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Variational Monte Carlo, diffusion Monte Carlo, and stereographic projection path integral sim-
ulations are performed on eight selected species from the (NH3)n , (ND3)n , (NH2D)n , and
(NH3)n−1(ND3) clusters. Each monomer is treated as a rigid body with the rotation spaces mapped
by the stereographic projection coordinates. We compare the energy obtained from path integral sim-
ulations at several low temperatures with those obtained by diffusion Monte Carlo, for two dimers,
and we find that at 4 K, the fully deuterated dimer energy is in excellent agreement with the ground
state energy of the same. The ground state wavefunction for the (NH3)2−5 clusters is predominantly
localized in the global minimum of the potential energy. In all simulations of mixed isotopic substi-
tutions, we find that the heavier isotope is almost exclusively the participant in the hydrogen bond.
© 2010 American Institute of Physics. [doi:10.1063/1.3506027]

I. INTRODUCTION

Ammonia clusters are fundamental for a number
of theoretically, practically, and economically important
applications.1–4 Therefore, ammonia clusters have been at the
center of our investigative efforts for a number of years.5–7

Our work has joined the experimental and theoretical en-
deavors of a growing community.8–29 Experimental8–15 and
theoretical16–22 investigations abound in the literature. The
main focus of the experimental work has been on the dimer
and on the condensed phase.26–29 The experimental work has
been accompanied by a systematic development of numerous
potential energy models to study and reproduce spectroscopic
properties of small clusters.23–25

The ammonia dimer has been at the center of two
controversies in the literature regarding its rigidity and its
structure. Assuming a rigid structure, the early experimental
evidence9, 10 has pointed to a surprising antiparallel structure
in conflict with all theoretical predictions. The latter place the
global minimum of the dimer in the classical linear hydro-
gen bond arrangement. Both these controversies have been
addressed by a number of high level theoretical investigations
of the vibration–rotation–tunneling states from a set of se-
quentially refined potential energy surfaces. The most refined
of these23 is capable of computing the far infrared spectrum
including many lines not involved in the fitting procedure,
the effects of off diagonal Coriolis interactions, and hindered
umbrella inversion splittings. The outcome of these careful
theoretical investigations yields a hydrogen bonded structure
bent away from the classical linear configuration and with
a highly nonrigid character. The highly nonrigid character,
typical of many weakly bound dimers, explains the appar-
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ent disagreement between the global minimum structure ob-
tained from ab initio calculations and the vibrationally av-
eraged structure deduced from the microwave spectroscopy
experiments. Ammonia clusters have been grown in helium
nanodroplets14 at 0.38 K, and their infrared spectra confirm
that as few as 1000 molecules are sufficient to produce a
structure similar to the crystal structure of the bulk. More
recent investigations have focused on the vibrational spec-
tra of small- to mid-sized ammonia clusters,20, 22 where par-
ticular intramolecular bands sensitive to clustering and the
coordination number on the ammonia molecules have been
identified.

Equilibrium geometries, interaction energies, and har-
monic frequencies of the isomers in the (n = 2–5) range have
been determined by one of our groups using correlated ab
initio calculations at the second order Møller-Plesset pertur-
bation theory level (MP2) with Dunning’s aug-cc-pVXZ (X
= D, T, Q) basis sets and the counterpoise procedure. The ef-
fect of zero point energy (ZPE) on the relative stability of the
clusters using harmonic frequencies have been computed for a
number of isomers. The magnitude of many-body effects have
been determined to account for 10%–15% of the total interac-
tion energy, whereas the 4-body effects can be neglected as a
first approximation.5 In the aforementioned study we also de-
termine that freezing the monomer structure to its gas phase
geometry only has a weak impact on the energetic and struc-
tural properties of the clusters.

Based on the data obtained from the study in Ref. 5, we
have constructed an analytical model to describe the interac-
tion between rigid ammonia molecules including the explicit
description of induction. The description of polarization ef-
fects in the analytical model is introduced by using a nonit-
erative form of the “charge on a spring” model. The resulting
potential energy surface can be explicitly differentiated as a
consequence of the noniterative form of the polarization ef-
fects. The minima of the ammonia clusters in the (n = 3–20)
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range have been searched in the same work.6 In a more recent
study,7 we perform classical and quantum finite temperature
simulations of ammonia clusters in the (n = 2–11) range us-
ing the stereographic projection path integral (SPPI) method.
The latter is an exact approach to perform quantum N , V, T
ensemble simulations for clusters of rigid bodies.30–41 When
the SPPI method is implemented together with the random se-
ries approach42–48 and the finite difference estimators of Pre-
descu et al.,45 the physical attributes converge to third order
in the number of series coefficients.

From the SPPI simulations we learn that the quantum
effects on the binding energy are substantial for ammonia
clusters as previously found for water. By using the con-
verged ensemble energy at 40 K, we estimate that the ZPE
is approximately 35% of the binding energy for the largest
sizes and climbs as we move toward smaller sizes to approx-
imately 50% for the dimer. The quantum evaporation energy
estimate [〈En(T = 40 K)〉 − 〈En−1(T = 40 K)〉] suggests the
possibility of an enhanced kinetic stability for certain sizes
compared to the others. The behavior of the structural and
thermodynamic properties as a function of temperature for
(NH3)2−11 has led us to conclude that several clusters in that
size range, including the dimer, pentamer, and hexamer, are
highly fluxional compared to other sizes and to other types of
molecular clusters, in agreement with mounting experimen-
tal evidence.9–13 The recent SPPI study of ammonia clusters
has yielded a plethora of valuable information. However, from
path integral simulations alone it is hard to know exactly how
much of the energy is in excess of the global minimum from
thermal excitation and how much is from the zero point en-
ergy at any finite temperature. It is well known that the Feyn-
man path integral method becomes progressively less efficient
as lower values of the temperature are considered and that
simulations at temperatures dominated by a ground state are
unfeasible.

The main objective for the work reported here is to ob-
tain the energy and the structural character of the ground state
for several small ammonia clusters. The present work fills in
the gaps in our knowledge of the behavior of small ammonia
clusters that the work in Ref. 7 leaves behind. An estimate
of the lowest energy achievable by ammonia clusters of var-
ious sizes is more feasible when the goal is to obtain a pre-
cise and accurate measure of the relative stability for different
sizes at temperatures below 10 K. A quantitative measure of
relative stability in turn allows one to predict what species
dominate when clusters are generated experimentally under
the simulated conditions. Jet expansion temperatures can be
as low as a few Kelvin, whereas growth in nanodroplets is
typically at a fraction of a degree Kelvin. Finite temperature
quantum simulations of ammonia clusters at these tempera-
tures are formidable tasks.

