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Marginal zone B-cell lymphomas (MZLs)
have been divided into 3 distinct sub-
types (extranodal MZLs of mucosa-asso-
ciated lymphoid tissue [MALT] type, nodal
MZLs, and splenic MZLs). Nevertheless,
the relationship between the subtypes is
still unclear. We performed a comprehen-
sive analysis of genomic DNA copy num-
ber changes in a very large series of MZL
cases with the aim of addressing this
question. Samples from 218 MZL patients

(25 nodal, 57 MALT, 134 splenic, and 2 not
better specified MZLs) were analyzed with
the Affymetrix Human Mapping 250K SNP
arrays, and the data combined with matched
gene expression in 33 of 218 cases. MALT
lymphoma presented significantly more
frequently gains at 3p, 6p, 18p, and
del(6q23) (TNFAIP3/A20), whereas splenic
MZLs was associated with del(7q31),
del(8p). Nodal MZLs did not show statisti-
cally significant differences compared

with MALT lymphoma while lacking the
splenic MZLs-related 7q losses. Gains of
3q and 18q were common to all 3 sub-
types. del(8p) was often present together
with del(17p) (TP53). Although del(17p)
did not determine a worse outcome and
del(8p) was only of borderline signifi-
cance, the presence of both deletions had
a highly significant negative impact on
the outcome of splenic MZLs. (Blood.
2011;117(5):1595-1604)

Introduction

In the early 1990s, the term marginal zone B-cell lymphoma
(MZL) was proposed in the Revised European-American Classi-
fication for Lymphoid Neoplasms1 to encompass 2 apparently
closely related lymphoma subtypes, namely, the “low grade
B-cell lymphoma of the mucosa-associated lymphoid tissue
(MALT) type,” currently named MALT lymphoma, and the
“nodal marginal zone B-cell lymphoma,” also known as “mono-
cytoid lymphoma.” A third MZL subtype, with similar immuno-
phenotype but distinct clinical features was also provisionally
included (ie, the “primary splenic marginal zone lymphoma with
or without villous lymphocytes”). Currently, each MZL category
is now considered a unique lymphoma subtype in the World
Health Organization classification: extranodal MZLs of MALT
(MALT lymphoma), nodal MZLs, and splenic MZLs.2 Although

the general clinical presentations vary and unique recurrent
translocations have been described in MALT lymphoma, the
genetic relationship between the 3 MZL categories is still
unresolved. Similarities in histologic features, such as neoplas-
tic cell morphology, follicular colonization, presence of a plasma-
cell differentiation, immunophenotype, as well as genetic lesions
(eg, gains of chromosomes 3 and 18 occurring at a frequency
higher than other types of lymphomas) suggest that the 3 MZL
subtypes differ from other lymphomas, but there are not widely
accepted criteria able to differentiate among them. Indeed, in the
presence of clinically disseminated disease, the differential diagno-
sis among different MZL subtypes is challenging. Hence, a better
understanding of the underlying genetic aberrations is warranted to
clarify these issues.
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To elucidate the molecular pathogenesis of MZLs, assess the
relationship among the subtypes, and evaluate the impact of genomic
aberrations on the clinical outcome, we performed genome-wide DNA
profiling (array-CGH) on a large series of MZLs.

Methods

Tumor panel

All clinical specimens were derived from involved sites and obtained in the
course of routine diagnostic procedures before therapy initiation. Cases
were selected based on the availability of frozen material with a fraction of
neoplastic cells in the specimen representing more than 70% of overall
cellularity as determined by morphologic and/or immunophenotypic stud-
ies. Informed consent was obtained in accordance with the Declaration of
Helsinki following the procedures approved by the local ethical committees
and institutional review boards of each participating institution.

