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Atomic forces are calculated for first-row monohydrides and carbon monoxide within electronic
quantum Monte Carlo �QMC�. Accurate and efficient forces are achieved by using an improved
method for moving variational parameters in variational QMC. Newton’s method with singular
value decomposition �SVD� is combined with steepest-descent �SD� updates along directions
rejected by the SVD, after initial SD steps. Dissociation energies in variational and diffusion QMC
agree well with the experiment. The atomic forces agree quantitatively with potential-energy
surfaces, demonstrating the accuracy of this force procedure. The harmonic vibrational frequencies
and anharmonicity constants, derived from the QMC energies and atomic forces, also agree well
with the experimental values. © 2005 American Institute of Physics. �DOI: 10.1063/1.1924690�

I. INTRODUCTION

Quantum Monte Carlo �QMC� is an effective method for
solving the time-independent Schrödinger equation and has
become quite successful in computing ground-state total en-
ergies. The QMC method gives energies of atoms, mol-
ecules, and solids that are comparably accurate or more ac-
curate than traditional techniques such as density-functional
theory �DFT�, multiconfiguration self-consistent field �MC-
SCF�, or coupled cluster methods. Although the situation for
the calculation of properties other than energies has been less
favorable, the accurate QMC calculation of atomic forces has
been enabled through the recent developments made in this
area by Assaraf and Caffarel,1,2 Filippi and Umrigar,3 Casa-
legno et al.,4 Chiesa et al.,5 and others.

In this paper, we extend our atomic force methodology
to all the first-row monohydrides and carbon monoxide. In
order to acquire energies and forces efficiently for these sys-
tems, we also describe an improved algorithm for optimizing
variational Monte Carlo �VMC� wave functions. As in our
previous paper,6 the first and second derivatives of the varia-
tional energy are analytically computed and used to perform
Newton’s method parameter updates with singular value de-
composition �SVD�. We now propose augmenting this ap-
proach by using the steepest-descent �SD� method in the sub-
space neglected by Newton’s method with SVD. In the initial
stage of parameter update, Newton’s method might perform
poorly since the second derivatives include larger noise when
the parameters are far from the optimum. So we take two SD
steps before starting Newton’s method. The improved algo-

rithm was applied to the calculation of the ground-state en-
ergies and forces of the first-row monohydrides and carbon
monoxide. In general, the direct application of the variational
principle yields significantly lower energy than variance
minimization methods, so minimizing the energy is advanta-
geous. The wave functions optimized in VMC were used as a
guiding function to compute more accurate energies and
forces in diffusion Monte Carlo �DMC�.

In this paper, total energies, dissociation energies, forces,
harmonic vibrational frequencies, and anharmonicity con-
stants are reported for all first-row monohydrides from LiH
to HF, as well as for CO. In all cases, the computed results
agree well with the experiment. The dissociation energies in
VMC are significantly improved with respect to a previous
VMC study of the hydrides.

II. THEORETICAL BACKGROUND AND
COMPUTATIONAL DETAILS

The variational parameters used in VMC will be denoted
as c1 , c2 , … , cn, here. The VMC energy expectation value
ET is a function of these variational parameters, and the pa-
rameter set that minimizes ET is sought.

The SD method is useful in the initial stages of param-
eter optimization in VMC, due to the large error bars of
Hessian matrix components. One arbitrary constant is neces-
sary to implement the SD method. We used the following
two-step scheme to find a good SD constant.

Let Q0 and Q be the vectors composed of variational
parameters before and after update, respectively,

Q0 = �c1,0 c2,0 ¯ cn,0�T, �1�a�Electronic mail: rappe@sas.upenn.edu
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Q = �c1 c2 ¯ cn�T, �2�

and let g be the gradient vector of energy with respect to the
variational parameters,

g = �g1 g2 ¯ gn�T = � �E

�c1

�E

�c2
¯

�E

�cn
�T

. �3�

In the first update, a value a�0� is chosen as a SD constant,
which is small enough not to exhaust the downhill direction,

Q = Q0 − a�0�g�Q0� . �4�

After the first update, the VMC simulation is performed
again to get the gradient at the new parameter set Q. If we
consider only the ith component, the best value for the new
SD constant ai

�1� will make the gradient component gi zero in
the next simulation and will be given by

ai
�1� =

a�0�

1 − gi�Q�/gi�Q0�
. �5�

Although ai
�1� values are different from component to com-

ponent, it is usually the case that they are quite similar. So
the averaged value was used for the next update,

a�1� =
1

n
�
i=1

n

ai
�1�. �6�

These two steps of parameter updates using SD reduce the
energy enough to greatly reduce the error bars, enabling
Newton’s method.