In comparing the energy of the ground state with the en-
ergy at 40 K obtained by path integral simulations and study-
ing how the thermal excitation energy in excess of the ZPE
changes with size, we hope to obtain a qualitative measure
of the relative density of excited states for several small am-
monia clusters. In particular, we are interested to learn if the
fluxional behavior of the dimer and the pentamer is correlated
with the thermal excitation energy in excess of the ZPE and

what role is played by the acceptor donor–donor acceptor ex-
change. For the latter question we note that the structure of
the global minima in the (n = 3–5) range all have equivalent
molecules that result from the high symmetry of the structures
and the low dimensionality of the aggregates. In the trimer,
tetramer, and pentamer, all the molecules are acceptor–donors
of hydrogen bonds. The dimer is unique with one acceptor and
one donor molecule.

The uniqueness of some locations for ammonia
molecules, coupled with the exploration of isotopomers to
achieve a degree of uniqueness among the moieties, is a fer-
tile ground for exploration of deep questions at the core of the
nature of the hydrogen bond. Therefore, we find the exercise
of characterizing the ground state wavefunction for the dimer
through the pentamer with selected isotopic substitutions par-
ticularly insightful. Additional important questions that can
be answered in a straightforward manner by our methods are
as follows: (a) are the ground state wavefunctions localized
in one single well or in multiple wells of the potential en-
ergy surface? (b) A cluster of ammonia is described by two
sets of degrees of freedom: the molecular translations and the
molecular orientations relative to the laboratory axis. How
are these two sets affecting the shape and the spread of the
wavefunction?

We find the aforementioned questions particularly timely
given two recent advancements35, 39 for the implementation
of variational Monte Carlo (VMC) and diffusion Monte Carlo
(DMC) simulations in non-Euclidean manifolds contributed
by our groups. The non-Euclidean manifolds result from our
use of rigid bodylike constrains for the molecular tops in our
simulations. Our DMC methods are based on the construc-
tion of the velocity distribution by rejection techniques and
are capable of functioning in a broad class of non-Euclidean
spaces generated by holonomic constraints. Our formula-
tion avoids the use of Lagrange multipliers and it is derived
from the Feynman quantization in manifolds49–52 proposed
by DeWitt.53 In a second article39 we propose and test sev-
eral importance sampling strategies for stereographic projec-
tion DMC in manifolds. We use a family of one parameter
optimized trial wavefunctions for VMC in stereographically
projected manifolds to produce the importance sampling. We
find the same advantages in using importance sampling func-
tions for the diffusion Monte Carlo simulations in manifolds
as one finds in Euclidean spaces mapped with Cartesian co-
ordinates. Additionally, our proposed family of trial wave-
functions can help to overcome problems with nonconfining
potentials and can suppress quasiergodicity effectively. The
use of intramolecular constraints in a molecular cluster are
essential to overcome the inevitable stiffness resulting from
the difference in the fundamental frequencies between the in-
tramolecular and intermolecular degrees of freedom. There-
fore, without these recent developments, it would be particu-
larly challenging to carry out DMC simulations for aggregates
of molecular tops.

The rest of the article is organized as follows. In
Sec. II, we briefly review the VMC and DMC strategies for
non-Euclidean manifolds. These methods have been derived
in detail elsewhere.35, 39 In Sec. II, we also describe sev-
eral modifications that we find necessary for the structural
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characterizations of the random walks.54 Our results are in
Sec. III and the conclusions are in Sec. IV.

II. METHODS

Each NH3, NH2D, or ND3 monomer is treated as a rigid
body and use of Cartesian coordinates is made for the loca-
tion of the center of mass of the monomer, and three stereo-
graphic projections are used to specify the monomer orienta-
tion relative to the laboratory axis.7, 30–41 The mapping from
Euler angles to quaternions and to stereographic projections
has been worked out in detail elsewhere.41 The number of di-
mensions of the space is 6n for n monomers, and the space
is a differential manifold with an associated Hessian metric
tensor gμν . Unlike in Euclidean spaces mapped with Carte-
sian coordinates, the latter does not equal the diagonal matrix
with masses as eigenvalues. Rather, it is a symmetric matrix
that varies in value from point to point in the space regard-
less of the system of coordinates used to map the space.55 We
have found that there are less technical difficulties in using the
stereographic projections for quantum Monte Carlo simula-
tions of rigid bodies. The main reason is that, unlike the more
traditional Euler angles or quaternions, the stereographic pro-
jection coordinates extend from −∞ to +∞. We use these
coordinates for all three types of simulations performed in the
present work.

The form of the trial wavefunction used for the VMC and
DMC simulations is39

�T = exp (−βV/2), (1)

where β is the only parameter to be optimized and V is the
system potential energy.6 To optimize β, we average the local
energy estimator

�−1
T H�T = V − ¯

2

2

{
β2

4
gμν∂μV ∂νV − β

2
gμν∂μ∂νV

− β

2

{
gμν[∂μ ln g1/2] +

(
∂

∂xμ
gμν

)}
∂νV

}
,

(2)

〈E〉VMC =
∫

dqg1/2
(
�−1

T H�T
)|�T |2∫

dqg1/2|�T |2 (3)

for several values of the parameter β. In Eqs. (1) and (2), g is
the determinant of gμν .

All the VMC calculations consist of 21 independent
runs; in each run, a total of 2×106 moves are performed
using parallel tempering56–59 with 40 walkers distributed
evenly in temperature from T = 10 K up to 300 K. The
value of T at which the average local energy has the low-
est value, or alternatively, when its fluctuations are at a min-
imum, corresponds to the optimal parameter β of our trial
wavefunction,

β = (kB T )−1, (4)

where kB is Boltzmann’s constant. The quantity in Eq. (3) and
the equation below,

〈V 〉VMC =
∫

dqg1/2V (q)|�T |2∫
dqg1/2|�T |2 , (5)

evaluated at the optimal parameter represents, respectively,
the best estimate of the total and potential energy in the
ground state. A VMC move is either a swap with a walker
at an adjacent temperature, or else we select at random one of
the n monomers using a uniform distribution, and we move at
random all six of its degrees of freedom at once.

