
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Practical quad mesh simplification

Marco Tarini1,2, Nico Pietroni1, Paolo Cignoni1, Daniele Panozzo3, and Enrico Puppo3

1Visual Computing Group - ISTI-CNR, Pisa, Italy
2DICOM - Dipartimento Informatica e Comunicazione, Università dell’Isubria, Varese, Italy

3DISI - Dipartimento di Informatica e Scienze dell’Informazione - Università di Genova, Italy

Abstract

In this paper we present an innovative approach to incremental quad mesh simplification, i.e. the task of producing
a low complexity quad mesh starting from a high complexity one. The process is based on a novel set of strictly
local operations which preserve quad structure. We show how good tessellation quality (e.g. in terms of vertex
valencies) can be achieved by pursuing uniform length and canonical proportions of edges and diagonals. The
decimation process is interleaved with smoothing in tangent space. The latter strongly contributes to identify a
suitable sequence of local modification operations. The method is naturally extended to manage preservation of
feature lines (e.g. creases) and varying (e.g. adaptive) tessellation densities. We also present an original Triangle-
to-Quad conversion algorithm that behaves well in terms of geometrical complexity and tessellation quality, which
we use to obtain the initial quad mesh from a given triangle mesh.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Surface representations.s Additional keywords: Quad-meshes; Mesh-simplification.

1. Introduction

Quad meshes, i.e. meshes composed entirely of quadrilater-
als, are important data structures in computer graphics. Sev-
eral applications in modeling, simulation, rendering, etc. are
better suited for quad meshes than for triangle meshes. In
spite of this, much literature in geometry processing in the
past has addressed more the case of triangle meshes, while
similar problems for quad meshes are either relatively unex-
plored, or they have been addressed only very recently. This
is the case of mesh simplification, i.e., the task of producing
a low complexity mesh M′ out of a high complexity one M.

Compared to the case of triangle meshes, simplification
of quad meshes poses extra challenges, because quads are
less adaptive and more delicate structures than triangles. The
main goal here is to obtain a mesh with good quality, i.e.,
having almost flat and square faces, and most vertices with
regular valence four. Quality of approximation and adaptive-
ness are usually addressed only indirectly.

In this paper we present a novel approach to the prob-
lem of quad mesh simplification, striving to use practical lo-

cal operations, while maintaining the same goal to maximize
tessellation quality. We aim to progressively generate a mesh
made of convex, right-angled, flat, equally sided quads, with
a uniform distribution of vertices (or, depending on the appli-
cation, a controlled/adaptive sample density) having regular
valency wherever appropriate. The orthogonal objective of
maximizing shape similarity between input and output sur-
faces can be achieved indirectly by enforcing line features
and adaptive sampling.

The presented novel approach to quad mesh simplification
is incremental, greedy, and based on local operations only. It
includes a novel set of local operators preserving the quad
structure, prioritized by a simple yet effective criteria, and
interleaved with vertex smoothing in tangent space. We show
that this approach is effective to solve the otherwise difficult
problem of producing quad meshes with a good quality.

The system lends itself well to efficient implementation,
and it is easily extended to reconstruct feature lines, or to
progressively produce variable tessellation densities.

As a minor contribution we offer a short analysis of co-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

herence preservation for local operations in quad meshes.
We also discuss in which context configurations tradition-
ally regarded as degenerate (doublets) are useful and can be
kept.

The approach is completed with an original Triangle-to-
Quad conversion algorithm that behaves well in terms of tes-
sellation quality and, given a closed mesh with n triangles,
always generates n/2 quads.

2. Comparison with previous work

Triangle mesh simplification. Simplification of triangle
meshes has been studied in depth during the Nineties and
can now be considered a mature technology. Good algo-
rithms for simplifying triangle meshes are available in com-
mon modeling packages like Maya, Blender or MeshLab
[CCR08].

Most triangle mesh simplification algorithms focus on
adaptive meshing, with the primary goal of obtaining a good
approximation of the original shape with a small number of
triangles [CMS97,LRC∗02]. Many such algorithms work by
means of local modifications, which are iterated until the re-
quired LOD is obtained. This approach lends itself naturally
to the construction of Continuous LOD (CLOD) models. Lo-
cal operators can also be useful in a variety of contexts (e.g.,
mesh editing). Hoppe et al. [HDD∗93] introduced the use of
additional local operators, such as edge flips, which improve
the quality of tessellation rather then reducing mesh com-
plexity. They also introduced the idea to drive the choice of
local operations aimed at minimizing of an objective func-
tion. We reformulate these ideas for the case of quad meshes.

Quad mesh simplification. Simplification algorithms tar-
geting quad meshes have been developed only recently, and
they pose extra difficulties. Collapse of a quad diagonal
(a.k.a. quad-close [Kin97], quad-collapse [DSSC08], quad-
vertex merge [DSC09]) is recognized as a valid local opera-
tion that preserves quad structure, but a simplification algo-
rithm cannot be based just on it. The standard approach is
to use also operations affecting larger areas, so that the quad
structure and the overall quality of the mesh are preserved.

Following this direction, the poly-chord collapse has been
adopted in [DSSC08], adapting it from the ring collapse in-
troduced in [BBS02]. In a poly-chord collapse, an entire line
of side-to-side quads is removed, so that quad regularity is
maintained. Poly-chords are alternated to diagonal collapses,
striving to maximize the number of regular vertices. Global
operations are inherently unpractical: not only they make the
change in resolution less continuous, but also their all-or-
nothing nature makes them a clumsy tool to maximize any
sought objective: an operation with a large footprint (like
poly-chord collapse) is likely to have opposite effects on
quality in different subparts of the affected area, and still it
must be either performed or discarded as a whole. Moreover,

the lack of locality makes it difficult, for example, to selec-
tively decimate only an area of the mesh, leaving the rest
unaffected, or to be used in a quad-only region of a mixed
mesh. Finally, local operations lends themselves better to
out-of-core adaptations of the simplification algorithm, be-
ing possible to be performed in a small region even if the
mesh is constrained elsewhere.

