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Higher order diffusion Monte Carlo propagators for linear rotors
as diffusion on a sphere: Development and application to O2@Hen
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Exploiting the theoretical treatment of particles diffusing on corrugated surfaces and the isomor-
phism between the “particle on a sphere” and a linear molecule rotation, a new diffusion kernel is
introduced to increase the order of diffusion Monte Carlo (DMC) simulations involving linear ro-
tors. Tests carried out on model systems indicate the superior performances of the new rotational
diffusion kernel with respect to the simpler alternatives previously employed. In particular, it is ev-
idenced a second order convergence toward exact results with respect to the time step of dynamical
correlation functions, a fact that guarantees an identical order for the diffusion part of the DMC pro-
jector. The algorithmic advantages afforded by the latter are discussed, especially with respect to the
“a posteriori” and “on the fly” extrapolation schemes. As a first application to the new algorithm,
the structure and energetics of O2@Hen (n = 1–40) clusters have been studied. This was done to
investigate the possible cause of the quenching of the reaction between O2 and Mg witnessed upon
increasing the size of superfluid He droplets used as a solvent. With the simulations on O2 indicating
a strong localization in the cluster core, the behaviour as a function of n is ascribed to the extremely
fluxional comportment of Mg@Hen, which dwells far from the droplet center, albeit being solvated,
when n is large. © 2011 American Institute of Physics. [doi:10.1063/1.3639190]

I. INTRODUCTION

With experiments involving superfluid He droplets being
extended and perfected as time goes by, more efficient and
powerful theoretical methods become necessary to interpret
experimental results and solve the scientific puzzles that the
latter pose occasionally. To highlight a few examples of the
contribution that theory can provide in this context, one may
start from the recent work by Hernando et al.1 on Mg and Mg2

in He droplets, where the solubility of the latter species was
studied employing a density functional theory (DFT) based
approach. The results indicated robust interpretations for the
electron-impact ionization experiments carried out in Ref. 2
suggesting a nearly surface-like state for Mg, as well as for
the resonant 2-photon-ionization experiments on the droplet
doped with more Mg atoms indicating a “foam-like” state
for the latter when dispersed in He.3 Similarly, the investiga-
tion of the energetics, structure,4 and, at least to some extent,
dynamics5 of AgHen with Ag in the ground and excited state
has contributed to clarify some of the intricate details of its
post-excitation relaxation.6, 7

Despite the successes highlighted above, a few scientific
riddles still roam the arena occupied by the application of He
droplets. For instance, it is interesting to recall the fact that
the excitation spectrum of the lowest triplet state of Ag2, 3�u,
has recently been recorded regardless of the fact that the sol-
ubility of Ag in Hen is expected to favor the formation of the
more stable singlet.8 Whether this finding is an indication of
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a two-step process to form singlet Ag2 via the triplet or sim-
ply due to some inefficiency in preferentially populating the
lowest energy state is an issue that would deserve an investiga-
tion involving a detailed dynamical treatment of the formation
process.

To us, the progressive disappearance of the chemilumi-
nescence associated with the reaction between Mg atoms and
oxygen molecules sorbed by helium clusters upon increasing
the size of the He nano–cryostat9 is even more puzzling. Per-
haps naively, one would imagine that dilution due to a large
droplet may affect the kinetics of such a simple reaction but
not its outcome, which is clearly not the case. It is thus with
the goal of addressing this paradox that we therefore set out
to investigate properties of O2@Hen using atomistic quan-
tum simulations; this is in view of the fact that Mg@Hen has
already been studied extensively.1, 10

In respect to the latter goal, we note that, while quan-
tum statistical simulations on atomic clusters have progresses
to the point where it is possible to simulate a few hundreds
of quantum atoms in a reasonable amount of computer time,
thanks to much improved algorithms employing higher or-
der thermal density matrices,11–16 similar improvements have
been sparse and occasional in the case of systems containing
rigid bodies. The latter “state of affair” should be attributed
more to the complicated topology of the coordinate space
needed to describe both internal and external degrees of free-
dom (e.g., torsions and overall orientation) than to the lack
of cunning from investigators. In fact, a few strategies have
recently become available to carry out diffusion Monte Carlo
(DMC) (Refs. 17–19) and path integral Monte Carlo (PIMC)
(Refs. 20 and 21) in curved manifolds that at least guaran-
tee first order convergence with respect to the time step or the
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number of slices taking into account axel precession and Cori-
olis couplings that were originally neglected.23, 24 Building on
this advances, a clever implementation of estimators such as
for the internal energy allows a third order convergence with
respect to the number of PIMC slices.22 This notwithstand-
ing, there appears to be no clear way forward for improving
DMC projectors and PIMC thermal density matrices beyond
first order, a possibility that has already been shown to pro-
vide more efficient algorithms despite the higher cost per step.
Thus, to make an attempt to fill the methodological gap left in
the quantum statistical simulations of rigid molecule aggre-
gates, we endeavored to provide the community with a higher
order algorithm for linear molecules, which would suit our in-
terest in simulating linear rotor-atomic aggregates. To do so,
it was opted to exploit recent advances in the theory of dif-
fusion on rough/curved surfaces, the application of the latter
theories to our context being described in more detail in Sec.
II.