The first million moves serve to equilibrate all the walk-
ers and reach the asymptotic distribution. The second million
moves are used to accumulate values of the local energy esti-
mator in Eq. (2). The results obtained from each independent
block are averaged, and the statistical error of the averages is
obtained using twice the standard error in the mean.

The result of the VMC calculation is not only a best
estimate (upper bound) of the true ground state energy, it
also contains the optimal wavefunction for the importance
sampling of the diffusion Monte Carlo simulation.60–63 The
importance sampling scheme we employ in this work is that
suggested by Kalos et al.,60 where we simply correct the
branching function w after the diffusion move q → q ′,

w = �T (q ′)
�T (q)

exp

{
1

2
[V (q) + V (q ′)−2Eref]�τ

}
. (6)

Eref is the reference energy (essentially, an estimate of the
ground state energy). Eref is adjusted with a feedback equation
to achieve a steady-state for the population of replicas after
the entire population is subjected to diffusion and branching
moves.62 The exact ground state energy is obtained by aver-
aging the estimator in Eq. (2) over the population of replicas.

The additional complication for our application of DMC
comes from the differential manifold over which the diffu-
sion takes place.39 Since we use rigid ammonia monomers,
the metric tensor gμν enters into the diffusion part of the
algorithm as we seek to obtain a distribution of diffusion steps
�q from

p(�q) = A exp

{
−gμν(q)�qμ�qν

2�τ

}
. (7)

In Eq. (7), A is a normalization constant, �τ the (imaginary)
time interval, and gμν(q) the metric tensor with its spacial de-
pendence represented explicitly as its argument (q). The met-
ric tensor is the effective mass of the system. The fact that gμν

changes from point to point in the manifold over which diffu-
sion takes place changes the shape of the distribution p(�q).
The result is that the �q is no longer a Gaussian random vari-
able and the sampling of the function in Eq. (7) has to be per-
formed with rejection techniques.35, 39 Since the correct shape
of the distribution of {�qμ}6n

μ=1 depends on the correct dis-
tribution of the variables {qμ}6n

μ=1, namely, �T �0, and these
two sets of variable are independent, there are several possi-
bilities for the acceptance–rejection probability. These have
been systematically considered previously.35

The acceptance–rejection procedure for the production
of deviates �qμ distributed according to Eq. (7) has been
subjected to relatively rigorous tests on simple monodimen-
sional systems35, 39 and has been implemented to study the
Stockmayer trimer39 and the water octamer.40 In those appli-
cations we find no difficulty in generating the proper diffu-
sion step distributions. In the present investigation, however,
we find that the ammonia dimer and pentamer are particularly
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challenging systems because of their highly fluxional nature.
When the rigid molecular tops have as wide a probability den-
sity over rotation degrees of freedom as the dimer displays in
Fig. 4, for example, the corresponding stereographic projec-
tions qμ take values inside a very large interval −L ≤ qμ ≤ L
if the reference frame is fixed.31 The Hessian metric is such
that

lim
|q|→∞

gμν(q) → 0. (8)

In those limits, the corresponding distribution in Eq. (7) be-
comes very wide and sampling it with rejection techniques
becomes very inefficient. There is a simple remedy for the
aforementioned problem, which consists of frequently chang-
ing the frame of reference that defines the stereographic
projections.31 To change the frame of reference we simply
rotate each replica in the population, meaning the cluster as a
whole, or equivalently the laboratory axes are reoriented prior
to the diffusion step. These rotations are finite and by random
amounts and must be implemented before the computation of
the stereographic projections of the rigid molecules relative to
this new frame can be carried out. This simple remedy relies
on the rotational invariance of the potential and successfully
produces the proper step distribution stabilizing the diffusion
algorithm.

Results from the SPPI calculations are compared to the
DMC estimate with the converged value of the thermal en-
ergy at a sufficiently low temperature. We use the (NH3)2

and the (ND3)2 system to push the convergence of the es-
timator for 〈E〉 to cold temperatures beyond those achieved
in our earlier explorations,7 in order to compare with the en-
ergy that DMC yields for the ground state. Our approach to
model diffusion in curved manifolds is relatively recent, and
in light of the additional difficulties mentioned earlier, we
carefully test its performance using two dimers. The SPPI
technique has been developed and tested on a number of
systems30–34, 36–38 and is used in the present investigation in
conjunction with the reweighted random series technique42–48

and the finite difference estimator for the energy and the heat
capacity.45

A. The structural comparison algorithm for (NH3)n

The comparison between two configurations of a clus-
ter is carried out with the structural comparison algorithm54

(SCA), which has been modified for the present work. If
the configurations to be compared belong to a system that
contains n indistinguishable ammonia molecules, then the
approach we use is traditional.54 We have recently modi-
fied the basic approach to handle molecular clusters.40 Since
some of the systems we simulate here contains distinguish-
able parts, we have to make further modifications. There-
fore, it is convenient to reproduce the details of the ap-
proach as adapted to molecular clusters with indistinguishable
components.40

Let {r(A)
k }4n

k=1 and {r(B)
k }4n

k=1, respectively, denote the 12n
Cartesian coordinates for two configurations A and B of a
(NH3)n cluster. In essence, the goal of the algorithm is to find

the location and orientation of B that minimizes the sum of
all radial differences

4n∑
k=1

∣∣r(A)
k − r(B)

k ′
∣∣. (9)

In pseudocode the algorithm constitutes the following steps:

1. Configurations A and B are translated so that the origin
is the center of mass.

2. Configurations A and B are rotated so that atom 1 and i ,
respectively, are on the z axis (1 ≤ i ≤ 4n) and so that
atom 2 and j for configurations A and B, respectively,
are on the x − z plane (1 ≤ j ≤ 4n, j �= i).

3. For each of the 4n(4n − 1) rotations, a sorting of the
atoms is performed to find the atom of B that is the clos-
est to atom k of A, for k = 2, . . . , 4n. The SCA metric
is the infimum of the set

�A = inf{�i j (A)}4n
i, j=1,i �= j , (10)

where �i j (A) represents an element of the following set
of sums:

�i j (A) =
4n∑

k=1

∣∣r(A)
k − PR(�i ,� j )r

(B)
k

∣∣ (11)

and the element of the set {PR(�i ,� j )r
(B)
k }4n

k=1 is the
configuration B rotated and with the labels permuted as
described.