To alleviate the problem linked to global operations, in
[SDW∗09], rings to be collapsed are “steered” to constrain
the affected area inside a user defined subregion. In [DSC09]
poly-chord collapses are split into smaller independent sub-
steps, resulting in the first local-only framework for quad
meshes. Our scheme is also local-only, but it uses finer grade
operations, see Sec. 3.2. Exclusive use of local operations
tends to produce lower quality meshes, though. To improve
them, tangent space smoothing is applied to the final result
in [DSC09]. This however has no effect on connectivity. In
our proposal, tangent space smoothing is interleaved to local
operations at each iteration, and it helps selecting the next
operation to be performed.

Local operations have been proposed for improving the
quality of 2D quad meshes in [Kin97] and they have been
used also to produce quad meshes from 2D triangle meshes
in [OSCS99]. However, the problem of optimizing meshes
in 3D is quite different from the 2D case.

In the context of an unrelated application, the problem of
obtaining a triangle mesh with edges of constant length, sim-
ilarly to what we propose, was addressed in [IGG01].

Quad-remeshing. A related yet different topic is remesh-
ing. The aim of remeshing is to obtain a completely new
mesh, not necessarily at lower complexity, which represents
the input shape well and has a superior quality. Again, the
focus here is on quality of the mesh, but remeshing is inher-
ently not progressive: the output is built from scratch, using
the input mesh just as the reference shape.

A few algorithms for remeshing of quad meshes have
been proposed in the literature. Methods proposed in
[ACSD∗03,LKH08] use alignment to principal curvatures to
drive remeshing, while those proposed in [DBG∗06,DKG05,
HZM∗08, TACSD06] resort to mesh parametrization and
uniform sampling in parameter space. Either strategy im-
poses to solve difficult problems. The methods proposed in
[BZK09, RLL∗06] belong to both groups, because they use
the principal curvatures within a parametrization approach.

Since the objectives of the two tasks (simplification and
remeshing) are similar, it is worth to underline when one
should be preferred to the other. Most considerations that
makes, in some context, local-operation based simplification
more attractive than global-operation based one, discussed
above, are stronger when applied to remeshing, which is in-
herently a global operation performed on the entire mesh
(for example, it does not lend itself either to the construc-
tion of CLOD models, or to local editing). Another issue

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

relates to robustness: in general, remeshing requires solv-
ing more complex sub-problems compared to mesh simpli-
fication (like parametrization, or identification of principal
curvature direction) which are difficult to tackle robustly;
remeshing is often less robust to noise, or requires clear,
well distanced cone singularities. Also it is hard to produce
extremely low resolutions meshes (which can also serve as
base domains or control meshes). On the other hand, remesh-
ing can benefit from a global, analyze-then-process, top-
down approach, and thus produces output meshes with supe-
rior quality. For example, it is possible identify cone singu-
larities [BZK09] and to explicitly enforce a correspondence
between vertex valencies of output mesh and gaussian cur-
vature of original mesh [LKH08], which is ideal with man-
made objects and CAD models. Notwithstanding that, the
proposed local, greedy simplification approach performs al-
most comparably with [BZK09] even in these cases (Tab. 1).

3. Overview of the method

Our proposal is to approach the problem of maximizing the
quality of a quad mesh during simplification from a new,
straightforward perspective. Consider an ideal two-manifold
quad mesh composed entirely of flat, equally sided, regular
squares. The surface of a regular poly-cube constitutes an
example of surface that allows for this ideal tessellation (see
Fig. 1). Note that this ideal condition can be enforced just
by measuring lengths, i.e.: all edges of the mesh have the
exact same length l, and all diagonals of faces have exactly
length l

√
2. We call this condition on edges and diagonals

homeometry.

Homeometry indirectly implies that vertex valencies de-
pend on local surface shape: vertices in regions of zero Gaus-
sian curvature have valence 4; vertices in regions of (high)
positive Gaussian curvature have valence < 4; and vertices
in regions of (high) negative Gaussian curvature (i.e., sad-
dles) have valence > 4. This relation between valence and
Gaussian curvature may be brought to an extreme by consid-
ering as profitable to have valence 2 in regions of extremely
high positive curvature (Sec. 3.3). Also, a homeometric quad
mesh is optimal in the sense that all the angles are right, all
the faces flat, and the distribution of vertices is uniform.

Clearly, it is hardly possible that a general surface allows
for a fully homeometric quad tessellation. However, home-
ometry gives us an easier objective to pursue, i.e., one that is
only length based, works at all scales, and substitutes well,
in practice, more complex criteria like the ones involving
Gaussian curvature or vertex valencies.

We measure how far a given mesh M is from being home-
ometric by means of the variance of lengths of edges and
diagonals:

∑
e∈ME

(|e|−µ)2 + ∑
d∈MD

(|d|−
√

2µ)2 (1)

where e and d span over the sets of edges ME and diago-

Figure 1: Left: an example of surface allowing for a fully
homeometric quad meshing (a polycube surface). The diag-
collapse in the inset affects 4 irregular vertices and would
make then all regular. However (right) such diag-collapse is
beneficial in this case only.

nals MD of M, respectively, and µ represents the ideal edge
length, computed as the side of an ideal square quad of M:

µ =
√

Area(M)/|M|, (2)

where |M| denotes the number of faces of M.

Our simplification method modifies the input mesh to re-
duce its complexity, while trying to minimize the objective
function (1). Homeometry-driven simplification blends natu-
rally the need for regular vertices (or, rather, valence match-
ing curvature) with other desiderata, such as uniform ver-
tex spacing. In fact, we believe this approach to be supe-
rior than trying to impose regular valence at all vertices, as,
e.g., in [DSSC08, DSC09]. As a clarifying, intuitive exam-
ple, consider the situation in Fig. 1, left. A criterion trying
to maximize regular vertices would see as beneficial the col-
lapse of the marked quad diagonal. On the other hand, the
initial situation containing irregular vertices is obviously op-
timal, due to the local discrete curvature, and such a collapse
should be considered harmful. Note that this situation can
happen at any scale and with unbounded frequency. On the
right side of Fig. 1, the same connectivity configuration is
present on an underlying geometry with zero Gaussian cur-
vature, where valence four is always appropriate: here, the
same diagonal collapse would be beneficial. This collapse
would be favored in our method because that diagonal is
shorter than the prescribed one, against the homeometry cri-
terion, and not by identifying the curvature (which is a rel-
atively complex task involving computation of discrete cur-
vature at varying scale during the simplification process).