The outline of this manuscript is as follows. Section II
contains a more complete description of the “state of the art”
in quantum stochastic simulations and describes the approach
chosen to overcome some of the current limitations. It also
presents the results obtained carrying out simulation on two
model systems. Section III provides the results of our DMC
simulations on O2@Hen, including also a discussion relevant
for the interpretation of the experiments described in Ref. 9.
Lastly, Sec. IV gives our final comments on this investigation
effort together with further venues of applications of the new
algorithm introduced.

II. THEORY

Atomic units will be assumed throughout the manuscript
unless otherwise stated.

The theory of DMC relies completely on the possibility
of either writing a convenient analytical form for the projector
e−tH or developing algorithms that allow it to be sampled with
some order of error with respect to time fractionation (i.e., the
time step δt). In this respect, the Trotter factorization and the
Baker–Cambell–Hausdorf formula are often used to provide
the practitioner with high order approximations, which tend
to reduce the systematic errors in computed observables for
systems that are simulated in the 3N Cartesian space needed
to describe the position of point-like particles. Noteworthy,
one has always a way to decompose e−tH to second order in
δt as a product of operators in the 3N Cartesian space whose
action can be exactly simulated in the latter situations.

When the same approach needs to be applied to the
curved manifold such as the one that is required in the case
of systems containing rigid bodies or, more generally, sub-
jected to holonomic constraints, one quickly encounters an
additional problem induced by the fact that a closed form of
the action of the kinetic energy operators describing rotation
and torsion in the system is not readily available. Due to this,
several simple and convenient approximations have been used
to circumvent such problem, with a common trait, however
to be at best first order with respect to δt . Among the diffu-
sional evolution operators which can at most provide linear
convergence with respect to δt , we recall the approach taken

by Buch23 and formalized by Viel et al.,25 as well as the more
modern approach based on stereographic projections and
DeWitt formulae introduced by Aviles and Curotto17 and re-
cently brought to higher levels of efficiency by Luan, Curotto,
and Mella.26 These choices, albeit convenient for practical
purposes, have the drawback of degrading the overall order
of the DMC algorithms preventing the use of long time steps
and the exploitation of many of the most recent extrapolation
approaches for improving efficiency.

In this section, we wish to describe a simple but con-
venient approach that allows one to simulate the action of
the rotational kinetic energy operator �2/2I (or better of its
diffusional projector e−t(�2/2I )) for a linear molecule whose
error term O(δtn) has n = 1, 2, or 3. This is based on the
work by Faraudo,27 who developed analytical approximations
for the probability distribution function of the diffusion length
along a 2D surface expressed in geodesic coordinates (u, v)
(i.e., the generalized latitude and longitude) and the isomor-
phism between the imaginary-time Schroedinger equation for
the free rotation of a linear molecule with inertia moment I

(or a point particle of mass m on a sphere with square ra-
dius I/m) and the diffusion equation of a species with a dif-
fusion coefficient D = 1/(2I ) on a unit sphere. Equation (51)
in Ref. 27 provides the much needed expression, developed
by means of perturbation theory for an isotropic surface (i.e.,
one for which the metric tensor G(u, v) of the manifold de-
fined by the surface depends only on the geodesic distance u),
in terms of the Gaussian curvature K0 at the location of the
diffuser and some related quantities, namely, a characteristic
time τ−1

0 ≡ 4D|K0| and radius R0 ≡ |K0|−1/2. In the case of
diffusion over a sphere of radius R, for which the curvature
is constant in every point, the mentioned equation simplifies
remarkably and it can be written as

P (u, t) = e−u2/(4Dt)
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with u being the length of the arc diffused after time t . The
terms omitted in the series in Eq. (1) are of order four or
above with respect to u/R and three for t/τ0. In the case of
a sphere, u is clearly measured along one of the great cir-
cles passing through the starting point of the diffusion, and it
is thus easy to derive an algorithm that can be used to sam-
ple the diffusion of the sphere itself. To do so, we recall that
Eq. (1) must be multiplied by

