm yr_l), assuming its age is 33 ka. Also, note
that the fault that is clear at depth, truncating the radar returns that
we interpret as the white, cemented conglomerate, is not very clear
in the Holocene deposits in the GPR data, although field observa-
tions confirm that three parallel fractures and a warp of the ground
surface formed at precisely this location in the 2009 earthquake.
The white, cemented conglomerate underlies the Holocene, and the
wedge-shaped unit that probably dates from ~25-33 ka, and is thus
in interpreted to be >25-33 ka, perhaps dating from the Middle

or Upper Pleistocene. The white, cemented conglomerate, and an
underlying unit that is not exposed at outcrop with less clear radar
returns, show possible, but equivocal ‘lap’ relationships with under-
lying angular unconformities near the base of imaged section. We
tentatively interpret these as offlap of alluvial fan sediments above
basal erosional truncation surfaces. However, the base of this unit is
poorly imaged and we indicate this with a dashed line and question
marks on Fig. 5.

Overall, the fault imaged with GPR has not been directly traced
into the water pipe trench due to lack of outcrop, but we suggest an
interpretation where it correlates with the surface rupture location
shown in Figs 3¢ and d. Our preferred throw-rate of 0.19-0.23 mm
yr~ ' compares with the rate of 0.24 mm yr ! for post-24.8 kyr ac-
tivity measured in the water pipe trench, that Boncio et al. (2010)
suggest is shared between the faults that they name F5, F4 and F3
(see Fig. 3d). We suggest the Holocene throw associated with the
fault interpreted on our GPR line may be shared along-strike be-
tween faults F5, F4 and F3 of Boncio ef al. (2010). This may explain
why displacements are less on the ruptured fault F5 in the water pipe
trench (1.0 m, Boncio et al. 2010) compared to the ruptured fault
imaged with GPR (3.5 m). Note that in this interpretation, the loca-
tion of the ruptured fault does not coincide exactly with the poorly
defined scarp measured with LiDAR (Fig. 3d). Instead, the rupture
is ~20 m into the hangingwall, with Holocene slip shared possibly
between faults F5, F4 and F3. The degraded nature of the scarp
suggests that it may be an erosional feature on the unconsolidated
slope, where a fault scarp associated with three closely spaced sub-
surface faults (F5, F4 and F3) has formed, eroded and thus retreated
upslope, and not a simple fault scarp. Thus, although more strain
may be accommodated across strike of the ruptured fault, we have
found no evidence for rates of Holocene throw accumulation higher
than 0.23-0.30 mm yr '

5.2 Sites 2 and 3-70 m SE of the ruptured water pipe
across tarmac roads

Site 2 is a 38-m long survey running NE-SW along a tarmac road
that achieved depth penetration of about 10 m on a topographic
slope that decreased in elevation by 10 m over a horizontal distance
of 38 m (Fig. 6). This survey did not cross the rupture (Fig. 3), but
was along strike from Site 1, and across strike from Site 3. Site
3 is a 16-m long survey running NE-SW across a hairpin bend
in a tarmac road (Fig. 7). It achieved depth penetration of about
10 m on a topographic slope that decreased in elevation by 2 m over
a horizontal distance of 16 m. This survey did cross the rupture,
which offset the surface of the tarmac road. Although Sites 2 and
3 appear quasi-continuous on the map in Fig. 3, they are separated
by a vertical drop of several metres across a concrete road parapet
(Fig. 3b), explaining why we did not combine these sites into a single
survey. Site 3 is also ca. 8 m along strike from Site 2. However, as
they neighbour each other, we interpret them together.