3.1. Conceptual algorithm

An input mesh M0 is progressively coarsened by a sequence
of either complexity-reducing or local optimizing opera-
tions, thus producing a sequence of meshes Mi until a user
defined criterion is met (e.g. on the number of quads). One
strength of our approach is the use of local operations only,
which preserve the quad structure at all steps.

The proposed method is based on three mutually interact-
ing ingredients: a novel set of local operations for quad-only

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

meshes, which constitute the atomic steps of the framework;
a heuristic, practical criterion to select the most promising
(or less threatening) operation, which tends to maximize
homeometry; a tangent smoothing operator, which displaces
vertices over the surface of the mesh, without leaving it. The
method can be summarized as follows:

0. [Convert input triangle mesh into quad mesh M0] (Sec. 6)
1. Initial global smoothing of mesh M0 (Sec. 3.4)
2. Iteratively process mesh Mi to produce mesh Mi+1 until

user-defined criterion is met. In each loop:

a. for a fixed number of times:

i. perform any profitable local optimizing-operation,
until none is available (Secs. 3.2.1 and 3.3)

ii. select and perform a local coarsening-operation
(Secs. 3.2.2 and 3.3)

b. local smoothing (Sec. 3.4)

3. Final global smoothing of mesh Mn (Sec. 3.4)

Step 0 is applied only in case the input comes in the form
of a triangle mesh. Only collapse operations applied dur-
ing Step ii simplify the mesh, while the other operations are
aimed on one hand at improving mesh quality in terms of
both connectivity (Step i) and sample distribution (Step b),
and on the other hand, at driving the selection of best coars-
ening operations to be performed next. In particular, during
the final Step 3 the main purpose of smoothing is to improve
the quality of the mesh, while elsewhere (in Step 1 and Step
2) it has a more crucial role: by modifying lengths of linear
elements over the mesh, it effectively drives the selection of
local operations to be performed at the next cycle. This is the
key why very good results are obtained, even if operations in
Steps i and ii are very local and the criterion to select them
is very simple.

This schema lends itself well to an efficient implementa-
tion. The resulting method is fully automatic and it depends
only on a small number of parameters that are used mainly
to control the tradeoff between accuracy and speed and do
not need to be adjusted depending on specific input.

3.2. Local Operations

We define three kinds of local operations (see Fig. 2): coars-
ening operations, which reduce complexity; optimizing op-
erations, which change local connectivity without affecting
the number of elements; and cleaning operations, which re-
solve local configurations considered degenerate.

3.2.1. Optimizing operations (or rotations)

Edge rotate: consider a non-border edge, shared by two
quads, and dissolve it, leaving a hexagonal face. There are
two other ways to split that face into a pair of quads. We

Figure 2: The set of local operations.

substitute the deleted edge with either one of the two possi-
bilities, calling the two alternatives a clockwise and a coun-
terclockwise edge rotation, respectively. Thus, for each non-
border edge in the current mesh, there are two potential
edge-rotate operations.

Vertex rotate: consider a non-border vertex v. Each of the
k quads sharing v can be split in 2 triangles along the di-
agonal emanating from v. The 2k triangles can be merged
next along the former quad edges. Diagonals used to split
the quads thus become the new edges. We call this opera-
tion a rotation because it can be seen as a rotation of edges
around the vertex, in either direction (like sails in a wind-
mill). For each non-border vertex of the current mesh, there
is one potential vertex-rotate operation.

3.2.2. Coarsening operators (or collapses)

Diagonal collapse: a quad q can be collapsed on either diag-
onal, removing q from the mesh, and merging the two ver-
tices at the end of the collapsing diagonal into one new ver-
tex. The structure of the quad mesh is preserved, and its com-
plexity is reduced by one quad, two edges and one vertex.
For each quad in the current mesh, there are two potential
diagonal collapse operations, one along each diagonal. This
is the most widely used operation for quad-meshes. The po-
sition of the new vertex resulting from collapse is set so that
the objective function (1) is minimized in its star.

Edge collapse: given a non-border edge e, we can perform a
vertex rotation around either endpoint, turning e into a quad

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

Figure 3: The “singlet” degenerate configuration. Edges are
shown as curved lines for illustration purposes.

diagonal, and then collapse it. There are two alternatives,
corresponding to which endpoint is rotated, producing two
distinct potential edge-collapse operations for e (non border
edges connecting two border vertices cannot be collapsed).

3.2.3. Cleaning operations (or removals)

Doublet removal: a doublet is a well-known configuration
where two adjacent quads share two consecutive edges. The
situation can also be described, and it is best detected, as
having a valency 2 non-border vertex. A doublet can be elim-
inated by dissolving the two shared edges, removing the ver-
tex in the middle, merging the two quads into a single one.

Singlet removal: a singlet is a degenerate configuration
where a quad is folded such that two consecutive edges be-
come coincident (see Fig. 3). Singlets arise, for example,
if two quads initially share three edges and then either one
of the two consequential doublets is removed. A singlet is
healed by removing the degenerate quad and substituting it
with an edge. The valence 1 vertex is also removed, but ev-
erything else is kept unmodified.

3.2.4. Discussion on the operation set

At first, it may seem that border edges
cannot be subject to any decimation oper-
ation. In fact, a border edge cannot be re-
moved through edge-collapse, otherwise
a single triangle would be produced and
there would be no local operation to bring
a pure quad configuration back. A mesh
decimation process that keeps all the orig-
inal border edges untouched would be
clearly unusable. This problem is not a

real one, because eventually quads will be generated having
two consecutive edges on the border. Collapsing the corre-
sponding diagonal of one such quad removes both border
edges and the dangling vertex as a side effect.