Array-CGH

DNA samples were analyzed using the GeneChip Human Mapping 250K
NspI (Affymetrix), as previously described.3 Data acquisition was per-
formed using the GeneChip Operating Software, Version 1.4 and Genotyp-
ing Analysis Software, Version 4.1. Genotype calls were calculated using
the BRLMM algorithm (Bayesian Robust Linear Model with Mahalanobis
distance classifier). Mapping data for probes were derived from the
National Center for Biotechnology Information Human Genome Build 36,
as provided by Affymetrix, which was used for all subsequent analyses. The
modified Bayesian Piecewise Regression method4 was used to estimate the
copy number (CN) starting from raw CN values obtained with Affymetrix
CNAT 4.01 using a Gaussian bandwidth of 0 kb and 46 Caucasian normal
female samples of the HapMap Project as reference samples. After
normalization of each profile to a median log2-ratio of zero, thresholds for
loss and gain were defined as 6 times the median absolute deviation
symmetrically around zero with an associated P value less than .001 after
Bonferroni multiple test correction. Loss of heterozygosity (LOH) profiles
were obtained applying the method with haplotype correction for tumor-
only LOH inference available in the dChip software5 using as reference the
60 Centre d’Etude du Polymorphisme Humain parents of the HapMap
Project and computing the allele A frequency from the data. The recurrent
minimal common regions (MCRs) were defined using the algorithm by
Lenz et al6: abnormal chromosome arm, abnormal whole chromosome,
short recurrent abnormality, and long recurrent abnormality. MCR were
identified for gains, losses, LOH, homozygous deletions, and amplifica-
tions. To be identified as an MCR, a minimal type-specific frequency of 5%
was set for gains, losses, and LOH MCR, whereas homozygous deletions
and amplifications had to occur in at least 2 cases. Reported MCR
frequencies aggregate across all patients who carry a lesion minimally
containing the MCR region irrespective of its type. For MCR occurring in at
least 15% of cases, differences in MCR frequencies between subgroups
were evaluated using a Fisher exact test followed by multiple test correction
(false discovery rate, q value): results were considered statistically signifi-
cant with a q value less than or equal to 0.10. The commonly affected
regions were compared with the Database of Genomic Variants (http://
projects.tcag.ca/variation): regions showing an overlap more than 80%
between probes and known copy number variations (CNV) were considered
bona fide CNV and discarded from further analyses. MCR containing the
genes coding the immunoglobulin heavy chain genes and the � and � light
chains were also similarly discarded because CN changes in these regions
probably represent the physiologic rearrangements occurring in B cells.
Frequency plots for DNA gains, DNA losses, and LOH were calculated
from modified Bayesian Piecewise Regression segmented CN data, thresh-
olded for gain or loss or for LOH, without removing the known CNV and
immunoglobulin gene loci.

The University of California, Santa Cruz Genome Browser (http://
genome.ucsc.edu)7 was used to retrieve additional information. Unsuper-
vised clustering was performed using the non-negative matrix factorization

(NMF) algorithm.8 Raw data are available at the National Center for
Biotechnology Information Gene Expression Omnibus (http://www.ncbi.n-
lm.nih.gov/geo) database under accession number GSE24881.