Sites 2 and 3 appear to show very similar stratigraphic pat-
terns to that at Site 1. We use the stratigraphy in the trench at
the ruptured water pipe (70 m away to the NW), and comparison
of radar-return patterns from Site 1 to aid our interpretation. Our
interpretation of Site 2 is complicated by the existence of possi-
ble hyperbolic reflections produced by air returns from a nearby
concrete house. The radar signal is non-directional, and hence can
sample objects above the ground surface, erroneously placing them
at depth; such air-return signals can be recognized because they have
relatively long wavelength, hyperbolic shapes. Site 2 runs close to
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Figure 6. Site 2 (a) Un-interpreted, and (b) interpreted depth converted ground-penetrating radar profiles. Vertical scales are time in nanoseconds and depth
in metres. The profile was collected on a tarmac road. Convex upwards hyperbolae in the upper part of the section are interpreted to be from point sources
(subsurface boulders?). Long wavelength hyperbolae in the lower right of the view may be air returns from nearby houses (see Fig. 3), producing uncertainty
in the interpretation of the hangingwall geometry indicated with ‘question marks’.
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in metres. The profile was collected on a tarmac road.

a concrete house, and we note the existence of possible examples
of hyperbolic reflections from this house in the data from Site 2
(Fig. 6a).

Despite the occurrence of possible hyperbolic reflections pro-
duced by air returns from a nearby house, we suggest that Site 2
shows truncation of radar returns at depth that resemble a fault. In
detail, we interpret thin, continuous and parallel radar returns in
the hangingwall as the lateral continuation of the white, cemented
(>25-33 ka) conglomerates that crop out in the water pipe trench.
The white, cemented conglomerate is therefore downfaulted at this
site. These thin, continuous and parallel radar returns are separated
from overlying sediment by a possible angular unconformity, similar
to that noted at Site 1. This angular unconformity also exists in the
footwall, allowing us to reconstruct the vertical offset. We interpret
the material above the angular unconformity to be the ceramic-
bearing, organic-rich colluvial conglomerates, sandstones and soil
that have been dated to 5718 BC/5467 BC to 5403 BC/5387 BC
and younger via radiocarbon and AMS dating in the nearby trench
(Falcucci et al. 2009; Galli et al. 2009; Boncio et al. 2010). Here,
several convex-upwards radar returns may be evidence of channels-
like features, but we are wary of this interpretation as flow in the
channels would be oblique to the slope. Like Site 1, there is some
uncertainty as to the exact position of the base Holocene in the hang-
ingwall of the fault, but the vertical offset of the base Holocene is in
the range of 2.0-3.5 m, with uncertainty produced by the possible
air-return hyperbolae. This suggests a post-base-Holocene throw-
rate of 0.23-0.13 mm yr! assuming an age for this contact of

15 ka. This rate should be compared to that implied from the off-
set of the top of the cemented white conglomerate (3.5 m offset;
33ka; 0.11 mmyr '), assuming its age is 33 ka. Again, the white, ce-
mented conglomerate, and an underlying unit that is not exposed at
outcrop with less clear radar returns, may show ‘lap’ relationships
with underlying angular unconformities near the base of imaged
section. Again, we tentatively interpret these as offlap of alluvial
fan sediments above basal erosional truncation surfaces. The base
of the section is not well imaged so again, we are uncertain of the
offset of these older units at depth. We note that there is one clear
example where the radar had poor contact with the ground, produc-
ing a delay, and hence vertical feature that continues to the surface.
However, we have interpreted two other vertical features as faults
rather than artefacts of poor radar contact, because these vertical
discontinuities do not continue to the surface, with continuous lay-
ers across them at the shallowest levels. Note that Site 2, with clear
Holocene offset, was not ruptured in 2009, as the rupture occurs at a
higher elevation on the fault escarpment, at Site 3. Thus, despite the
problem with possible air returns, our working hypothesis is that this
site has a throw-rate of 0.23-0.13 mm yr ™' assuming an age for this
contact of 15 ka; confirmation of this working hypothesis requires
additional data from shallow geophysics, or a trench excavation.
Site 3 shows a similar radar return stratigraphy to Site 2. Thin,
continuous and parallel radar returns are truncated at depth by a
fault, so again we interpret this as downfaulting of the white, ce-
mented (>25-33 ka) conglomerates that crop out in the nearby
trench. Again, an angular unconformity separates this unit from
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overlying deposits that we interpret to be the ceramic-bearing,
organic-rich colluvial conglomerates, sandstones and soil that have
been dated to 5718 BC/5467 BC to 5403 BC/5387 BC or younger.
The up-dip continuation of the fault through the Holocene deposits
is unclear on the GPR data, but field observations show that this site
was ruptured in 2009, because a set of cracks with 57 cm vertical
downthrow to the SW was observed on a hairpin bend in a tarmac
road. The vertical offset of the base of the Holocene appears to be no
greater than 1.5 m, implying a throw-rate of 0.1 mm yr~ ' assuming
an age for this contact of 15 ka. This rate is similar to that im-
plied from the offset of the top of the cemented white conglomerate
(3 m offset; 33 ka; 0.09 mm yr '), assuming its age is 33 ka. Again,
the base of the section is not well imaged so we are unsure of the
offsets and hence implied throw-rates for these older units.