Redundancy: It is easy to check that vertex-rotations and
edge-rotations are independent operations, meaning that nei-
ther one can be replaced by a sequence of the other. More-
over an edge-collapse could be seen as a combination of a
vertex-rotation and a diag-collapse. However, it is conve-
nient to consider it as an atomic operation, because it is often
the case that its effect on mesh quality (homeometry) is very
different from the effect of the first sub-operation alone.

Note that the edge operation described as a “qeMerge”

(quad-edge merge) in [DSC09] can be considered as the
combination of two vertex rotations and four diagonal col-
lapses. Using the latter represents a finer granularity (in this
case, we can think of no apparent advantage in considering
the sequence of all six operations to be atomic).

Doublet-removal can be seen as a special case of diagonal
collapse, the only difference being how they affect geome-
try: in doublet removal the position of the new vertex is set
as one of the two extremes of the collapsing diagonal.

Consistency: All the above operations preserve topology.
There are only two potential inconsistencies arising from
their application. Any operation creating a quad edge con-
necting a vertex to itself must be prevented. The only other
problem is that of singlets (and possibly doublets, if they are
to be considered degenerate: see discussion later). Detect-
ing and removing them right after creation suffices to ensure
consistency.

This approach to consistency preserva-
tion is an advancement over the prac-
tice to reduce the problem to the tri-
angular case, i.e., splitting quads into
triangles and then checking the consis-
tency of the resulting triangle mesh, us-

ing [DEGN98], as for example in [DSSC08]. By explicitly
considering the problem in terms of quads, one allows for
legal operations that would be barred by using triangle mesh
criteria. For instance, the potential diagonal collapse in the
inset would be forbidden since it produces degenerate con-
figurations in the triangle mesh including dotted edges, while
it is legal in the quad mesh.

3.3. Prioritizing operations

Consider a typical closed mesh with n quads and, thus, with
about n vertices and 2n edges. There is a total of 11n po-
tential operations (2n diagonal-collapses, 4n edge-collapses,
and 4n edge-rotations, and n vertex-rotations), plus doublet
and singlet removals that can be performed on such a mesh.
Clearly, many operations would invalidate other potential
operations and create the preconditions for other operations
yet. For practical purposes, it is important that the choice of
which operation to perform at every iteration is taken very
efficiently.

We have seen how we reduced the problem of mesh qual-
ity in terms of homeometry. However, equation (1) is still
a complex objective function, with multiple local minima,
awkward to minimize explicitly (using the above or any
other set of discrete operations). Finding the global optimum
solution for a target number of quads is not practical. In-
stead, length based heuristics can be adopted that reach a
good solution in a much shorter time. Good performance of
this approach has been empirically demonstrated, measuring
the objective function (1) (Sec. 7).

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

Figure 4: The doublet in each corner of the “pillow”
dataset (two views shown) can be considered a good mesh-
ing solution, because of local extreme Gaussian curvature.

Prioritizing collapses: The proposed solution is to collapse
the shortest element of the mesh. Since a collapse typically
causes neighbor elements to expand, systematical removal
of the shortest element (either edge, or diagonal) causes the
population of survivors to have a similar length. We expect
diagonals to be

√
2 times as long as the edges, so we divide

their measured length by
√

2 for the purpose of identifying
the shortest element.

This evaluation process is simple yet effective, depending
only on lengths (which change locally), not on the value of
µ (which changes globally) in (1); this allows for a practical
and efficient implementation (Sec. 5).

Prioritizing optimizations: Contrary to collapses, rota-
tions do not reduce complexity and are performed just to
improve tessellation quality. Their role in our framework is
similar to the one edge flips play in triangle mesh optimiza-
tion [HDD∗93]. It can be seen as dual to that of collapses:
rotations shorten linear elements that are too long, whereas
collapses remove elements that are too short, both contribut-
ing to achieve length uniformity.

Each potential rotation is assessed by its profitability, a
value which is, in first approximation, correlated with the
related change of function (1). We perform only rotations
with a positive effect, starting from the most profitable. This
criterion is stated only in terms of length changes, and again
it does not depend on the value of µ.

A vertex rotation around v turns edges emanating from v
into diagonals, and viceversa. We consider a vertex rotation
to be profitable if, in the current star of v, the sum of the edge
lengths overcomes the sum of the diagonals. The difference
between the two quantities is the corresponding amount of
profitability.

The purpose of edge rotations is to eliminate overlong el-
ements (while short ones are collapsed). An edge rotation
affects only one edge and two diagonals, each in a different
quad (the other diagonal is unaffected). We consider an edge
rotation to be profitable if it shortens the rotated edge and
both such diagonals. Profitability is the amount of shorten-
ing.

Prioritizing cleaning operations: Cleaning operations are
not scheduled, but they are performed during both steps i and

ii of the simplification algorithm as soon as any degenerate
configuration is detected.

In the literature, doublets are considered degenerate con-
figurations. In fact, in a fully homeometric mesh, a doublet
necessarily corresponds to a pair of geometrically coincident
faces with opposite orientations. However, a doublet can rep-
resent an optimal configuration in regions with extremely
high positive Gaussian curvature, as depicted in Fig 4.

If application dependent considerations dictate that dou-
blets are to be considered degenerate, then they are removed.
This is also the best route in case the original mesh does not
present regions with extreme positive Gaussian curvature.
However, we have also the alternative of keeping “good”
doublets, by inhibiting this cleaning operation. “Bad" dou-
blets are neither detected explicitly (e.g., by measuring cur-
vature), nor treated as a special cases: they are just removed
with a diagonal collapse when their geometric shape makes
that collapse to become the next operation.

Singlets instead are always degenerated configurations
and, as such, they are removed as soon as they appear.