√
G(u)du = R sin(u/R)du to

generate the probability of taking a step of length u after time
t , so that we ought to sample the form in Eq. (2) where we set
A(t) ≡ 1 + (1/12)(t/τ0) + (1/240)(t/τ0)2:
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The two inequalities descend from the fact that
(1/12)(u/R)2 ≤ 1 for 0 ≤ u ≤ πR and it is always
R sin(u/R) ≤ u over the same interval. The last proba-
bility can be easily sampled employing the inversion method
since the cumulative probability

∫ πR

0 (e−u2/(4Dt))/(4πDt)udu

can be easily obtained analytically. In turn, this allows the
correct probability density for u to be sampled using a
rejection method. A summary of the algorithm implemented
to simulate the rotational diffusion on a sphere is provided in
Appendix IV.

Different from what it is usually done when testing a
new projector (such as new integrators for the Langevin
equation12) in Cartesian space, in this case we cannot rely
on the fact that the sampled limiting distribution for t → ∞
should have an error proportional to some power of the time
step. In fact, it is trivial to demonstrate that any form for
P (u, t) that is even in u would, in the long run, generate
an uniform distribution of points on the sphere. Conversely,
what we ought to test is the accuracy of the relaxation dy-
namics itself, which could be gauged comparing the exact
(or extremely accurate) and simulated values of an observable
that is capable of tracking the dynamics as a function of the
time step chosen. In this respect, Fig. 1 shows 〈cos[β(δt)]〉 for
three different approximations derived from Eq. (2), namely,
one for which A(t) ≡ 1 and (1/12)(u/R)2 are omitted, one
for which the latter term is retained but it is still A(t) ≡ 1,
and a last one for which all terms in Eq. (1) are retained.
Here, cos(β) is the cosine of the angle diffused after the time
t = (10D)−1 when D = 10−5 a.u. as a function of time step
δt . Notice that we have not included in the comparison pro-
vided by Fig. 1 the approaches suggested in Refs. 17, 23, and
25 due to the fact that we expect a performance similar or
worse to the one provided by the simplest among our approx-
imations.

The value of t was chosen in order for the expectation
value to be representative of a diffusion that is highly unlikely
to reach a point opposite to the starting location, helping us to

FIG. 1. Convergence of 〈cos[β(δt)]〉, the angle diffused after a time
t = (10D)−1, as obtained simulating diffusion with three approximations
derived from Eq. (1). “Tangent” represents data obtained with no correc-
tion to the basic algorithm, while “curvature” and “curvature and time
step” corrected results are from algorithms employing, respectively, A(t)
≡ 1 and A(t) ≡ 1 + (1/12)(t/τ0) + (1/240)(t/τ0)2 with the distance depen-
dent correction u2/(12R2).

verify the correctness of the short time dynamics. The start-
ing distribution of points was sampled uniformly generating
points in the unit cube whose center coincides with the sphere
one and rescaling their vector length to unit module. In this
way, we concentrate more points around the intersections be-
tween the sphere surface and the diagonal of the cube itself
with the advantage that the non–uniform initial distribution
allows one a more insightful test of the diffusion algorithms.
Notice that a value for D such as the one employed in these
simulations is relevant for the rotational diffusion of first row
diatomic molecules, such as N2 and O2.

As one can easily notice, the basic approximation to sur-
face diffusion (A(t) ≡ 1 and no u-term) provides one with
a robust linear convergence toward the exact diffused angle;
keeping in mind that this approach is at least equivalent (if not
better due to the use of the exact volume element R sin(u/R)
instead of u) than what was often used to simulate a random
walk on corrugated surfaces,28 this finding is not surprising
under the light of the error analysis carried out in Ref. 28.
Upon introducing the u–dependent term alone, one notices
a marked improvement so much that it is difficult to under-
stand whether the convergence order with respect to the time
step is linear, as expected due to the lack of the t–dependent
terms, or supralinear. In this respect, notice that (1/12)(u/R)2

∼ 0.067 (as estimated from 〈u2〉 in our simulations) and that
(1/12)(t/τ0) ∼ 0.033 for the longest of the time step shown
in Fig. 1. However, the effect of the coordinate-dependent
term is more substantial than that predicted by these simple
estimates, since it pushes the distribution toward larger u,
while the time–dependent term has the net effect of slightly
modulating this “push.” As a consequence of this reason-
ing, one should also expect a limited improvement upon in-
creasing the order of the time–dependent correction intro-
duced, a conclusion that is readily verified by our numerical
results.