5.3 Site 4—concrete road 420 m SE of the water pipe

Site 4 is a 70-m long survey running NE-SW across the rupture
that achieved depth penetration of about 7-10 m on a topographic
slope that decreased in elevation by 36 m over a horizontal dis-
tance of 70 m (Fig. 8). The rupture exhibited about 7 cm of vertical
offset at this site. A study of post-seismic deformation using Li-
DAR demonstrates afterslip at this site and growth in amplitude
and wavelength of a post-seismic hangingwall syncline (Wilkinson
etal. 2010). Although conglomerates are exposed 60 m to the NNW
in a small quarry, there are no outcrops nearby that are along strike
from the GPR survey. Thus, any interpretations of the subsurface
stratigraphy are more subjective than those for Sites 1, 2 and 3;
the radar returns are also less clear, with less spatially complete
depth penetration than for Sites 1, 2 and 3. Also, as for Site 2, we
have some concerns about possible air returns, in this case from a
concrete post carrying electricity power cables (Fig. 8). However,
despite a possible example of a long wavelength hyperbola, con-
sistent with an air return from the post and power cables, we think
sufficient subsurface geology has been imaged by the GPR to make
an interpretation of the Holocene throw-rate. However, we feel the
interpretation of this site may be less robust than that for Sites 1, 2
and 3.

The GPR data show layered stratigraphy, and appear to reveal a
faulted offset of the base of this layered sequence at a depth of 4—
5 m below the 7 cm offset surface rupture on the concrete road. A
second fault offsets the base of the layered unit, about 10 m into
the footwall of the rupture, again coincident with a surface crack
(1 cm opening with 4 mm throw) observed on the concrete road.
The surface that we interpret to be offset is an angular unconfor-
mity at the base of the layered stratigraphy (Fig. 8b). We tentatively
interpret vertical offsets of 70 cm across each of the two afore-
mentioned faults, although we note this is close to the resolution
of the data. Beneath this angular unconformity, we interpret a syn-
cline defined by relatively weak radar returns that cross the long
wavelength hyperbola that may be due to the electricity pole. Thus,
these relatively weak radar returns are likely to be real geological
layers rather than air returns. This syncline is in the same location as
the post-seismic hangingwall syncline that has been shown to have
grown using repeated LiDAR surveys (Wilkinson ez al. 2010). The
LiDAR data are thus consistent with our interpretation of a hanging-
wall syncline imaged with GPR. Two localized, vertically stacked
sets of radar returns within the syncline may mark discontinuities
associated with fractures. The interpreted syncline, and the layered
stratigraphy have not been dated. However, if we assume that the
hangingwall-layered radar stratigraphy correlates with the ceramic-

© 2010 The Authors, GJI
Journal compilation © 2010 RAS

Subsurface structure of L’ Aquila earthquake 13

bearing, organic-rich colluvial conglomerates, sandstones and soil
that have been dated to 5718 BC/5467 BC to 5403 BC/5387 BC or
younger (Falcucci et al. 2009; see also Galli ef al. 2009; (Boncio
et al. 2010), the implied throw rate is 0.08-0.09 mm yr~!, assuming
an age for the base of the layered stratigraphy of 18—15 ka. How-
ever, if the stratigraphy within the syncline is also Holocene, the
implied throw rate is 0.25-0.3 mm yr !, again assuming an age for
the base of the syncline sequence of 18—15 ka; we prefer this latter
interpretation (A plus C in Fig. 8b), but only because it reveals a
similar throw-rate to that from Site 1; clearly this needs more work,
perhaps in the form of a palacoseismic trench study.