If we let H represent the Hessian matrix, the parameters
can be updated according to Newton’s method,

Q = Q0 − H−1�Q0�g�Q0� . �7�

Since H�Q0� and g�Q0� are calculated in the VMC simula-
tion, we must invert H�Q0� for Newton’s method update of
the parameters.

It is well known that any matrix, e.g., H, can be ex-
pressed as

H = U�diag�wj��VT, �8�

where wj �0 and U , V are orthogonal.7 For a square matrix,
the inverse matrix can be obtained by

H−1 = V�diag�1/wj��UT. �9�

Very small values of wj lead to erroneous moves along the
directions corresponding to these components due to large
1/wj terms. For that reason, if wj is less than a certain thresh-
old value, 1 /wj is set to 0 in the actual calculation �SVD�.

The SVD method has been tested for the inversion of the
Hessian matrix, and it consistently gives robust results in
many cases. However, the SVD method, by zeroing out
small wj values, is equivalent to abandoning the correspond-
ing search directions, the use of which may give better re-
sults. So we propose a modified algorithm in which the SD
method is added for components discarded in the SVD
method.

If we let U and V be equal to the square matrix whose
column vectors are the normalized eigenvectors of H , �wj	
will be the eigenvalues of H. For values of wj that are

smaller than the threshold, 1 /wj can be replaced by a con-
stant a instead of zero, which is equivalent to the SD method
along the corresponding directions. This method makes it
possible to use the information for all directions, some of
which are discarded in the SVD method, and it can be ben-
eficial in cases where some eigenvalues of the Hessian ma-
trix become close to zero, due to the noise inherent in QMC.
In the standard SVD algorithm, wj is always non-negative,
which corresponds to the absolute value of eigenvalue of H.
If any eigenvalue is negative and its absolute value is larger
than the threshold, there is a problem that the direction cor-
responding to this is not discarded, even though this does not
happen so frequently. This small problem of negative eigen-
values can be handled by using the modified method with the
same positive threshold and zero steepest-descent constant,
and we used this modified method in the actual implementa-
tion.

To construct the trial wave functions used in VMC, the
following method was used. First, a contracted Gaussian-
type function �CGTF� was fitted to each Slater-type orbital
�STO�. Ten primitive Gaussians were used for 1s-, eight for
2s- or 2p-, and six for 3s-, 3p-, or 3d-type STOs. The orbital
exponents of STOs in the works of Cade and Huo8,9 were
adopted �excluding the f-type orbitals�. For the first-row
monohydrides, each first-row atom has 29 STOs centered on
it �1s , 1s� , 2s , 2s� , 3s, three 2p’s, three 2p�’s, three 2p�’s,
three 3p’s, six 3d’s, and six 3d�’s for Li, and
1s , 1s� , 2s , 2s� ,3s, three 2p’s, three 2p�’s, three 2p�’s, three
2p�’s, six 3d’s, and six 3d�’s for other first-row atoms�, and
each hydrogen atom has 6 STOs centered on it �1s, 1s�, 2s,
and three 2p’s� as a basis set. For carbon monoxide, each
atom has 19 STOs centered on it �1s , 1s� , 2s ,3s, three 2p’s,
three 2p�’s, three 2p�’s, and six 3d’s� as a basis set.