While the latter conclusion seems to suggest that only a
limited absolute improvement may come from using high or-
der approximations in δt to describe rotational diffusion on a
sphere in DMC simulations once the (1/12)(u/R)2 term is in-
troduced, the assurance of a well defined order provides one
with the chance of robustly extrapolating the simulation re-
sults, whose main systematic error is expected to derive from
the non-commuting nature of the kinetic and potential energy
operators. Thus, the theory put on solid basis in Ref. 12 for
a posteriori extrapolation29 allows one to reduce substantially
the systematic errors associated with the commonly employed
symmetric Trotter splitting even when simulating linear rigid
bodies. In this respect, we would like to remark that the error
reduction witnessed in Fig. 1 covers the whole range of time
steps commonly used to simulate He droplets (δt ≤ 600 a.u.)
or Ne containing species (δt ≤ 2000 a.u.).13

To put the above ideas under test, we decided to simulate
a model system employing DMC with the same approxima-
tions to the diffusion kernel used to study the convergence of
〈cos(β)〉(δt). The system is composed of a single dipole inter-
acting with an uniform electric field oriented along the z-axis
and restrained to vibrate around the origin of a set of Carte-
sian axis by a harmonic potential acting on the dipole cen-
ter of mass. This model is a transposition to a more complex
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FIG. 2. Convergence of 〈V 〉(δt) ≡ E0 as obtained using no-IS DMC simula-
tions for the rigid dipole in the harmonic well described in the text. “Tangent”
represents data obtained with no correction to the basic algorithm, while
“curvature” and “curvature and time step” corrected results are from the
algorithm employing, respectively, A(t) ≡ 1 and A(t) ≡ 1 + (1/12)(t/τ0)
+ (1/240)(t/τ0)2 with the distance dependent correction u2/(12R2). The
agreement between the third order extrapolated energy data and the exact
value remarks the robust second order behaviour of the curvature and time
step corrected diffusion kernel.

configuration space of the free dipole interacting with an uni-
form field used by Curotto to demonstrate finite differences
approaches in curved manifolds.30 The dipole was considered
composed of two point-like particles with mass of 414 a.u.
each at a distance of 1 bohr; the spring constant for the har-
monic well was chosen as 10−2 hartree/bohr,2 while a field
of 1 a.u. was employed to parallel the model by Curotto.30

The exact energy for this system is −0.926496 hartree.
Figure 2 presents the data from our simulations run using
a DMC algorithm without importance sampling, its strik-
ing feature being the very good agreement in terms of the
system’s total energy between all levels of approximation
employed for the diffusion kernel. This finding, obviously,
supports the expectation discussed previously while com-
menting the results on 〈cos[β(δt)]〉, both with respect to
the time step dependency (the most accurate kernel demon-
strates a robust second order behaviour deriving from the
symmetric splitting exp[−δtV ′/2] exp[−δtT ] exp[−δtV/2]
of the thermal density matrix) and of the possibility of a
solid a posteriori third order extrapolation. In fact, third or-
der results are all within two standard errors from the exact
energy.

III. DMC SIMULATIONS OF O2@Hen CLUSTERS
(n = 1–40)

DMC simulations on O2@Hen clusters have been car-
ried out employing a standard second order symmetric (also
known as Trotter) factorization of the projector operator,
which differs with the one employed in Ref. 11 only due
to the presence of the rotational diffusion part discussed in
Sec. II. Worth stressing, it is the fact that the rotational kinetic
energy operator in spherical coordinates defined with respect
to a laboratory fixed frame commutes with the center of mass
Cartesian coordinates, so that the order between rotational and
centre of mass diffusions is inconsequential. Importance sam-

pling (IS) was introduced by re-weighting the DMC configu-
rations (or walkers) using the ratio between the values of the
trail wave function �T before and after the diffusion step.31

�T was chosen of the same analytical form previously used to
describe Ag and Cu in He droplets32 employing O2 center of
mass (c.m.)–He atom distances instead of O atom–He atom
distances. This choice serves two purposes, namely, the use
of a very efficient wave function that is capable of describing
also second shell He atoms if needed and the absence of an
angular bias for the O2He density. In other words, we allowed
DMC to suggest the most appropriate angular distribution be-
tween a He atom and the O2 bond axis.

As usual, we wrote the total interaction potential as a sum
of two-body terms; this is justified by the very low polariz-
ability of He atoms and the lack of strong multipole moments
in O2. To compare with previous work of ours, we opted for
employing the Toennies–Tang–Yang (TTY) form33 as He–He
pair potential. The 3D potential developed by Groenenboom
and Struniewicz (GS) (Ref. 34) was instead used for the O2–
He interaction keeping O2 frozen at its equilibrium distance
in vacuum, 2.282 bohr. From the markedly linear dependency
of the GS potential on the O2 stretching coordinate around
the minimum, we expect our choice of freezing the molecular
bond at its minimum to be inconsequential when compared to
using the vibrational averaged distance.