We refer to the metric in Eq. (10) as the all-atoms SCA dis-
tance. No distinction between N atoms and H atoms is made
in its implementation. This geometric attribute is rotationally,
translationally, and permutationally invariant among indistin-
guishable entities. In particular, the algorithm avoids search-
ing through the n! possible permutations of n identical parti-
cles and in its present form the computational efforts scales as
n4. The quantity �A is most meaningful when the configura-
tion A is a minimum or an important point of the potential en-
ergy surface. �0 represents the all-atoms SCA distance from
the system global minimum.

It has been our practice to compare distributions of the
all-atoms SCA metric in Eq. (10) with the equivalent measure
obtained by considering only the molecular centers.40 In the
present work, we find it useful to define a measure �

(N )
A , as in

Eq. (10) using only the Cartesian coordinates of the nitrogen
atoms. We use the symbol �

(N )
0 to represent the N-atom SCA

distance from the system global minimum.

B. The structural comparison algorithm for
(ND3)−(NH3)n−1

We make one additional modification to study the geo-
metric attributes of random walks produced while investigat-
ing (ND3)–(NH3)n−1 systems. The comparison between two
configurations A and B of a (ND3)–(NH3)n−1 cluster is per-
formed with the following steps.

Once more, we operate on the 12n Cartesian coordinates
for two configurations A and B of a (ND3)–(NH3)n−1 cluster
{r(A)

k }4n
k=1 and {r(B)

k }4n
k=1, respectively.
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FIG. 1. Summary of the energy calculations for the NH3 dimer. The white squares, labeled kmax = 0, are classical finite temperatures simulations results. All
the other functions of temperature are results obtained with the SPPI for increasing values of kmax from 24 to 80. The white circles at T = 0 represent from
bottom to top, respectively, the global minimum VG , the ground state energy obtained by diffusion, and the estimate of the ground state energy obtained from
the optimized �T [cf. Eq. (1)].

1. Configurations A and B are translated so that the nitro-
gen atom in the ND3 moiety is at the origin.

2. Configurations A and B are rotated so that the C3 vector
is along the z axis. The C3 vector points from the nitro-
gen atom of the ND3 moiety toward the center of mass
of the three deuterium atoms.

3. The resulting 12(n − 1) Cartesian coordinates of the
(NH3)n−1 moiety are used to define the new SCA metric.
Configuration A is rotated so that atom 1 in the (NH3)n−1

moiety is on the x − z plane. Configuration B is rotated
so that atom i in the (NH3)n−1 moiety is on the x − z
plane 1 ≤ i ≤ 4(n − 1).

4. For each of the rotations in step 3, a sorting of the
4(n − 1) atoms is performed to find the atom of B that is
the closest to atom k of A, 1 < k < 4(n − 1). The new
SCA metric is the infimum of the set

�
(D)
A = inf

{
�

(D)
i (A)

}4(n−1)
i=1 , (12)

where �
(D)
i (A) represent an element of the following set

of sums

�
(D)
i (A) =

4(n−1)∑
k=1

∣∣r(A)
k − PR(�i )r

(B)
k

∣∣ (13)

and the element of the set {PR(�i )r
(B)
k }4(n−1)

k=1 contains
the Cartesian coordinates of the (NH3)n−1 moiety for
configuration B rotated and with the labels permuted as
described in steps 3 and 4.

We use the symbol �
(D)
0 to represent the all-atoms SCA

distance from the system global minimum for the (ND3)–
(NH3)n−1 cluster obtained in this manner.

III. RESULTS

A. NH3 dimer

Figure 1 contains all the values of the total energy of the
NH3 dimer from VMC, DMC, SPPI, and classical simulations
at finite temperature. The white squares represent the classi-
cal N, V, T ensemble estimate of the thermal energy, and these
extrapolate linearly to the global minimum. A range of val-
ues of kmax is shown in Fig. 1 from 24 to 80. Only the lowest
temperatures are shown in Fig. 1 to emphasize the compari-
son between the finite temperature ensemble average and the
ground state energy computed with DMC. The classical and
quantum finite temperature simulations for values of kmax up
to 40 are from our previous path integral simulations of the
NH3 dimer.7 In the present work, we repeat the kmax = 40
simulation for consistency. With a kmax = 40 simulation, the
heat capacity and the total energy converge at and above 40 K.
In the present work we compare converged values of the en-
ergy at colder temperatures and consequently we find the need
to systematically increase the values of kmax up to 80. At 10 K,
the average energy obtained with kmax = 80 is statistically
indistinguishable from that obtained with kmax = 70 and 60.
Table I contains the energy values obtained by VMC (in col-
umn 2), DMC (in column 3), normal mode analysis about the
global minimum (in column 4), path integral at 10 K, (col-
umn 5), and the global minimum energy (in column 6) for
all eight of the species we simulate in the present work. The
first row of table I contains the relevant energies for the NH3

dimer. The VMC estimate of the ground state energy is 19%
higher than the DMC value. The ZPE is 1.962 mhartree, and
this amounts to approximately 42% of the binding energy. Un-
like the classical calculation, which in Fig. 1 visibly extrap-
olates toward 0 K to the energy of the global minimum, the
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TABLE I. Variational, diffusion, path integral, harmonic approximation for the ground state energy, and global minimum energies in hartree, for ammonia
clusters in the dimer through pentamer range together with several selected deuterated species. The figures in parentheses are uncertain.

Species VMC DMC Harmonic app. SPI Global minimuma

(NH3)2 –0.002 22(47) –0.002 749(54) –0.002 502 –0.002 61(66)b, –0.002 21(18)d –0.004 7718
(ND3)2 –0.002 944(3) –0.003 182(70) –0.003 057 –0.0031(40)c —
NH3–ND3 –0.002 22(47) –0.002 978(82) –0.002 853 — —
(NH3)3 –0.0080(58) –0.009 20(89) –0.008 829 –0.008 83(60)d –0.0150 105
(NH2D)3 — –0.009 93(52) –0.009 320 — —
(NH3)2–ND3 –0.008 61(08) –0.009 97(23) –0.009 341 — —
(NH3)4 –0.0144(08) –0.016 08(10) –0.015 54 –0.0155(75)d –0.024 6860
(NH3)5 –0.0180(65) –0.020 70(86) –0.020 48 –0.0205(26)d –0.032 2021

aFrom Ref. 6.
bComputed at 10 K.
cComputed at 4 K.
dAt 40 K, from Ref. 7.

quantum simulations extrapolate to values at 0 K slightly
below the DMC value graphed, indicating that the fi-
nite temperature energy reaches a plateau at lower tem-
peratures, as expected. The normal mode frequencies λi

are computed by diagonalizing the metric-weighted hessian
g−1/2

(
∂μ∂νV

)
g−1/2, where g−1/2 is obtained by the Choleski

decomposition. The ground state energy for each mode is
added to the energy of the global minimum for each entry
in column 4.