Each molecular orbital �MO� was expressed as a linear
combination of STOs, the coefficients of which were ob-
tained using the Hartree–Fock method in GAUSSIAN 98

�G98�.10 For the open shell molecules, restricted open shell
Hartree–Fock �ROHF� wave functions were used. The MOs
from G98 were used to construct the Slater determinants for
� and � electrons. While multideterminant trial wave func-
tions give improved results for some systems, it was reported
that the use of single determinant trial wave functions gave
good results in the calculations of the first-row hydrides.11,12

Since the use of multideterminant trial wave functions is
much more time consuming, we used a single determinant in
the calculations presented. The product of a spin-up and a
spin-down determinant was multiplied by a positive correla-
tion factor to form a trial wave function,13,14

�T = D↑D↓ exp� �
a,i�j

Uaij� , �10�

where

Uaij = �
k

Na

cka�r̄ai
lkar̄aj

mka + r̄aj
lkar̄ai

mka�r̄ij
nka. �11�

In this equation, a and i , j refer to the nuclei and the elec-
trons, respectively, and r̄
br / �1+br�. cka’s are variational
Jastrow parameters. We used b=1a0

−1 and included 30 terms
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for diatomic molecules, namely, 4 electron-electron, 6
electron-nucleus, and 20 electron-electron-nucleus terms. For
single-atom calculations, we used 17 parameters composed
of 4 electron-electron, 3 electron-nucleus, and 10 electron-
electron-nucleus terms, to be consistent with the calculation
of diatomic molecules.

Five different bond distances around the experimental
bond length were used for calculation, namely, 90%, 95%,
100%, 105%, and 110% of the experimental bond length rexp.
Two thousand walkers were used for all the calculations in
this paper. In updating Jastrow parameters, average over 100
blocks was made, where each block was the average over
100 steps. To accelerate the sampling, a Fokker–Planck-type
equation was used.15

After a short initial simulation without Jastrow factor,
the Hartree–Fock wave function was multiplied by the Ja-
strow factor with all parameters set to zero. The gradient and
Hessian of energy with respect to the Jastrow parameters
were computed in the VMC simulation after this step. Using
the gradient and Hessian information, a new Jastrow param-
eter set is calculated, and a new VMC simulation is per-
formed with this updated parameter set. This process was
iterated until the energy converged. Fully optimized param-
eters were obtained by 10–15 iterations. One iteration took
about 30 min for LiH and about 90 min for HF when a single
2.8-GHz Intel® Xeon™ processor was used.

After optimizing the trial wave function using VMC, a
fixed-node DMC calculation was performed using impor-
tance sampling, as proposed by Reynolds et al.16 The DMC
time step was 0.005 a.u. for the first-row hydrides and
0.0005–0.001 a.u. for carbon monoxide. A similar DMC
method was used by Lüchow and Anderson11,17 in their cal-
culation of first-row hydrides.

Force calculations were performed in both VMC and
DMC. We followed the method described previously.4 If the
wave function is exact, the Hellmann–Feynman theorem
�HFT� would give the exact force. Since the trial wave func-
tion �T is not exact, the terms that cancel in the case of exact
wave functions should be considered, in addition to the HFT
expression. Retaining terms involving wave-function deriva-
tives gives the total atomic force on atom a in direction q,

Fqa = Fqa
HFT + Fqa

Pulay + Fqa
c , �12�

where

Fqa
HFT = −

��T� �Ĥ

�Rqa
��T

��T��T�
, �13�

Fqa
Pulay = − 2

��� ��T

�Rqa
�Ĥ��T

��T��T�
+ 2�E�VMC

�� ��T

�Rqa
��T

��T��T�
,

�14�

and

Fqa
c = − �

k

�ck

�Rqa

��E�VMC

�ck
. �15�

These expressions apply for VMC, and similar equations are
used for DMC simulations.4 Fqa

Pulay incorporates the explicit
dependence of the wave function on the nuclear coordinates
�Pulay’s correction18� and can be easily calculated through
VMC or DMC simulations. Fqa

c depends implicitly on the
nuclear coordinates through the variational parameters. How-
ever, since an energy-minimized wave function is used, i.e.,
��E�VMC/�ck=0, this force term makes zero contribution. In

TABLE I. E0, re, �e, and �exe for LiH–HF and CO obtained from VMC and
DMC calculations and experimental data.