3.4. Tangent space smoothing

This operation consists in moving vertices so that they never
leave the surface of the mesh and, at the same time, the over-
all homeometry (1) is increased. For a better match between
the simplified model and the original mesh M0, vertices are
kept on M0, rather than on current mesh Mi. Factor µ of equa-
tion (1) is computed for the current mesh Mi, to account for
the minor area deformations occurring during coarsening.

Smoothing is performed through a relaxation process and
it has two main purposes: first, by maximizing homeometry,
it directly improves mesh quality; second, and more impor-
tantly, it helps selecting the best candidate operation to per-
form next. The rationale is that the elements that cannot be
made homeometric by smoothing are good candidates for
the next collapse/rotate operation. For example, when the
number of quads incident at a vertex is too high with re-
spect to what is required by the local Gaussian curvature,
then, even after smoothing, one diagonal of each such quad
will be shorter than the prescribed one (

√
2µ). As such, that

quad may be selected for collapse.

Depending on the initial data, mesh M0 can be very far
from being homeometric. Thus, global tangent smoothing
is applied to mesh M0 during Step 1 of the algorithm un-
til convergence. Global tangent smoothing is also applied
to improve the final mesh Mn during step 3, similarly to
[DSC09, DSSC08, SDW∗09].

Conversely, smoothing operations performed during Step
b are localized to a small area, just around the regions of in-
fluence of the local operations preceding it. Vertices affected
by local operations during Steps i and ii are initially sched-
uled for smoothing during Step b. In case any such vertex is

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

Figure 5: Preservation of a feature line (red line). Vertices
are moved on the feature line (left, middle). This causes some
quads to fall across the line: moving a third vertex on the line
solves the issue (right).

moved during smoothing for an amount larger than a given
threshold, then also its neighbors are scheduled for smooth-
ing.

4. Extending the method

The method described in the previous section lends natu-
rally to two useful extensions: creating meshes with varying,
customizable tessellation densities (Sec. 4.1); and creating
meshes that preserve feature lines (Sec. 4.2).

4.1. Customizable tessellation at variable density

Since both the smoothing phase and the selection phase are
length based, it is easy to make the system produce tessella-
tion densities that vary over the surface, according to a given
importance function taken in input. This function λ(p) is de-
fined over the surface M0 and determines the required tessel-
lation density around each point p of the surface.

Since the average edge length is already implicitly defined
by the number of elements |Mi| and the total area of Mi,
we make λ(p) define the prescribed ratio between the edge
lengths around p over average edge length (and similarly for
the diagonals). This function is normalized so that the area-
weighted average of 1/λ2 over all M0 is 1.

During the smoothing phase, the objective function (1) is
minimized using µλ(p) instead of µ, p being the center of the
given element. During the selection phase, length of edges
and diagonals are divided by λ(p) for the purpose of identi-
fying the next element to be collapsed.

Depending on the application, importance functions can be
either defined by the user (for example, in order to de-
vote more vertices to regions of interest of a model), or
pre-computed by geometry processing performed over M0
and/or its attributes, so to achieve an adaptive simplification.
Since the resulting mesh has no T-junctions, spatial changes
in the resolution cannot be sudden, so λ is supposed to vary
smoothly over the mesh.

4.2. Preservation of feature lines

In many contexts it can be useful to preserve feature lines in
the quad mesh. Feature lines can be either prescribed by the

user, or automatically identified, e.g., as: attribute disconti-
nuity lines; creases extracted from the original geometry in
CAD models; or high curvature lines extracted by analyz-
ing the geometry of range scanned models. In open meshes,
borders should also be preserved.

Our objective is to make feature lines emerge as collec-
tions of edges in most levels of detail produced by the simpli-
fication process. This is achieved by acting just in the tangent
smoothing phase, adding a term in the cost function, which
penalizes vertices that are close but not over such lines. In
other words, feature lines are made to attract nearby vertices
toward them. The radius R at which this happens is com-
puted as a fixed fraction k of the average edge length in that
zone. In our experiments we used k = 3/4.

For each vertex vi we find the closest point fi on a fea-
ture line with the help of a spatial index, and we compute
an attraction factor ai, which is equal to 1 if vi is on fi and
decreases linearly to vanish at distance R.

Uncontrolled snapping of vertices to nearby features may
cause some quads to fall across them, i.e., to have their
diagonal aligned with the feature line. This happens when
two opposite vertices va and vc of the diagonal of a quad
(va,vb,vc,vd) are attracted to the same line, while vertices
vb and vd are not. This situation is healed by making one of
vc and vd also move toward the same line, regardless of their
distance from it (see Fig. 5).

Use of a scaling factor k < 1 for the radius of influence
R ensures that both endpoints of an edge are attracted to
a feature line only if such an edge is sufficiently close to
the feature itself. In this way, we try to avoid compressing
quads around features, which would be against our objec-
tive of homeometry. Even when such undesirable situation
occurs, compressed quads soon disappear because their ele-
ments (either diagonals or edges) are selected for collapse.

Figure 6 shows a how this method performs on a simple
example containing a circular feature: even in that challeng-
ing case (for quad meshing) both the feature and homeome-
try are maintained to some degree during the simplification.

An advantage of this approach is that feature lines are en-
forced, rather than just preserved, meaning that they need
not be present as edges in the input mesh. For example, CAD
models often contain explicit sharp crease lines that are pre-
scribed during design, while scanned models rarely contain
sharp creases.

5. Implementation details

Prioritizing operations. Finding the top priority operation
can hinder performance in a naïve implementation, because
of the linear search it involves. As in standard iterative sim-
plification approaches [LRC∗02], a good solution is to build
a heap of potential operations sorted by prerecorded prior-
ities. Every time a local operation is performed, only the

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

Figure 6: Feature lines preserved though the simplification process (TableCloth dataset, simplified from 3.25K to 40 quads).

potential operations related to neighboring elements are af-
fected and must be updated in the heap.

This is possible because the priority criterion does not de-
pend on the average edge length µ as defined in Eq. (2), i.e.,
priorities do not change when the global number of faces
changes (otherwise, the entire heap would be invalidated at
each simplification step). This is one reason to use a heuris-
tic criterion (Sec. 3.3), rather than trying to explicitly find
the operation that minimizes (1).