Our DMC simulations are all carried out with a target
population size of 100 000 replicas. The first 1000 moves are
used to reach the asymptotic distribution �T �0, where �T is
in Eq. (1), and �0 is the true ground state of the system. The
rest of the moves are used to sample the physical properties
of interest. We first study the convergence of the algorithm
with the time step �τ used to produce the diffusion distribu-
tion in Eq. (7). For each value of �τ we compute the average
of 4 consecutive blocks of 250 population estimates after the
first 1000 equilibration moves. We compute the error bars as
twice the standard error in the mean from the block averages.

The values of 〈E〉 for the dimer obtained with a range of val-
ues of �τ is graphed in Fig. 2. For �τ ≤ 120 hartree−1, the
estimate of 〈E〉 is converged within the statistical error. The
estimate of the ground state energy we report in Table I is ob-
tained using a target population size of 100 000 replicas, �τ

= 20 hartree−1, with the equilibration period as explained
earlier. The simulations are repeated 21 independent times
and the block averages are used to compute the mean and its
statistical error at the 95% confidence interval.

Additional insight can be gained by producing and
comparing distributions of geometric properties extracted a
posteriori from VMC and DMC simulations. These corre-
spond to distributions of geometric estimators from |�T |2
for VMC and |�T �0| for DMC simulations. Three examples
of these for the NH3 dimer can be seen in Figs. 3–5. These
graphs contain normalized histograms obtained after process-
ing approximately 2.0×106 configurations from VMC (white
circles) and DMC (black squares). The largest differences be-
tween the |�T |2 and |�T �0| distributions can be appreci-
ated in the |�T �0| (rNN) relative frequency in Fig. 3, where
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FIG. 2. Convergence profile of the DMC energy for the NH3 dimer. The vertical axis is the estimate of the ground state energy in hartree, the horizontal axis is
the diffusion time step �τ in hartree−1.
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FIG. 3. Histograms of the N to N distance from VMC and DMC simulations of the ammonia dimer.

rNN is the distance between the two nitrogen atoms. The two
features have statistically identical full width at half height
equal to 0.67 ± 0.01 bohr. The |�T �0| (rNN) distribution
peaks at 6.45 bohr, approximately 0.10 bohr higher than the
|�T |2 (rNN) peak. Figure 4 contains the graphs of |�T �0| (θ )
and |�T |2 (θ ), where θ is the angle between the two C3 axis of
the ammonia molecules, oriented from the N atom toward the
center of mass of the three hydrogen atoms (cf. Fig. 7). The
double feature that peaks at approximately −90o and +90o

is indicative of the indistinguishable nature of the identical
ammonia molecules which visit a donor–acceptor configu-
ration with the same likelihood as the acceptor–donor con-
figuration relative to the first molecule in our label list. The
differences between the |�T |2 (θ ) and the |�T �0| (θ ) are min-

imal. The optimal trial wavefunction over-samples the lin-
ear configuration with the ammonia molecules pointing away
from each other, compared to the actual ground state. Finally,
Fig. 5 contains the distribution of �0, the distance measured
with the all-atoms SCA [cf. Eq. (10)], from the global mini-
mum. �0 includes differences among hydrogen atoms; con-
sequently, it has far broader histograms in VMC and DMC
simulations compared to those for rNN. The |�T |2 (�0) and
|�T �0| (�0) distributions are in good agreement. Addition-
ally, both distributions of �0 show some structure in the shape
of a shoulder at approximately 7 bohr. To gain additional in-
sight we inspect visually several configurations with graph-
ical software and we compare these to the global minimum
configuration. In the latter, the Newman projection along the
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FIG. 4. Histograms of the angle θ between the two C3 axis from VMC and DMC simulations of the ammonia dimer.
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FIG. 5. Histograms of the SCA distance �0 [cf. Eq. (10)] from VMC and DMC simulations of the ammonia dimer.

N–N vector, viewed from the donor to the acceptor, con-
tains two hydrogen atoms on the acceptor, which eclipsed
the two remaining hydrogen atoms on the donor molecule. A
Newman projection is sketched in Fig. 7, where the dihedral
angle � is defined. Because the three hydrogen atoms on the
acceptor side are indistinguishable, we choose the smallest
of all the possible dihedral angles when we measure � for
a configuration. We find several minima of the dimer that
have distinct values of �. The global minimum has a value
of � = −12o.

The configuration with � ≈ 0 is dominant in the
|�T |2 (�0) and |�T �0| (�0) distributions. Furthermore, we
determine that the shoulders around 7 in Fig. 5 in both of
these is from a relatively smaller but significant number of
acceptor–donor configurations for which � ≈ −60o.

B. ND3 dimer

We repeat all three simulations on the ND3 dimer for
one main reason. The agreement between the total energy at
10 K and at 0 K in the NH3 dimer is not quantitative. In
Fig. 1 we can see that the trend toward 0 K is qualitatively cor-
rect and that the extrapolation of these could yield reasonable
agreement. However, we seek confirmation that our DMC re-
sults are quantitatively reliable and hold when compared with
reasonable estimates of the ground state energy obtained in
a different manner. Given that at 10 K the NH3 dimer con-
tains a small but significant amount of thermal energy, we are
faced with the need of simulating at colder temperatures. We
elect to simulate the ND3 dimer and we extend the SPPI sim-
ulations to 4 K. The reasoning behind our choice is that the
ND3 dimer is more easily excited by thermal energy com-
pared to the NH3 dimer, making it a better system to simulate
with path integral. At the same time, the energy level differ-
ences should be considerably smaller than the differences in
the NH3 dimer, pushing, hopefully, the amount of energy in
excess of the ground state at 4 K below detection.