The GS potential features two minima, one linear
(116.7 μhartree at a distance of 6.9 bohr) and one T–shaped
(127.1 μhartree, 6.9 bohr), with the T-shaped one being the
lowest of the two. The two minima are separated by a barrier
that is located 36.7 μhartree above the lowest stationary point.
Compared with the TTY well depth of roughly 33 μhartree
at the He–He distance of 5.6 bohr, these energy values sug-
gest as likely that O2 is indeed soluble in helium droplets; it
certainly will with classical simulations. However, one ought
not to discard the possibility that dynamical many-body ef-
fects may modulate somewhat this static picture, as already
evidenced previously.35 In particular, we aim to establish if
helium would preferentially be located in the T-shaped global
minima due to the lower potential energy or may indeed de-
localize due to quantum effects. Besides, the height of the lo-
cal He density maximum expected in the first solvation shell
around O2, as well as the fluctuation of the latter with respect
to the centre of the He droplet, may have bearings on the pos-
sible quenching of the Mg–O2 reaction as discussed in the
case of the formation of Mgn clusters.3

With the potentials discussed above, simulations were
carried out using 1000 walkers as target population; initial
tests deemed such population size to be suitable for our goal
of estimating energy differences and investigating solvation
details, as well as to provide a population bias of roughly a
part per ten thousands (i.e., similar or smaller than the asso-
ciated standard error) even for simulations not employing the
IS procedure (no-IS) to minimize the errors. The latter were
used to assess the degree of He delocalization in clusters with
n ≤ 8 exploiting the deep well in the O2–He potential to keep
them bound. For larger n, we were forced to use IS. Similarly,
we opted for a time step of 100 a.u. for the no-IS simula-
tions and of 500 a.u. for the IS ones; both values guarantee a
bias of the same order of what just discussed. Independent
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TABLE I. Total energy and He evaporation energy 	0(n)
= (E(n) − E(m))/(n − m) for O2@Hen. The standard error of mean
values is roughly one unit of the last decimal digit shown. m is the number
of He atoms in the aggregate closer in size to O2@Hen and with m < n.

n E(n) (hartree) 	0(n) (cm−1)

1 −0.0000351
2 −0.0000714 −7.95
4 −0.0001469 −8.27
6 −0.000223 −8.38
8 −0.000297 −8.0
10 −0.000355 −6.4
14 −0.000456 −5.5
18 −0.000521 −3.6
20 −0.000551 −3.3
25 −0.000623 −3.2
30 −0.000695 −3.2
40 −0.000839 −3.1

of the presence or not of the IS procedure, all simulations
were run generating, at least, 250 000 new populations, each
containing roughly 1000 walkers, a number that was progres-
sively increased upon increasing the system size.

Table I and Fig. 3 provide the results for the total energy
and He evaporation energy obtained with DMC simulations as
a function of the number of He atoms, n. The evaporation en-
ergy at each n is defined as the incremental ratio (i.e., change
per atom) of a cluster energy with respect to the closer species
that is smaller in size. As usual, this quantity allows one to
extract a wealth of information about the cluster structure. In
fact, comparing with previous results,4, 32, 36 it clearly emerges
that a compact first solvation shell is formed around the oxy-
gen molecule and it may be closed already at n = 18. We also
found an excellent agreement between the evaporation energy
in the range 20 ≤ n ≤ 40 for our clusters and large He clus-
ters containing strongly binding species,37, 38 which we inter-
pret as a strong suggestion for the presence of a second solva-
tion shell in the size range 20 ≤ n ≤ 40. In other words, we
consider that the almost identical evaporation energy shown
by large clusters containing different impurities is, in prac-
tice, indicating the presence of similar environments due to
the shielding of the He-impurity interaction at long distances.
Finally, it is also clearly evident the presence of a stabilizing
dynamical many-body effect for n ≤ 6, which is washed out
by the excluded volume effect (i.e., higher kinetic energy due
to less room available per atom) for larger n.