E0�hartree� re�bohr� �e�cm−1� �exe�cm−1�

LiH VMC -8.063 3.038�1� 1402�4� 25.7�1�
DMC -8.070 3.020�1� 1417�4� 24.8�1�
Exp -8.070 3.015 1406 23.2

BeH VMC -15.235 2.519�1� 2141�4� 56.6�2�
DMC -15.246 2.515�1� 2134�4� 58.5�2�
Exp -15.248 2.537 2061 36.3

BH VMC -25.254 2.370�1� 2332�5� 47.0�2�
DMC -25.275 2.386�1� 2369�5� 47.3�2�
Exp -25.289 2.329 2367 49.4

CH VMC -38.438 2.097�1� 2961�6� 77.2�3�
DMC -38.463 2.112�1� 2898�6� 71.8�3�
Exp -38.490 2.116 2858 63.0

NH VMC -55.178 1.941�1� 3415�7� 104.3�4�
DMC -55.206 1.962�1� 3253�7� 92.0�4�
Exp -55.247 1.958 3282 78.4

OH VMC -75.687 1.820�1� 3854�7� 101.2�4�
DMC -75.720 1.843�1� 3690�7� 91.4�4�
Exp -75.778 1.832 3738 84.9

HF VMC -100.407 1.729�1� 4206�9� 89.9�4�
DMC -100.442 1.755�1� 4040�9� 82.4�4�
Exp -100.531 1.733 4138 89.9

CO VMC -113.176 2.095�1� 2539�16� 21.1�3�
DMC -113.286 2.116�2� 2251�26� 14.2�3�
Exp -113.377 2.132 2170 13.3

FIG. 1. Energy and force calculations of HF with VMC and DMC. Two thin
horizontal lines at each data point show the energy error bar. The slope of
the thick lines show the force at each data point.
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the calculation of the Hellmann–Feynman theorem force
Fqa

HFT, the renormalized estimator proposed by Assaraf and
Caffarel1 was used to reduce the variance of the force calcu-
lation. The expectation value of this estimator Fqa

AC is the
same as Fqa

HFT, but the variance of the former is much smaller.
In our force calculation, Fqa

AC+Fqa
Pulay was computed by aver-

aging over the walkers.

III. RESULTS AND DISCUSSION

The energies of first-row monohydrides and carbon mon-
oxide at various bond distances were calculated. The plot of
energy versus bond distance for hydrogen fluoride �HF� is
shown in Fig. 1. In obtaining each point, 1000 blocks, each
of which was composed of 100 steps, were used with the
optimized Jastrow parameters. The plots for other molecules
are similar to that for HF. The energies obtained from VMC
are a few tenths of a Hartree lower than the Hartree–Fock
energies obtained from G98, so the Hartree–Fock results are
not shown in the figure. It can be seen from Table I that the
DMC energy is significantly lower than the VMC energy and
is close to the experimental value.

The bond dissociation energies De were calculated by
taking the differences between QMC energies of diatomic
molecules in Table I and QMC energies of atoms. To be
consistent in the number of the Jastrow parameters, we did
the calculation of atoms with 17 parameters. The VMC en-

ergies of atoms with 17 parameters fall between those with 9
parameters and those with 42 parameters reported in Ref. 6.
The dissociation energies are summarized in Table II, to-
gether with the results given in the work by Lüchow and
Anderson.11 Our VMC dissociation energies are much closer
to the experimental values than those given by Lüchow and
Anderson, while our DMC results are quite similar to theirs.
The improvement in our VMC results may be attributed to
the effectiveness of the energy minimization method relative
to the variance minimization method used for the VMC cal-
culations in Ref. 11, while part of the improvement is also
due to the larger number of the Jastrow parameters in our
calculation.

The energies calculated by DMC are quite close to the
experimental values for lighter first-row hydrides, while
slightly higher energies than the experimental values are ob-
tained for heavier molecules. This may be due to the ap-
proximations used in the DMC calculations: fixed-node ap-
proximation, neglect of the relativistic effect, and the error
related with finite time step. To estimate the finite time step
error, the DMC calculations at rexp with several different
time step values ranging from 0.0001 to 0.005 a.u. were
carried out for the first-row hydrides. All calculated energies
agreed within 2–3 mhartree.