The graphs in Fig. 6 are the values of the total energy of
the ND3 dimer from VMC, DMC, SPPI, and classical simu-
lations at finite temperature. The converged average total en-
ergy at 4 K is nearly statistically identical to the DMC esti-
mates. The energy at 4 K, for kmax = 70, the DMC estimate,
VMC, and harmonic analysis estimates of the ground state en-
ergy are found in the second row of Table I. The best VMC
energy is 7.5% higher than the best estimate of the ground
state energy. Additionally, the ratio of the two ZPEs (1.529
mhartree for the ND3 dimer) is 0.7793. The ratio of the two
ZPEs is close to 2−1/2, the result expected for a harmonic sys-
tem if the hydrogen degrees of freedom dominate the quantum
effects.

We inspect graphs of |�T |2 and |�T �0| (not shown)
along the same three degrees of freedom, rNN, θ, and �0 and
we obtain the same qualitative information from them. The
VMC and DMC histograms for rNN agree better for the ND3

dimer than they do for the NH3, dimer, whereas the converse
is true for the VMC and DMC histograms of �0. These graphs
for the ND3 dimer contain a similar shoulder created by a
comparable amount of twisted configurations � ≈ −60o, as it
is seen in the VMC and DMC histograms for the NH3 dimer.
The DMC distribution peaks at smaller values and has a rel-
atively less intense shoulder at 7 bohr compared to the NH3

dimer.

C. ND3–NH3 dimer

The VMC estimate of the ground state energy of the
ND3–NH3 dimer (found in the third row of Table I) is 25%
greater than the DMC estimate. This is the largest discrep-
ancy between VMC and DMC among the three dimers. We
do not carry out SPPI simulations for the ND3–NH3 dimer.
Rather, we concentrate on characterizing the VMC and the
DMC walks and compare several histograms of geometric
properties generated from them. The histograms of rNN and θ

look similar to those for the other two dimers. The structural
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FIG. 6. VMC, DMC, and SPPI estimates of 〈E〉 for the ND3 dimer.

effects of the isotopic substitution are better evidenced by the
following two vector projections. Let CH,i be the center of
mass of the three hydrogen atoms in molecule i , and let Ri

be the position of the nitrogen atom in molecule i . Then the
vector

C3,i = CH,i − Ri (14)

is along the C3 axis, and its size is constant and equal
0.727298 bohr since the ammonia molecule is treated as a
rigid body. The index i in Eq. (14) is simply a label for the
molecule number in the cluster. For the NH3–ND3 dimer, it
is possible to label uniquely the NH3 moiety as the i = 1
molecule and the ND3 moiety as the i = 2 molecule. Using
these labels and the definition for the respective C3,i , we con-
struct two scalar projections,

p12 = (R2 − R1) · C3,1

|R2 − R1| , (15)

p21 = (R2 − R1) · C3,2

|R2 − R1| . (16)

The possible range of values for the projections p12

and p21 are from −|C3,i | to |C3,i | or −0.727298 ≤ p12, p21

≤ 0.727298 bohr. The vectors involved in the computations
of these two properties are drawn in Fig. 7. If molecule 1
and 2 are indistinguishable, then the histogram of the two
projections should be identical. However, when quantum ef-
fects are considered, the ND–NH and NH–ND configura-
tions are not degenerate and one expects to see differences
between p12 and p21. Since our trial wavefunction �T in
Eq. (1) does not contain any information that can distinguish
the NH3 molecule from the ND3 molecule, i.e., V is un-
changed upon isotopic substitutions, we anticipate differences
when we compare histograms of p12 and p21 from VMC and
DMC simulations. The histograms produced from VMC and
DMC walks for the two projections are in Figs. 8 and 9,

respectively. In Figs. 8 and 9 we note that the distributions
from VMC walks are identical and have a double feature, a
peak at −0.727298 bohr and a symmetric peak at 0.25 bohr.
The DMC simulations are very different. The p12 distribution
from DMC has a skewed peak at −0.727298 bohr and positive
values have vanishing relative probabilities. This result indi-
cates that the vector C3,1 (on the ND3 moiety) is almost al-
ways aligned in the opposite direction from the R2 − R1 vec-
tor. Conversely, the p21 distribution has an intense peak at 2.5
and it vanishes as p21 approaches −0.727298 bohr. This re-
sult indicates that the vector C3,2 is almost always aligned in
the same direction direction as the R2 − R1 vector. The two
graphs in Figs. 8 and 9 strongly suggest that the ground state
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FIG. 7. A sketch of the vectors involved in the definition of p12 and p21
[Eqs. (15) and (16), respectively] for the ND3–NH3 dimer. The covalent
bonds represented by heavy lines are pointing out of the page toward the
reader, those represented by dashed lines point away from the plane of the
page, and the dotted line represents the hydrogen bond. In the global mini-
mum, the D–N–N–H torsional angle obtained with the two heavy lines (or
the two dashed lines) is close to zero.
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FIG. 8. Histograms of the p12 projection [cf. Eq. (15)] from VMC and DMC for the ND3–NH3 dimer.

of the ND3–NH3 is preferentially in the ND–NH donor to ac-
ceptor configuration.

We gather additional supporting evidence that the ND3

moiety is preferentially in the donor position by inspecting
graphs of the SCA metric �

(D)
0 defined in Eq. (12). Figure 10

contains graphs of the distributions of �
(D)
0 obtained from 2

× 106 configurations generated by VMC walks (white cir-
cles). The latter distribution is compared with histograms
of �

(D)
0 obtained from approximately 2 × 106 replicas from

DMC. Visual inspection of several configurations with
�

(D)
0 ≈ 36 bohr confirms that these are NH3 donor–ND3 ac-

ceptor configurations. This peak is conspicuous in the VMC
distribution but absent in the DMC one. The two features at
�

(D)
0 ≈ 4.2 bohr and �

(D)
0 ≈ 7.5 bohr are all ND3 donor–NH3

acceptor configurations with two different values of � similar
to the other two dimers.

D. NH3 trimer through the pentamer

In Table I, the values of the VMC and DMC energy
can be conveniently compared with the respective values of
the global minima reproduced from Ref. 6, and the values
of the energy at 40 K reproduced from Ref. 7. Inspection
of the distributions of �

(N )
0 from |�T |2 (white circles) and

|�T �0| (dark lines) in Fig. 11, as well as visual inspections
of numerous configurations, confirms that both the ground
state and the variational wavefunctions are confined to pla-
nar ringlike configurations similar to the respective global
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FIG. 9. Histograms of the p21 projection [cf. Eq. (16)] from VMC and DMC for the ND3–NH3 dimer.
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FIG. 10. Histograms of the SCA distance �
(D)
0 (cf. Sec. II B) from VMC and DMC simulations of the ND3–NH3 dimer.

minima for the trimer and the tetramer.6 The �
(N )
0 distribution

from VMC simulations of the pentamer shows a significant
feature at 10.5 bohr which is absent in DMC simulations.
The VMC wavefunction of the pentamer contains a signif-
icant amount of nonplanar configurations. These contribute
to the peak at 10.5 bohr in the VMC distribution. Given
that the �

(N )
0 values measured from |�T �0| distributions do

not display a double feature and that the single peak at 3
bohr is a planar configuration, we conclude that the pen-
tamer ground state wavefunction is predominantly planar as
well.