5.4 Summary

The ground-penetrating radar data from the four sites and rupture
observations define two major subparallel, but en-echelon faults
within the Paganica fault zone (Fig. 3). All four sites display
Holocene throws, and three show late Pleistocene throws. Throws
vary along strike defining throw-gradients (Fig. 9). The throw and
throw-rate gradients, and the map geometry of the faults define a
relay zone (Figs 3a and e, Fig. 9). Existence of the relay zone may
explain possible examples of channels in the Holocene deposits
whose flow was oblique to the overall slope, perhaps influenced
by oblique ground warping of the relay ramp. The 2009 rupture
stepped across this relay zone, but the slip-vector azimuth was con-
stant across this structure (Fig. 4). Rates of throw accumulation
implied by vertical offset of Holocene and older layers are con-
sistent through time. When summed across strike, the combined
throw-rate across these two faults, averaged since 15 ka, is a maxi-
mum of 0.23-0.30 mm yr~! (Fig. 3e), although higher values may
exist if (a) throw-gradients continue away from the area studied,
or (b) other faults active in the Holocene, but unknown to us, lie
across strike. Another relay zone, not imaged by GPR, but clear on
the published rupture maps exist ~200 m WNW of the ruptured
water pipe. Other examples of relay zones are clear in the rupture
map provided by ISPRA Report (2009); Boncio et al. (in press) and
Emergeo Working Group (2009) located ~1 km to the ESE of the
ruptured water pipe.

6 DISCUSSION

The surface ruptures to the 2009 earthquake occurred within the
Paganica fault zone. However in detail they occurred along a subtle
escarpment in the hangingwall of the main fault shown on the geo-
logical map of Vezzani & Ghisetti (1998) (Fig. 1d). This hanging-
wall fault is itself subdivided into at least two active fault strands that
both show Holocene displacements revealed by ground-penetrating
radar (Fig. 3), and several others revealed by observations of at
least four faults in Pleistocene gravels exposed in the trench ex-
cavated by water escape along the ruptured water pipe. The rate
of throw accumulation (0.23-0.30 mm yr !; Fig. 3e) is relatively
low compared to other faults around L’Aquila (see Table 1, and
Vezzani & Ghisetti 1998; Galadini & Galli 2000; Galli et al. 2002;
Pizzi et al. 2002; Roberts & Michetti 2004; Papanikolaou et al.
2005; Galli et al. 2008), suggesting this is an example of a Type
3 scarp, as defined earlier. The throw-rate of 0.23-0.30 mm yr !
suggests that the Paganica fault zone cannot accommodate all of
the 3-5 mm yr~! extension known for this sector of the Apennines
(D’Agostino et al. 2008; see also Roberts & Michetti 2004); other
faults have a role to play. Although our observations do not rule
out the possibility that the 1461 AD and 1762 AD earthquakes
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Figure 8. Site 4 (a) Un-interpreted, and (b) interpreted depth converted ground-penetrating radar profiles. Vertical scales are time in nanoseconds and depth
in metres. The profile was collected on a concrete road. Convex upwards hyperbolae in the upper part of the section are interpreted to be from point sources

(subsurface boulders?). The long wavelength hyperbolae centred on the 7 cm surface rupture may be an air return from a pole supporting an electricity power
cable.
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(a) 3D views of a conceptual left-stepping relay zone
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Figure 9. Throw-gradients along strike for ~15 ka and ~33 ka surfaces.