In the VMC calculation of HF, the Jastrow parameter set
at rexp was optimized first, and after the optimization at this

TABLE II. Dissociation energies De in kcal/mol for LiH–HF and CO obtained from our QMC calculation and
from the literature.

VMCa DMCa VMCb DMCb Experimentb

LiH 54.7 57.8 45.7 57.8 58.0
BeH 57.9 55.7 49.4 52.1 49.8
BH 82.7 84.7 63 84.8 84.1
CH 81.1 83.5 81 83.9 83.9
NH 80.2 82.3 77 81.4 80.5–84.7
OH 105.1 106.4 86 106.4 106.6
HF 140.4 141.4 130 141.3 141.5
CO 218.1 254.9 ¯ ¯ 258.7

aDifferences between QMC energies of molecules in Table I and QMC energies of atoms calculated with 17
parameters.
bFrom Ref. 11 for first-row hydrides.

TABLE III. The cosine similarity values between Jastrow parameter sets obtained from the VMC calculations
of HF and CH.

cos � �HF� 0.90 rexp 0.95 rexp 1.00 rexp 1.05 rexp 1.10 rexp

0.90 rexp 1.000
0.95 rexp 0.998 1.000
1.00 rexp 0.997 1.000 1.000
1.05 rexp 0.998 0.997 0.997 1.000
1.10 rexp 0.997 0.999 0.999 0.997 1.000

cos � �CH� 0.90 rexp 0.95 rexp 1.00 rexp 1.05 rexp 1.10 rexp

0.90 rexp 1.000
0.95 rexp 0.836 1.000
1.00 rexp 0.842 0.964 1.000
1.05 rexp 0.658 0.807 0.701 1.000
1.10 rexp 0.829 0.879 0.848 0.817 1.000
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distance, the bond distance was changed, and the MO coef-
ficients corresponding to this bond distance were introduced.
Then, the Jastrow parameters were reoptimized at this new
bond distance. This method makes it possible to reduce the
CPU time for the calculation at other bond distances once the
parameter set is optimized at one bond distance. This ap-
proach is effective because the Jastrow parameter sets at dif-
ferent bond distances can be quite similar, as measured by
the cosine similarity19 between Jastrow parameter sets,

cos � =
Qm · Qn

�Qm · Qm
�Qn · Qn

, �16�

which is close to unity if two vectors are similar. This is
certainly the case for the Jastrow parameter sets of HF at
various bond distances, as shown in Table III. This approach
seems to be useful for the molecular-dynamics �MD� simu-
lation coupled with QMC, proposed by Grossman and
Mitas.20 On the other hand, in the case of CH, NH, or OH, it
was problematic to apply this method, and we had to opti-
mize the parameters from the beginning for all bond dis-
tances. The cosine similarity values in the case of CH are
shown in Table III, when the parameters are optimized sepa-
rately from scratch for all bond distances. If the parameters
of HF at each bond distance are optimized from scratch, the
cosine similarity values are around 0.9 for the parameter sets
optimized at different bond distances, and similar energies
can be obtained with different sets of parameters.

The energy of BH at rexp at various stages of parameter
optimization is shown in Fig. 2. If the SD steps are used for
initial stages of parameter optimization �B�, Newton’s
method with SVD converges to the lowest energy after sev-
eral iterations. If the initial SD steps are not used �A�, New-

ton’s method is somewhat difficult to apply due to the large
error bars of the Hessian components. In this case, it was
necessary to set the SVD threshold somewhat high and to
calculate for a long period of time. Within this approach,
using only Newton’s method with SVD does not yield fully
optimized energy. The simultaneous application of Newton’s
method and SD �steps 6–9� was very useful in this case for
more thorough minimization.

Forces were computed for each monohydride and carbon
monoxide at each bond length in VMC and DMC. The force
result for HF is shown in Fig. 1, where the slopes of the line
segments superimposed on the energy result correspond to
the negative of the calculated forces. The calculated forces of
HF are shown in Table IV, together with the values obtained
by fitting energy results to a parabola and then calculating
the slopes. The force at 0.90 rexp is larger than the magnitude
of the slope of the parabola obtained from the energy result,
while the magnitude of the force at 1.10 rexp is smaller than
the parabola tangent, which clearly shows the deviation of
the calculated forces from harmonic behavior due to anhar-
monicity.