Results from VMC and DMC simulations for the �0 dis-
tributions are in Fig. 12. The �0 distribution from VMC and

DMC for the trimer are in relatively good agreement, and the
distributions from VMC appear sharper than those from DMC
compared to the remaining two systems. This is true for both
�

(N )
0 in Fig. 11 and for the �0 distribution in Figs. 12 and

3. The behavior of the VMC wavefunction as a function of
cluster size correlates with the trend of the optimal parameter
β for ψT . The graphs in Fig. 13 display the behavior of the
variational energy estimate as a function of T = (kBβ)−1 for
(NH3)2−5. The values of T that yield the best 〈E〉VMC system-
atically increase from 100 to 130 K, 150 and 160 K for the
dimer to the pentamer, respectively.

In Fig. 12 the DMC distributions for the trimer and
tetramer have a main peak, the location of which grows as
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FIG. 11. Histograms of the SCA distance �
(N )
0 (cf. Sec. II A) from VMC (open circles) and DMC (solid lines) simulations of the (NH3)3−5.

Downloaded 15 Mar 2012 to 131.251.224.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



214301-12 E. Curotto and M. Mella J. Chem. Phys. 133, 214301 (2010)

0 10 20 30 40 50 60

Δ
0
 (bohr)

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
fr

eq
u

en
cy

trimer

tetramer

pentamer

FIG. 12. Histograms of the SCA distance �0 [cf. Eq. (11)] from VMC (open circles) and DMC (solid lines) simulations of (NH3)3−5.

a result of the increase of the number of atoms [cf. Eq. (11)].
Both curves have a shoulder toward higher values of �0, at-
tributable to a significant amount of twisting of the axial hy-
drogen atoms. These features are similar to those we observe
in the dimers. The �0 distribution for the DMC simulation of
the pentamer, however, shows a large shift in the peak, and
in its width, indicating that the hydrogen atoms have a much
higher degree of fluidity for the pentamer compared to the
smaller clusters.

E. Isotopically substituted trimers

Lastly, we perform VMC and DMC simulations on two
distinct trimer with three of the nine hydrogen atoms replaced

by deuterium atoms. The two species we study are (NH3)2–
ND3, where all three deuterium atoms are on one moiety,
and the cluster (NH2D)3, where all three molecular tops
are identical and each moiety contains one deuterium atom.
We choose (NH2D)3 for DMC simulations after learning
that the NH3 trimer is a relatively rigid equilateral ring,
with all three equivalent positions having a donor–acceptor
role. The specific question we address with the results from
the (NH2D)3 structures obtained in the DMC simulation is
clear. Is the deuterium preferentially taking part in the hy-
drogen bonding? If the ground state wavefunction of the
(NH3)2–ND3 cluster is still a ringlike structure, then clearly,
we cannot addressed the deuterium versus hydrogen prefer-
ence in the donor position. Therefore, we expect one D–N
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FIG. 14. Evolution of the DMC estimate of the ground state energy for the (NH2D)3 trimer. The data are obtained by starting from the optimal ψT obtained
from VMC simulations of the (NH3)3 trimer, with a target population of 105 replicas, and with �τ = 20 hartree−1. The data graphed are from one of the 20
repeated computations and includes 7000 consecutive diffusion-branching steps.

hydrogen bond in the ground state if its structure is the
equilateral ring. However, we feel it is important to verify
that the ground state wavefunction for (NH3)2–ND3 is as
expected from simple energetic and geometric arguments.
We find it instructive to compare the ground state energy
of the two systems, since both these energies should be
lower than the value for the NH3 trimer and the lower-
ing effect should be primarily a mass effect. As a fact, the
ground state energies of the two deuterated trimers, found in
Table I, are relatively close to one another. Nevertheless, we
are able to resolve a significant difference between them,
thanks to the level of precision we achieve in our DMC sim-
ulations. Furthermore, simulating (NH3)2–ND3, at least for
the trimer, serves to understand the energetics of the NH3-
ND3 exchange in the trimer. This substitution clearly has an
impact on the equilibrium constant for its formation and on
the preferential dissociation of a single molecule from the
cluster.

There is no feature of the trial wavefunction in Eq. (1)
that could distinguish among the three simulated trimers.
Therefore, we expect the VMC energy of the (NH2D)3 and
the (NH3)2–ND3 clusters to be identical, and for the same
reason, we expect the |ψT |2 distributions to be very close
to that of the NH3 trimer. Consequently, we redo the varia-
tional calculation for the (NH3)2–ND3 cluster simply to ver-
ify that the optimal energy is below that of the NH3 trimer
as a check, but we do not repeat the simulations for the
(NH2D)3 cluster. Rather, for the latter we begin the DMC
simulations from 105 configurations obtained from a varia-
tional calculation on the NH3 trimer. We find that the guided
DMC simulation for the (NH2D)3 cluster is relatively ineffi-
cient compared to the simulation of the regular trimer, or the
(NH3)2–ND3 system. To emphasize how the inefficiency is
greater, we reproduce one of the 20 distinct simulations we
perform on the (NH2D)3 cluster in Fig. 14. Unlike all the

other simulations, we note a slow and steady decrease of the
population energy for the first 3000–4000 moves. The en-
ergy versus diffusion time graphed in Fig. 14 contains 7000
moves. To be certain that equilibration does take place we
only choose to average the last 2000 moves when estimating
the ground state energy. The results are highly reproducible
over the 20 distinct repetitions, as the statistical error in
Table I clearly indicates.