The situation is different for tangent-space smoothing.
Global smoothing would change the geometry of the entire
mesh and, thus, it would invalidate the precomputed priority
of all potential operations. Instead, we resort the following
incremental scheme.

Tangent space smoothing. There are several possible ways
to perform smoothing. One would be to minimize objective
function (1) iteratively in 3D space and, after each iteration,
re-project every vertex to the surface of M0 via some spatial
indexing structure [THM∗03]. Otherwise, if an almost iso-
metric parametrization of M0 is available, smoothing can be
solved in parametric space. In this case, gradient descending
vectors are computed in 3D, then converted to 2D vectors via
the mapping defined by parametrization. In our experiments,
we adopted the latter approach, making use of a parametriza-
tion produced by the method described in [PTC09], which
provides a reasonably isometric, seamless, globally smooth
parametrization of M0. Any other technique for smoothing
in tangent space could be used instead.

We perform tangent space smoothing with an iterative, ex-
plicit solver that lets the mesh relax as in a mass and spring
system [MHHR07], where the rest position of each spring
coincides with the ideal length of its associated edge or di-
agonal, i.e., either µ or

√
2µ, respectively.

In Step b of the algorithm, smoothing is stopped relatively
early, i.e., after a fixed number of iterations (we used 20),
because a coarse minimization of function (1) is sufficient in
practice to guide the selection of the next operation. Smooth-
ing is performed until convergence in Steps 1 and 3.

Feature line extraction. Any feature line, whether it is
present or not in the original mesh as a collection of edges,
can be enforced during the simplification process. Thresh-
olding dihedral angles is sufficient to extract sharp creases
from CAD models, such as the fandisk or the tableCloth

Figure 7: Left: input of the simplification algorithm (top:
input mesh M0; bottom: feature lines extracted from M0).
Center: models simplified with basic algorithm. Right: mod-
els simplified with feature preservation. See also tab. 1 and
video.

datasets. For range scanned models, such as the Mohai
dataset, creases are extracted with a modification of the
method proposed in [HPW05] (see Fig. 7).

6. Tri-to-Quad mesh conversion

Many datasets, e.g., those from range scanning, come orig-
inally as triangle meshes. Such datasets must be converted
to quad meshes prior to applying our simplification method.
Note that any other polygonal meshes can be trivially re-
duced to triangle meshes first.

Some authors obtain the initial quad mesh by performing one
step of Catmull-Clark subdivision [DSSC08, DSC09]. The
obtained quad mesh has the desirable property of preserving
all original edges, but it has also several drawbacks: in terms
of complexity, is has three times more quads than triangles
of the initial mesh; in terms of quality, no more than 50% of
its vertices are regular.

In [VZ01], a hybrid tri-quad mesh is built first, similarly
to what we do in Step 1 below, which is converted next into

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

a purely quad mesh. Each face of the tri-quad mesh is split
into triangles by barycentric subdivision; next, pairs of such
triangles are merged to form quads by deleting all edges
that existed prior to subdivision. This is better than doing
a Catmull-Clark on the input triangle mesh, both in terms
of quality and in terms of complexity, but it still produces a
non-negligible increase in the total number of quads.

Since our simplification method is able to enforce feature
lines even if they are not present as edges in the input mesh,
we find it more convenient to develop another method, which
does not preserve original edges, but produces a smaller
number of faces and a mesh of better quality.

6.1. No complexity increase scheme

Our scheme always produces a quad quad mesh featuring
half as many quads as triangles in the starting mesh. It re-
quires, as input, a (connected) mesh with an even number of
triangles. If the mesh is closed (and two-manifold), this con-
dition is guaranteed; otherwise, any border edge can be split
in half, increasing the number of triangles by one unit.

Step 1: making a quad-dominant mesh. First, most trian-
gles are merged pairwise into quads, dissolving their shared
edge. Edges of the triangle mesh can be flagged as dissolved
with any heuristics, with the constraint that no triangle is al-
lowed to have more than one flagged edge. The objectives
are to maximize the number of flagged edges and to priori-
tize creation of quads with (nearly) right angles. We adopted
a simple, linear time approach. First, for each triangle we
select its best candidate edge to be dissolved, scoring each
edge by the “squareness” of the corresponding quad, mea-
sured as the sum of pairwise dot products of the four nor-
malized edges. Next, any selected edge is flagged only if this
does not invalidate the selection of edges with a better score.

Step 2: making a pure quad-mesh. A few triangles (still
an even number) remain after Step 1. These triangles are
made to “crawl” over the mesh toward each other until they
can be merged into quads. Iteratively, a triangle ti is selected
and quads in a region around it are marked, with a breadth
first visit, with cross-edge distance from ti until another tri-
angle t j is reached. The triangle t j is moved toward ti by
means of a sequence of edge flip operations: specifically an
edge between t j and the neighboring quad on the path to ti is
dissolved, forming a pentagonal face, which is split back into
a quad and a triangle t′j (there are four other possible ways to
do this), thus making the triangle “crawl” over the surface.
The split that moves t j faster toward ti is selected, breaking
ties in favor of the alternative maximizing squaredness.

6.2. Comparison to other conversion strategies

In terms of complexity of the resulting quad mesh, this
method improves by a factor of 6 over direct use of Catmull-
Clark subdivision. This is a significant gain, considering that

Figure 8: Comparison of Tri-to-Quad conversion methods.
Left: input triangle mesh. Middle: quad mesh built with no
complexity increase scheme. Right: quad mesh built with one
step of Catmull-Clark subdivision.

quad simplification is still a relatively time consuming pro-
cess. Quality is also drastically improved, as more regular
vertices are produced (see Fig. 8).