Combination of array-CGH and gene expression profiling

Matched gene expression profile (GEP) was obtained in 18 cases with the
Affymetrix GeneChip HGU95av2 arrays (9 MALT lymphomas, 2 splenic
MZLs, and 7 nodal MZLs) and in 15 additional cases with the Affymetrix
GeneChip U133 plus 2.0 arrays (9 MALT lymphomas, 2 splenic MZLs, and
4 nodal MZLs). Samples were processed and hybridized as previously
described.9,10 Expression values were calculated from CEL files using the
Robust Multiarray Average (RMA) algorithm.11 To each expression probe
set on the array, we associated the mean CN of SNP probes that were
flanking or inside the associated gene region. Probe sets with an SD less
than the median SD, for either expression or CN, were regarded as
nonchanging or nondiffering and were filtered out for further analysis.
Furthermore, for each gene expression probe set, we required at least 20%
of the samples to be expressed (ie, RMA � 5.7). After filtering we retained
1819 probe sets for the U95A array and 4268 probe sets for the U133A
array. To identify the genes most correlated with CN, we used the
pseudo-inverse projection as described by Alter and Golub.12 We filtered the
GEP onto the CN profile basis before the correlation analysis. We use the
complete, nonfiltered GEP and CN profile data (ie, before applying the SD
filter). The projection filter was constructed by computing the pseudo-
inverse using singular value decomposition of the CN profile data. By
projecting the GEP onto the singular vectors of the CN profiles, we only
retained those in gene expression that “fit” the characteristic genome-wide
patterns of CN profiles. Any GEP changes that could not be explained by
CN profiles patterns, for example, because of indirect mechanisms or
epigenetic causes, were filtered out. After performing pseudo-inverse
filtering, we calculated the Pearson correlation coefficient. For genes that
corresponded to multiple probe sets, we considered their best P value. For
each MCR, we reported the genes that were significantly correlated at false
discovery rate less than 0.05. The Database for Annotation, Visualization
and Integrated Discovery, Version 6.7 Web-accessible program13 was used
to map the genes to KEGG, Biocarta, and Panther Pathways and UniProt
keywords and statistically examine the enrichment of gene members for
each pathway, using a P value � .001.

Analysis of clinical data

To evaluate the impact of the genetic aberrations on overall survival (OS),
calculated from diagnosis to the last follow-up or death, univariate analysis
was performed only for MCR with at least 5 patients with data necessary to
calculate OS. Such data were available for 169 of 218 (77.5%) cases.
Internal validation was quantified by calculating the Harrell concordance
index (C-index).3,14 The bootstrap procedure as implemented in the
“validate” function of the R-package design15 was used, allowing for
computation of an unbiased estimate of the C-index. We used 500 bootstrap
samples. The actuarial durations of OS were plotted as curves according to
the Kaplan-Meier method. Statistical analyses were performed with R pack-
age15 and with SPSS Version 17.0.2.

Results

MALT lymphoma, splenic MZLs, and nodal MZLs:
subtype-specific genomic alterations

A total of 218 MZL samples were analyzed by high-resolution
genome-wide DNAprofiling: 57 MALT lymphoma, 134 splenic MZLs,
25 nodal MZLs, and 2 MZLs where allocation to a specific category was
not possible. Supplemental Table 1 (available on the Blood Web site; see
the Supplemental Materials link at the top of the online article)
summarizes the main clinical and pathologic features.
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To have a precise representation of the lesions characterizing
these disorders and the genes more likely to be affected, we
determined the minimal recurrent alterations that contain loci
possibly relevant for the tumor (MCR), in the whole group and in
each subgroup of MZL cases, and we combined them with gene
expression data (supplemental Tables 2-3). The frequencies of
DNA gains and losses, with the regions correlated with a significant
effect on gene expression highlighted, are represented in Figure 1,
whereas supplemental Figure 1 shows the frequency of LOH.

Among all MZLs, 59 MCRs were identified composing 32 gains,
25 losses, one LOH, and one homozygous deletion. Homozygous
deletion was detected at 6q23.3 in 1.8% (4 of 218) of MZL cases,
containing 2 genes, TNFAIP3 and PERP, which indeed were
down-regulated. Three cases were MALT lymphoma, and one was
splenic MZL. Table 1 shows the most common MCRs, containing
genes affected by CN changes, such as NFKBIZ, BCL6, NFATC1,

and TNFAIP3. The LOH region overlapped with a recurrent region
of loss at 7q31.33. No amplifications were observed.

Transcripts mapped within MCR and affected by CN changes
were enriched of genes belonging to relevant pathways (cell cycle,
P � .0001; colorectal cancer, P � .0001; ubiquitin proteasome,
P � .0001) or involved in apoptosis (P � .0001). Similar enrich-
ment was observed in both MALT lymphomas and splenic MZLs.