At the end of the 7000 moves we collect all the config-
urations for further analysis from all 20 repetitions. We end
up with a total of 1 963 505 distinct replicas, which is close
to the target 105 configurations multiplied by 20. To charac-
terize the configurations we choose to collect and histogram
together the following three deuterium to nitrogen distances
(cf. the sketch in Fig. 15), rD1−N2 , rD1−N3 , and rD2−N3 . We
call the collective of these three distances simply rDN . The
other two possibilities, namely, rD3−N2 and rD3−N1 are iden-
tical to rD1−N2 , rD1−N3 since the three molecules are indis-
tinguishable. If the deuterium atom is preferentially involved
in the hydrogen bonding, as the sketch in Fig. 15 suggests,
then there should be only two main values of the distance,
that from the deuterium atom to the nitrogen atom in the inter-
molecular bond (such as rD1−N2 , and rD2−N3 ) and that between
a deuterium atom in the plane and a nonneighboring nitrogen
such as rD1−N3 . The differences between the VMC and DMC
distributions of rDN in Fig. 15 are striking. In the DMC dis-
tribution we find only two peaks, the largest at approximately
4.5 bohr and a second, slightly broader but less intense at
6.2 bohr. In the VMC simulations we see three peaks. The
first two peaks nearly coincide with those in the DMC simu-
lation, but are much less intense, and the dominating feature
is at 7.3 bohr. To properly interpret the data in Fig. 15 we
measure all the distances between H atoms in molecule i to
N atoms in molecule j in the global minimum of the trimer.
The distance for a hydrogen bond such as rD1−N2 , sketched in
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FIG. 15. Histograms of the intermolecular deuterium to nitrogen distance from VMC and DMC simulations of the (NH2D)3 trimer.

Fig. 15 is 4.34 bohr, the distance such as rD1−N3 , is 5.99 bohr.
Finally, the distance from axial hydrogen atoms (such as H1)
to a neighboring nitrogen atom is either 7.18 or 7.44 bohr.
When we consider all six permutations of the molecular la-
bels 1, 2, and 3, we end up with nine values of rDN at
5.99 bohr and nine values at 4.34 bohr from the global min-
imum, assuming all three deuterium atoms are on the plane
of the molecule and bonded as our sketch suggests. A nu-
merical integration of the heavy dark line in Fig. 15 yields
the area of the left peak, from zero to the local minimum
at about 5.4 of approximately 0.51, and the area from 5.4 to
10 bohr is 0.49, which is consistent with the statistical weights
obtained assuming all thee deuterium atoms are involved in
hydrogen bonding. As further evidence, we do not see any
peak, or shoulder, near 7.18 or 7.44 bohr in the DMC distri-
bution, whereas a feature at such values is conspicuous in the
VMC distributions.

IV. DISCUSSIONS AND CONCLUSIONS

The work presented in this publication has been designed
to accomplish several objectives. One main set of goals is to
fill in some of the gaps in our knowledge of small ammo-
nia clusters that earlier studies had left behind. In particular,
we are interested in determining the exact zero point energy,
at least for the smallest clusters, and with it learn about the
quantum effects at 0 K on their relative stability and what
amount of excess energy is present at low temperatures. This
important information can improve our understanding and our
ability to predict and explain experimental results, growth
patterns in the gas phase and in nanodroplets, and to gauge
directly the relative stability as a function of size. With the
ground state energy in Table I, we are able to compute the
ZPE in the (NH3)2−5 range and note that the ZPE is 42% of
the total binding energy of the dimer and drops to 38% for the
trimer and to 35% of the total binding energy for the tetramer

and pentamer. Therefore, the quantum effects are substantial
at 0 K and the dimer has a relatively small dissociation en-
ergy when quantum effects are included. These qualitative
observations are in agreement with the path integral results
obtained at finite temperatures in our previous work.7 It is in-
teresting to see that the harmonic estimate is systematically
better than the VMC estimate, however, the harmonic analy-
sis we carry out needs hindsight. For the deuterated species,
for example, we make sure that the deuterium atoms are in the
correct configuration to reflect the true nature of the ground
state. Using the DMC energies in Table I we can also deter-
mine the relative stability by evaluating the energy differences
for the dissociation process at 0 K,

(NH3)n −→ (NH3)n−1 + NH3.

The highest dissociation energy is for the tetramer at
6.8 mhartree, making it the most stable of the systems we
study here. The dimer at 2.7 mhartree and the pentamer at
4.6 mhartree are the least stable clusters of the group. Fur-
thermore, we observe that there is still a substantial amount
of thermal energy present at 40 K in small (NH3)2−5 clusters
ranging from 0.2 to 0.6 mhartree in excess of the ground state
energy at 40 K.

Characterizing the structure of the ground state wave-
functions is another goal of the present investigation. We
discover that the ground state for n = 3, 4, and 5 are pla-
nar structures in the ground state with the distributions of the
molecular centers close to their respective global minima. The
dimer, trimer, and the tetramer ground state wavefunctions
contain a significant amount of twisted configurations indicat-
ing that the wavefunction is spread widely about the degrees
of freedom associated with the hydrogen atoms. However, the
dimer, trimer, and the tetramer are relatively rigid in those de-
grees of freedom compared to the high level of fluidity we
measure in the pentamer distributions.
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With this work we demonstrate that rigid body VMC
and DMC simulations using the stereographic projections for
molecular clusters are feasible and are hundreds of times more
efficient than the equivalent rigid body path integral approach
when approaching conditions that favor the ground state. This
can be confirmed by comparing the statistical fluctuations of
the ground state energy obtained by DMC and the SPPI en-
ergy at 4 K for the ND3 dimer in Table I. As explained earlier,
we run rigid-body path integral simulations at the lowest at-
tainable temperatures, mainly, to check that the DMC results
are reliable. Despite the technical difficulties we overcome
in this work, in particular, the results of the comparisons in
Figs. 1 and 6 are reassuring. Nevertheless, while it does give
us some confidence to observe the right trend of the energy as
the temperature decrease, the agreement between DMC and
SPPI is only qualitative. The fact that the difference between
the DMC and the SPPI energy at 4 K for the ND3 dimer is
below the statistical noise is in large part the result of the sub-
stantial fluctuations in the SPPI estimate, and we speculate
that had we been able to attain the same precision at 4 K as
we are able with the DMC estimate, we may see a small but
significant difference.

Finally, we find the characterization of the ground state
wavefunctions of the few isotopomers of the (NH3)2−5 clus-
ters particularly instructive. We present clear evidence that in
the dimer and the trimer, the deuterium is preferentially the
participating atom in the hydrogen bond. These results are an-
ticipated, in light of experimental and theoretical evidence of
the same in water cluster.64, 65 However, it is valuable outcome
to confirm the validity of these assumptions with numerical
experiments.
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