The most striking gain in term of quality occurs when the
tri-mesh contains regions tessellated with square isosceles
triangles (Fig. 8, bottom). Tri-meshes falling in this cate-
gory are not uncommon in practice. They occur, for example,
with models obtained by Marching Cubes-like algorithms
(in presence of flat regions with almost any orientation), with
models obtained by zippering together re-triangulated depth
scans or height fields, with procedural meshes, with CAD
models, etc. For example, at least two among the most com-
mon tri-meshes used as benchmarks, Stanford bunny and
Fandisk, feature this kind of structure.

7. Results and discussion

We tested our quad simplification method on quad meshes
converted from triangle meshes (Sec. 6) coming from either
range scanning, or CAD. Examples of results are illustrated
in Fig. 6, 7, 9, 10, 11, 12, and 13. A numerical assessment is
given in Table 1.

Discussion: In spite of using only local connectivity op-
erators, the simplified models show a very good quality,
throughout all steps of simplification. Regular results are ob-
tained independently from regularity of the input. Tangent
space smoothing has proven to be very effective not only to
improve the final result, but also – and more importantly –
to drive the selection of the operator to be performed at the
next cycle. This concept makes the process robust and gen-
eral, so quad mesh simplification can be easily addressed
in spite of the intrinsically harder challenges it poses with

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

Figure 9: Examples of models simplified at decreasing num-
ber of quads (including extremely low ones, useful for base
mesh or as a base for a refinement). Above, Muai dataset:
8.2K (original), 3.3K, 1.4K, 600, and 40 quads. Below,
David dataset: 100K (original, detail), 10K, 5K, 1.2K and
150 quads.

Figure 10: Simplified mesh pairs (5K and 3K) obtained from
Igea dataset with [DSC09] (left) and our approach (right).
For a quantitative assessment, refer to table 1.

respect to the case of triangle meshes. Our length based ap-
proach is also efficient, scalable, robust with the initial tes-
sellation quality (see Fig. 12) and easily extended to allow
for feature line preservation and varying controlled tessella-
tion densities. The system is capable of reducing an initial
quad mesh to extremely low number of faces (see Fig. 9,
right). Semi-regular meshes can be obtained from such a
simplified model, by a regular subdivision and reprojection
onto the original surface. Examples of results obtained this
way are shown in Fig. 13 (top-right).

We compared our approach, which strives to maximize
homeometry, with [DSC09], which strives to maximize reg-
ularity (and, to a lower extent, geometrical faithfulness).
Models maximizing the sought objective are always ob-
tained (Table 1). In terms of Hausdorff distance, however,
the presented strategy is around twofold better, suggesting
that our objective is more suited for that. This is proba-
bly also due to the better sampling distributions that is im-
plied by homeometry. The same approach presented here
can probably be applied to triangle mesh simplification in

Figure 11: Examples of models simplified following a user
defined importance map (shown in small: darker regions
correspond to higher density).

Figure 12: Examples showing robustness to unevenly sized
or poorly shaped initial triangles. Left: original. Right: out-
put (close-ups of Bunny and Gargoyle datasets).

contexts where quality of meshing is a concern as much
as geometric similarity. Our method naturally lends itself to
the construction of progressive and CLOD models; however,
further investigation is needed to efficiently incorporate the
changes occurring through simplification in the data struc-
ture.

Our current method has some limitations. Geometric fi-
delity is not measured and it is addressed only indirectly;
the general objective to place extraordinary vertices at points
that concentrate strong Gaussian curvature is achieved, but
only partially; vertex snapping, used to enforce features, can
produce nearly triangular elements that would be harmful
for, e.g., numerical analysis; alignment of edges to curvature
directions has not been addressed. These issues might be ad-
dressed by suitable modifications of the objective function
in the context of the same framework.

Acknowledgements. The research leading to these results
has received funding from the EG 7FP IP “3D-COFORM”
project (2008-2012, n. 231809) and from the Regione
Toscana initiative “START”. Authors wish to thank Claudio
T. Silva for kindly sharing datasets.
Project page: http://vcg.isti.cnr.it/quadSemplif

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

http://vcg.isti.cnr.it/quadSemplif

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

val reg Homeometry Dist
|M| max (%) min max var 10−3

ideal values: — — 1 1 0 0
Moai 8.2K 9 44 0.18 3.8 0.49 0

(11sec) 3.3K 6 64 0.60 1.82 0.16 0.5
0.6K 6 62 0.70 1.73 0.17 1.7

Pensatore 15K 8 48 0.12 3.4 0.44 0
(28sec) 10K 7 61 0.58 2.01 0.19 0.3

5K 7 57 0.68 2.17 0.19 0.7
2K 6 68 0.59 1.76 0.18 1.4
1K 7 64 0.6 2.01 0.19 2.0

Gargoyle 25K 8 46 0.15 12.22 0.53 0
(63sec) 11K 7 61 0.2 2.8 0.17 0.5

4K 7 57 0.5 2.28 0.19 1.2
2K 7 54 0.58 2.31 0.20 2.0

Igea 25K 8 48 0.12 4.09 0.48 0
(66sec) 12K 7 65 0.64 2.05 0.16 0.24

3K 6 67 0.69 2.11 0.16 0.7
3K [DSC09] 6 80 0.22 3.74 0.41 1.7

Bunny 35K 12 88 0.1 14.53 0.34 0
(85sec) 11K 7 69 0.66 3.3 0.19 0.3

5K 7 68 0.65 2.8 0.18 0.5
5K [DSC09] 6 93 0.24 4.87 0.41 1.1

3K 6 61 0.47 2.45 0.17 0.7
Fertility 40K 8 47 0.09 9.56 0.48 0
(115sec) 22K 6 63 0.59 3.95 0.18 0.12

5K 6 67 0.65 2.94 0.17 0.4
5K [DSC09] 7 65 0.23 6.4 0.48 0.8

2K 6 67 0.61 2.22 0.19 1
2K [DSC09] 7 81 0.23 4.20 0.46 2.5

3.3K 7 71 0.60 1.81 0.15 0.56
3.3K [BZK09] 5 98 0.59 3.20 0.22 0.61

Rampart 50K 9 48 0.08 7.58 0.50 0
(174sec) 20K 7 75 0.29 3.19 0.21 0.2

10K 7 62 0.34 2.66 0.21 0.35

Table 1: Simplification results on various datasets. The
computation times required for simplifying the initial dataset
into the coarsest model (on a Intel Core2 2.4Ghz 2.00 GB).
For each quad-mesh (input and simplified), we report: ver-
tex valency (max and % of regular vertices); homeometry
(min, max and variance of edge or diagonal length, all nor-
malized with ideal length µ); and Hausdorff distance (com-
puted with [CCR08]), with respect to bounding box diago-
nal. When possible, results from [DSC09] and [BZK09] are
reported too (the latter is a quad-remeshing approach).