A more precise characterization of the structural features
of doped He droplets is usually carried out by presenting vari-
ous probability distribution functions. In our case, this is done
in Figs. 4 and 5, which, respectively, show the 2D (in radial
and angular Jacobi coordinates) probability distribution of He
atoms around the oxygen molecule for a few selected clusters
(n =2, 8, and 40) and the distribution of oxygen molecule
c.m. with respect to the centroid of the He moiety. All pair
distributions were obtained averaging over irrelevant coordi-
nates either �0 or �0�T as sampled using, respectively, DMC
simulations without or with IS. To provide a few additional
visual particulars, we also show a typically sampled structure
for n =2, 8, 18, and 40 in Fig. 6.

FIG. 3. Total (square, left axis, atomic units) and evaporation energies (cir-
cle, right axis, cm−1) for O2@Hen as a function of the number of He atoms,
n. m is the number of He atoms in the aggregate closer in size to O2@Hen and
with m < n. The data for the size range 1 ≤ n ≤ 8 were obtained using no-IS
DMC simulations; larger clusters have been studied employing IS DMC to
reduce statistical errors and to prevent second shell He atoms evaporation.
Standard errors are of comparable size or smaller than symbols.

From Fig. 4, it is clear that He is completely delocalized
around the molecule; nevertheless, two smooth maxima are
found in the linear and T-shape configurations for atoms in
the first solvation shell. Such maxima are present in all the
clusters we studied and are thus largely independent of the
cluster size. Their height, however, increases upon increas-
ing the number of He atoms in the aggregate as commonly
found for solvated impurities, indicating the presence of a
“pressure” effect due to the second solvation shell atoms (see
Fig. 5). Worth noticing, it is the fact that the local density
in the first shell is close to the bulk He density already at n

= 8, i.e., somewhat before the shell closure. This outcome is
clearly related to the well depth of the interaction between He
and O2, as previously evidenced by the calculation on strongly
binding species. In fact, to find a similar density in the case
of Ag (considered a strong binding atomic dopant), one has
to reach n ∼ 20,32 while a density of 0.0045 a.u. (i.e., as
O2He40) is seen only in AgHe90. Besides, the small outward
shift of the first solvation shell peak seen in the He density
upon increasing n is partially due to the improved sphericity
of the He solvation layer.

Figure 5 also completely ascertains that O2 is fully sol-
vated at any value of n by giving evidence that its c.m. always
lies close to the c.m. of the He atoms. In this respect, we no-
tice that the fluctuation allowed to the oxygen molecule with
respect to the He cluster centroid is very small (roughly 2 bohr
for the largest cluster treated), somewhat smaller than that for
Ag that is already a strongly binding neutral species.32 Indica-
tions supporting our general interpretation for the structure of
O2@Hen clusters can also be obtained by other angular and
spatial distributions or by the direct visualization of atomic
positions represented by the DMC walkers (see Fig. 6); how-
ever, we refrain from presenting the former for the sake of
space and simply indicate that, for clusters with 2 ≤ n ≤ 12,
He atoms tend to aggregate together preventing the filling of
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FIG. 4. Two-dimensional relative He density. Coordinates are the distance
from the O2 center of mass and the cosine of the angle formed with the
molecular axis. Colors indicate the relative values with respect to the maxi-
mum density for n = 2 (top), 8 (middle), and 40 (bottom).

the expected toroidal belt due to the T-shaped global mini-
mum in the GS potential.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have studied the energetics and structural
details of O2@Hen clusters (n =1–40) employing state of the
art interaction potentials and quantum statistical simulation

FIG. 5. He (black lines, right axis) and O2 (red lines, left axis) probability
distribution functions with respect to the distance from the geometrical centre
of the He moiety. The horizontal line represents the bulk He density in similar
thermodynamical conditions. The cluster sizes shown in the figure have been
chosen as representative cases for the three regimes of shell filling discussed
in the main text. Oxygen densities are normalized to unit value, while He
densities are normalized to the atom number n.

methods. In fact, we developed a new DMC algorithm for
linear rigid rotors that affords a higher order of convergence
with respect to the time step employed during a simulation
and consequently a smaller bias than previously used schemes
when it come to evaluate correlation functions. Such improve-
ments come at the cost of a limited increase in the complexity
of the algorithm and with no additional computational time
spent per DMC step, thanks to an efficient implementation of

FIG. 6. Typically sampled structures for n =2, 8, 18, and 40. Notice the
tendency of He atoms to aggregate together evident in O2Hen. This seems to
slow down the completion of the “belt” that ought to be formed due to the
T-shaped minimum in the interaction potential and favors the occupation of
the linear minima.
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the sampling of the rotational displacement along a great cir-
cle. Benefits from the improved algorithm discussed in this
paper could be harvested by methods, such as reptation quan-
tum Monte Carlo (RQMC) (Ref. 39) and PIMC, both of which
can be used to compute imaginary time rotational correlation
functions to extract the change in rotational constants due to
the solvating environment.40–46 In this respect, RQMC would
necessitate of a somewhat new implementation introducing a
robust second order approximation to the Langevin (drift and
diffusion) kernel before it could collect the advantages pro-
vided by using Eq. (1), while one would simply require to
modify the acceptance/rejection step in PIMC.