The approximate shape of the anharmonic potential can
be described by the Morse potential,21

V�r� = De�1 − e−��r−re��2, �17�

and this was used in the fitting of the QMC results to calcu-
late the properties of diatomic molecules. The vth energy
level of the Morse potential with reduced mass � is

E

hc
= �e�v +

1

2
� − �exe�v +

1

2
�2

, �18�

where the harmonic vibrational frequency is given by �e

=��100Deh /2	2c��1/2 and the anharmonicity constant by
�exe= �100h�2 /8	2�c�. In this equation, �e, De, and � have
the unit of cm−1 and other constants are in Système Interna-
tional �SI� units.

Since we performed the QMC calculations at a small
number of bond distances, it is advantageous to use the en-
ergy and force results simultaneously in the fitting to the
Morse potential, which can be accomplished by minimizing
the following merit function:


2�a� = �
i=1

N �Ei − E�ri;a�
�E,i

�2

+ �
i=1

N �Fi − F�ri;a�
�F,i

�2

. �19�

Here a is a parameter vector whose components are De, �,
and re, and the following functional forms were used:

E�r;a� = De��1 − e−��r−re��2 − 1	 + �EA + EB� , �20�

FIG. 2. The energy of BH at rexp at various stages of parameter optimiza-
tion. �A� Newton’s method for 1–6 and Newton’s method with SD for 6–9.
�B� Initial SD for 1–3 and Newton’s method for 3–9.

TABLE IV. Forces obtained from the slope of parabolic potential-energy fits and from the direct calculation for
HF.

Force 0.90 rexp 0.95 rexp 1.00 rexp 1.05 rexp 1.10 rexp

VMC �parabola� 0.113�11� 0.057�6� 0.001�3� -0.055�6� -0.111�11�
VMC �direct� 0.147�1� 0.060�1� -0.002�1� -0.050�1� -0.076�2�
DMC �parabola� 0.110�4� 0.056�2� 0.002�1� -0.051�2� -0.105�4�
DMC �direct� 0.168�1� 0.077�1� 0.015�1� -0.033�1� -0.064�1�
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F�r;a� = − 2De��1 − e−��r−re��e−��r−re�. �21�

The expression for the energy has been modified to produce
correct dissociation energy De, and EA and EB are VMC or
DMC energies of atoms A and B. The equilibrium bond
lengths �re�, harmonic vibrational frequencies ��e�, and an-
harmonicity constants ��exe� for all first-row monohydride
molecules and carbon monoxide calculated by fitting energy
and force results are summarized in Table I, along with the
experimental data.22 The experimental energies are corrected
by adding zero point energies. Our calculations agree well
with the experimental results.

Each energy or force data point has an error bar associ-
ated with it, so we followed a simple procedure to estimate
how the calculated error bars translate into uncertainty in
other quantities such as equilibrium bond length, harmonic
vibrational frequency, and anharmonicity constant. A large
set of synthetic data points was stochastically generated,
such that the average value at each bond length agrees with
that obtained from QMC with the standard deviation the
same as the error bar given by the QMC calculation. By
computing the averages and standard deviations of the equi-
librium bond length �re�, harmonic vibrational frequency
��e�, and anharmonicity constant ��exe� for the synthetic
data sets, the error bars of re, �e, and �exe could be esti-
mated. The error bars of the last digit thus calculated are
shown in parentheses.

IV. CONCLUSIONS

The force calculation method combining energy minimi-
zation, Pulay’s corrections, and a renormalized Hellmann–
Feynman estimator worked well with all the first-row hy-
dride molecules and carbon monoxide with small extra
effort.

The energy minimization method in VMC is useful, but
it requires an effective optimization scheme. The addition of
steepest descents to the initial steps and to the subspace ne-
glected by Newton’s method with SVD seems to be advan-
tageous for the molecular systems we investigated.

We could calculate accurate harmonic vibrational fre-
quencies and anharmonicity constants of diatomic molecules

by fitting QMC results to the Morse potential, achieving ex-
cellent agreement between QMC calculations and experi-
ment for these vibrational parameters.
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