References
[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O.,

LÉVY B., DESBRUN M.: Anisotropic polygonal remeshing.
ACM Trans. Graph. 22, 3 (July 2003), 485–493.

[BBS02] BORDEN M., BENZLEY S., SHEPHERD J.: Hexahe-
dral sheet extraction. In Proc. 11th Int. Meshing Roundt. (2002),
pp. 147–152.

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3 (2009), 1–10.

[CCR08] CIGNONI P., CORSINI M., RANZUGLIA G.: Meshlab:
an open-source 3d mesh processing system. ERCIM News (73) -
http://meshlab.sourceforge.net/ (2008), 45–46.

[CMS97] CIGNONI P., MONTANI C., SCOPIGNO R.: A compar-
ison of mesh simplification algorithms. Computers and Graphics
22 (1997), 37–54.

[DBG∗06] DONG S., BREMER P.-T., GARLAND M., PASCUCCI
V., HART J.: Spectral surface quadrangulation. ACM Trans.
Graph. 25, 3 (2006), 1057–1066.

[DEGN98] DEY T., EDELSBRUNNER H., GUHA S., NEKHAYEV

D.: Topology preserving edge contraction. Publ. Inst. Math.
(Beograd) (N.S 66 (1998), 23–45.

[DKG05] DONG S., KIRCHER S., GARLAND M.: Harmonic
functions for quadrilateral remeshing of arbitrary manifolds.
Comput. Aided Geom. Des. 22, 5 (2005), 392–423.

[DSC09] DANIELS J., SILVA C., COHEN E.: Localized quadri-
lateral coarsening. Comput. Graph. Forum 28, 5 (2009), 1437–
1444.

[DSSC08] DANIELS J., SILVA C., SHEPHERD J., COHEN E.:
Quadrilateral mesh simplification. ACM Trans. Graph. 27, 5
(2008), 1–9.

[HDD∗93] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD
J., STUETZLE W.: Mesh optimization. In Proc. SIGGRAPH ’93
(New York, NY, USA, 1993), ACM, pp. 19–26.

[HPW05] HILDEBRANDT K., POLTHIER K., WARDETZKY M.:
Smooth feature lines on surface meshes. In Proc. 3rd Eurograph-
ics Symp. on Geom. Proc. (2005), p. 85.

[HZM∗08] HUANG J., ZHANG M., MA J., LIU X., KOBBELT
L., BAO H.: Spectral quadrangulation with orientation and align-
ment control. ACM Trans. Graph. 27, 5 (2008), 1–9.

[IGG01] ISENBURG M., GUMHOLD S., GOTSMAN C.: Connec-
tivity shapes. In VIS ’01: Proceedings of the conference on Vi-
sualization ’01 (Washington, DC, USA, 2001), IEEE Computer
Society, pp. 135–142.

[Kin97] KINNEY P.: Cleanup: Improving quadrilateral finite ele-
ment meshes. In 6th Int. Meshing Roundt. (1997), pp. 449–461.

[LKH08] LAI Y.-K., KOBBELT L., HU S.-M.: An incremental
approach to feature aligned quad dominant remeshing. In Proc.
2008 ACM Symp. on Sol. and Phys. Mod. (New York, NY, USA,
2008), ACM, pp. 137–145.

[LRC∗02] LÜBKE D., REDDY M., COHEN J., VARSHNEY A.,
WATSON B., HÜBNER R.: Level Of Detail for 3D Graphics.
Morgan Kaufmann, 2002.

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2 (2007), 109–118.

[OSCS99] OWEN S., STATEN M., CANANN S., SAIGAL S.: Q-
morph: An indirect approach to advancing front quad meshing.
International Journal for Numerical Methods in Engineering 44,
9 (March 1999), 1317–1340.

[PTC09] PIETRONI N., TARINI M., CIGNONI P.: Almost iso-
metric mesh parameterization through abstract domains. IEEE
Trans. on Vis. and Comp. Graph. (2009).

[RLL∗06] RAY N., LI W.-C., LÉVY B., ALLIEZ P., SHEFFER
A.: Periodic global parameterization. ACM Trans. Graph.
(2006).

[SDW∗09] SHEPHERD J., DEWEY M., WOODBURY A., BENZ-
LEY S., STATEN M., OWEN S.: Adaptive mesh coarsening for
quadrilateral and hexahedral meshes. Finite Elements in Analysis
and Design 46, 1-2 (2009), 17 – 32.

[TACSD06] TONG Y., ALLIEZ P., COHEN-STEINER D., DES-
BRUN M.: Designing quadrangulations with discrete harmonic
forms. In Proc. 4th Eurographics Symp. on Geom. Proc. (2006),
pp. 201–210.

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M.,
POMERANTES D., GROSS M.: Optimized spatial hashing for
collision detection of deformable objects. In VMV (2003), Ertl
T., (Ed.), Aka GmbH, pp. 47–54.

[VZ01] VELHO L., ZORIN D.: 4-8 subdivision. Computer-Aided
Geometric Design 18 (2001), 397–427.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

http://meshlab.sourceforge.net/

M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo & E. Puppo / Practical quad mesh simplification

Figure 13: Different datasets shown at various simplification steps. Refer to table 1 for numerical data. Original models are
not shown (see also attached video). Top right, in blue: two semi-regular models obtained by regularly subdividing extremely
simplified models (see text). c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