As far as statistical expectation values are concerned,
however, the results presented indicate that only very limited
improvements are to be expected from using a higher order
approximation of the diffusion kernel for a spherical surface
manifold. Nevertheless, the third order short time error of the
most accurate approximation tested in this work paves the
way toward the use of more sophisticated approaches based
on the theory of stochastic differential equations. In fact, the
possibility of a posteriori extrapolating the data to reduce the
time step bias relies on the same sufficient conditions12 that
allow one to extrapolate “on the fly.”13 Albeit not attempted
in this work due to the small system sizes with respect to to-
day’s computer capabilities, it is expected that implementing
on the fly the time step extrapolation would give an efficiency
boost similar to what obtained for atomic aggregates with no
additional computational overheads.

As discussed in the Introduction, the main thrust for the
presented work was the disappearance of the chemilumines-
cence associated with the reaction between a few Mg atoms
and O2 (Ref. 9) upon increasing the He droplet size. Whereas
both an increase of droplet radius and of the Mg background
pressure should favor the (early) pick up of more Mg atoms
per cluster and the (later) capture of O2 due to volume effects,
the experiment indicated that chemiluminescence decreased
in the first case. Whether such an effect was due to solubil-
ity issues or simply due to a reduced number of He droplets
in the beam could not be clarified at that time. In this re-
spect, the data obtained with our simulations make clear that
the oxygen molecule is highly soluble in He droplets and it
should be expected to dwell very close to the droplet c.m.
and to afford only limited (Gaussian) fluctuations from that
dynamical equilibrium position. Consequently, O2 should be
expected to sink into He droplets as soon as the impact energy
is dispersed by the quantum environment. Conversely, DFT
results,1 and to some extent also DMC ones,10 suggest a dif-
ferent behaviour for Mg atoms in the same environment, with
Mg atoms being delocalized inside the droplet, while being
restrained from visiting frequently (or at all, vide infra) the
He aggregate centroid. In fact, such limitation becomes pro-
gressively more evident and stringent comparing the Mg dis-
tribution functions obtained by Hernando et al. for n =1000,
2000, and 10 000 (see Fig. 6 in Ref. 1, where it becomes
explicit noticing that a droplet containing 10 000 He atoms
should have a radius roughly twice as large as the one with
1000 heliums). Taken together, the comportment extracted for
Mg and the oxygen molecule from theoretical calculations
pave the way for a rationalization of the dependency of the

chemiluminescence on the droplet size. In fact, for a given
number of Mg atoms picked up before the oxygen molecule,
the probability of coming close to a sinking oxygen molecule
decreases upon increasing the droplet size n roughly as n−2/3.
This is under the assumption that the Mg atoms are expected
to remain “dispersed” and not to condense into Mg clusters.3

It thus becomes more likely for O2 to pass the range of dis-
tances from the droplet c.m. where Mg atoms dwell without
interaction with the latter upon increasing the droplet radius.
Once this has happened, the limited penetration of Mg into the
droplet and the strong localization of O2 close to the center
of the latter make the probability for the reactants to come in
contact and generate hot products capable of emitting infrared
light very low. Noteworthy, the mechanism just exposed is
also in agreement with the fact that in the presence of Xe
clusters products are generated and detected in the mass spec-
trometer in substantially larger abundance than without, but
no chemiluminescence was detected. In fact, we would expect
Xe clusters, added before both Mg and O2, either to “nucle-
ate” and sink Mg clusters as done with Ba (Ref. 47) or to act
as an attractor close to the droplet center, thanks to their larger
volume than O2. In either cases, the reaction would become
more likely and allowed to take place deeper inside the He ag-
gregate, thus facilitating the dissipation of the fraction of the
reaction energy which is converted into the product transla-
tional energy. In the same way, we are in the position of sug-
gesting a possible explanation for the interesting observations
made in Ref. 9 that single Mg atom doped droplets do not
produce chemiluminescence and are likely to eject MgO2 or
other products before the reaction energy is dissipated. From
our and Hernando et al. results,1 it becomes clear that Mg
and the oxygen molecule are likely to “collide,” following the
pick up of the latter species and only while it is sinking to-
ward the aggregate center, i.e., just under the droplet surface,
a situation that appears likely to favor a prompt ejection of the
energized product, thanks to a conversion of internal energy
into center of mass energy and leading to the absence of the
product signal in the mass spectrometer.