occurred within the Paganica fault zone, the relatively low throw-
rate we have measured suggests this may be unlikely, because as
pointed at by Tertulliani et al. (2009), the implied recurrence inter-
val seems very short. In Fig. 1 we suggest alternative locations for
the surface ruptures to the 1461 AD and 1762 AD earthquakes based
on the locations of towns damaged at Mercalli intensity >1X docu-
mented in the website http://storing.ingv.it/cfti4med/. Although we
have not proved these rupture locations are correct in this paper, or
better than those suggested by Tertulliani ez al. (2009), they provide
an alternative to recurrence of >M6 earthquake on the Paganica
fault with ‘~three centuries recurrence intervals’. The locations we
suggest occur along well-known faults with relatively high slip-
rates (Table 1, e.g. Vezzani & Ghisetti 1998; Galadini & Galli
2000; Galli et al. 2002; Roberts & Michetti 2004; Papanikolaou
et al. 2005; Galli et al. 2008). Given the uncertainty in historical
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shaking intensity reports described by Tertulliani et al. (2009), we
doubt the surface rupture locations we suggest can be differentiated
from repeated rupture of the Paganica fault based on these data
alone, because shaking intensity is probably more sensitive to site
conditions and building vulnerability than differences in epicentral
distance of a few kilometres. Clearly, palacoseismological studies
are needed to differentiate between possible sites for the ruptures to
the 1461 and 1762 AD earthquakes.

With hindsight, it is now clear that the incised drainage in the
footwall of the Paganica fault was perhaps the only obvious indi-
cator of fault activity prior to the earthquake, due to the relatively
low throw-rate on this fault in the Holocene (Type 3 scarp). It is
clear that such incised drainage patterns should be utilized in the
ongoing search for active normal faults in the Italian Apennines
and elsewhere (e.g. Roberts 2008). However, it must be borne in




16  G.P Roberts et al.

mind that other indicators of fault activity, such as bedrock scarps
(Type 1) and faulted alluvial fans seen in palaecoseismic trenches
(Type 2) should not be forgotten. Although tragic, we must not
focus our attention with regard to seismic hazard in central Italy
solely on the Paganica Fault; neighbouring range-bounding nor-
mal faults, marked by bedrock scarps and faulted alluvial fans and
moraines, have higher throw-rates (Table 1), and are known to slip
in metre-sized events in destructive earthquakes evidenced by dat-
ing of colluvial wedges in trenches (Galli et al. 2008), cosmogenic
exposure dating (Palumbo ef al. 2004) and historical observations
(Oddone 1915); the probability of rupture of one of these faults in a
given time period, assuming similar-sized slip events, will be higher
than that for the Paganica fault if they have higher throw-rates.

7 CONCLUSIONS

Observations with ground-penetrating radar reveal how the surface
rupture to the April 6 L’ Aquila earthquake relates spatially to pre-
vious surface displacements during the Holocene and Pleistocene.
In Paganica, the discontinuous surface rupture stepped across a re-
lay zone between en-echelon/parallel faults. Some portions of the
fault zone that show clear Holocene offsets were not ruptured in
2009, having been bypassed as the rupture stepped across a relay
zone onto a fault across strike. The slip-vector azimuth, defined by
opening directions across surface cracks, shows dip-slip motion,
and remained constant between 210-228° across the zone where
the rupture stepped between faults. Maximum vertical offsets of the
base of the Holocene summed across strike are 4.5 m, which if av-
eraged over 15 kyrs, gives a throw-rate of 0.23—-0.30 mm yr—'. The
values are consistent with throw-rate values implied by offsets of an
older layer whose age we assume is ~33ka. The post-base-Holocene
and post-~33 ka throw-rate values compare with published values
of 0.4 mm yr! for a minimum throw-rate implied by the vertical
offset of Middle Pleistocene tephras (Messina et al. 2009), and a
throw-rate 0.24 mm yr ' since 24.8 kyr from a palaeoseismic trench
study (Boncio et al. 2010). The Paganica fault, although clearly an
important active structure, is not slipping fast enough to accom-
modate all of the 3-5 mm yr ! of extension across this sector of
the Apennines. Other neighbouring range-bounding active normal
faults also have an important role to play in the seismic hazard.
These faults have slip-rates that are generally higher than that dis-
played by the Paganica fault, suggesting that, on average, they will
have shorter earthquake recurrence intervals for a given earthquake
magnitude.
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