While the juxtaposition of DMC and DFT results al-
lows one to discuss a possible mechanism explaining the
chemiluminescence and mass spectrometry results, it does
not provide any rationale for the surprisingly high value
(5 × 104 s−1) of the first order reaction constant estimated
by Krasnokutski and Huisken9 (see Ref. 48 for a compari-
son with gas phase data). At the moment, it seems difficult
to disentangle possible contributions to this high value due
to the diffusion of Mg, the possibility of a strong interaction
between Mg and triplet O2, and the effect of the quantum sol-
vent on shielding the dopants from reacting or favoring pos-
sible charge exchange/nonadiabatic transitions between dif-
ferent potential energy surfaces due to the lack of accurate
quantitative data. In this respect, it should be feasible to gen-
erate adiabatic surfaces involving MgO2 to clarify better the
energetics involved (e.g., the presence and height of the sug-
gested barriers and the effect of He on the energy of possible
products) as well as to study (e.g., with DFT, which allows to
study large droplets) the effects due to the quantum solvent
when both reactants are doping a droplet. At the moment, we
are carrying out a preliminary investigation on the energetics
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involved in the reaction itself, which was previously sug-
gested to proceed by means of a mechanism unlike the classi-
cal “harpoon mechanism.”48

In conclusion, we would like to highlight further avenues
of methodological exploration that this work has opened. We
begin noticing that it is possible to decompose the rotational
diffusion of a symmetric rotor (e.g., water and ammonia) in
two contribution, namely, the precession of its principal axis
and the rotation around it. Clearly, the two operations do
not commute, but a symmetric splitting similar to what was
commonly done to separate diffusion and branching in DMC
would provide a second order algorithm that could be imple-
mented exploiting the approach discussed in this work. We
expect this to be immediately feasible for DMC simulations,
while it may require a few adjustments when it comes to the
implementation in PIMC codes. The advantage provided by
this methodological step would be harvested for large sys-
tems and in conjunction with an on the fly extrapolation,
paving the way to study the ground state and thermal den-
sity of molecular quantum systems at a reduced cost. Besides,
the implementation of a robust second order algorithm de-
scribing the diffusion on the torsional S1 manifold needed for
what just discussed would have also an impact in the quantum
thermal simulations of systems with rotational bonds such as
polymers.
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APPENDIX: SUMMARY OF THE ALGORITHM
FOR THE DIFFUSION ON A SPHERE

This appendix provides a summary of the algorithm im-
plemented to sample the diffusion of a point particle with dif-
fusion coefficient D = (2I )−1 on an unit sphere. For conve-
nience, the position of the particle on the sphere is described
by the Cartesian coordinates of a unit vector (v ≡ (x, y, z)
with x2 + y2 + z2 = 1) despite the fact that only two scalar
(e.g., φ and θ in spherical coordinates) would suffice. For
each rotor in the simulated system, the vector v would be the
part of the set of coordinates defining a DMC configuration
(or walker) indicating the spatial orientation of the linear ro-
tor. Atomic particles and rotor c.m.’s would be represented as
usual by three Cartesian coordinates.

(1) Define the value of A(t) on the basis of the order of the
algorithm chosen according to Eq. (2);

(2) Compute vmax ≡ ∫ πR

0 (e−u2/(4Dt))/(4πDt)udu, the cu-
mulative probability of displacing the position on the
sphere anywhere in the range of 0 ≤ u ≤ πR;

(3) Choose the displacement u along a great circle randomly
as u2 = − ln[1 − φu](τ/τ0), where φu = ξ × vmax and ξ

is a uniform random variate with 0 ≤ ξ ≤ 1;

(4) Either accept the displacement u with probability pacc

= (A(t) + u2/12)/(A(t) + 1) or go back to step 3;
(5) Compute vu = v cos(u), which lies along v but it has a

length so that the intersection of the perpendicular plane
to it on which its terminal point lies defines all possi-
ble landing positions for a step of length u on the unit
sphere;

(6) Generate a normalized vector a orthogonal to vu from
the Cartesian versor with the lowest overlap (e.g., by
subtracting the projection of vu on the versor);

(7) Generate a normalized vector b orthogonal to both a and
vu (e.g., with a vector product);

(8) Compute the post diffusion position as vf = vu

+ [cos(χ )a + sin(χ )b] sin(u), where χ = 2πξ is the po-
lar angle measured from the plane defined by vu and a,
and ξ is an uniform random variate as above.
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