A series of MCRs were significantly different between MALT
lymphoma and splenic MZLs (Figure 2; supplemental Table 2).
MALT lymphoma was characterized by gains at 6p25, gains
affecting chromosomes 3 (affecting FOXP1, NFKBIZ, and BCL6)
and 18 (affecting NFATC1 and BCL2), and losses at 6q (affecting
TNFAIP3) and 1p. Splenic MZL was mainly associated with losses
at 7q (affecting POT1, containing MIR29A and MIR29B), 17p
(containing TP53), and 8p. The latter deletion was validated by
analyzing 2 samples with the loss using a different higher-density array

Figure 1. Frequency of DNA gains (up) and losses (down) observed in MZL. (A) 218 MZL, (B) 57 MALT lymphoma, (C) 134 splenic MZL, and (D) 25 nodal MZL samples.
Red represents gains with associated up-regulated transcripts; and blue, losses with associated down-regulated transcripts. x-axis represents chromosome localization and
physical mapping; and y-axis, proportion of cases showing the aberrations.
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(Affymetrix Genome-Wide Human SNPArray, Version 6.0, follow-
ing the manufacturer’s instructions). No statistically significant
differences were observed on comparing MALT lymphoma with
nodal MZLs, but the latter completely lacked the splenic
MZL-specific 7q deletions: del(7q31.31-q32.3) (affecting POT1, contain-
ing MIR29A, MIR29B) occurred in 35 of 134 (26%) splenic MZLs,
and in none (0%) of the 25 nodal MZLs (P � .0014; q � 0.04).

To further genetically characterize the individual subtypes, we
applied the MCR algorithm to each MZL category separately
(Table 1; supplemental Table 3).

A total of 127 MCRs were identified in the 57 MALT lymphoma:
66 gains, 43 losses, 17 LOH, and one homozygous deletion. The
most frequent lesions were gains of chromosomes 3 (different
MCRs, affecting FOXP1, NFKBIZ, and BCL6) and 18 (affecting
BCL2, MALT1, NFATC1) and del(6q23) (affecting TNFAIP3).

Recurrent homozygous deletions were identified at 6q23 (affecting
TNFAIP3 and PERP) in 5.4% (3 of 57) of cases. An analysis
considering specific anatomic sites of involvement was not per-
formed because of the relatively small number of available MALT
lymphoma cases.

In splenic MZLs, 72 MCR were identified: 35 gains, 34 losses,
and 3 LOH. No recurrent homozygous deletion was observed.
The most frequent lesions were del(7q31-q32) (affecting POT1,
containing MIR29A and MIR29B), gain at 13q11 (60% overlap
with known bona fide CNV), and gain at 3q (affecting NFKBIZ
and BCL6).

In nodal MZLs, 78 MCR were identified: 29 gains, 36 losses,
and 13 LOH. The most frequent lesions, all occurring in 24% (6 of
25) of cases, were gains of chromosome 3 (affecting FOXP1,
NFKBIZ, and BCL6) and 18q23 (affecting NFATC1).

Table 1. Most common MCR observed in the 218 MZL and in the individual subgroups

Histotype Lesion Cytoband Frequency, % Start Size
Correlation with
gene expression

MZL Gains 3q11.2-q29 (NFKBIZ, BCL6) 24 9.50 � 107 1.04 � 108 Yes

6q27 16 1.70 � 108 1.01 � 106

13q11-q12.11 25 1.80 � 107 5.33 � 105

18q23 (NFATC1) 18 7.40 � 107 2.12 � 106 Yes

21p 15

Losses 1p36.21-p36.13 12 1.51 � 107 1.62 � 106 Yes

4p12-p11 13 4.82 � 107 5.72 � 105

6q23.2-q24.1 (TNFAIP3) 16 1.35 � 108 4.78 � 106 Yes

7q31.31-q32.3 17 1.20 � 108 1.15 � 107 Yes

17p13.3-p13.1 (TP53) 13 1.89 � 104 9.71 � 106 Yes

MALT lymphoma Gains 3q (NFKBIZ, BCL6) 30 Yes

3p (FOXP1) 26 Yes

6p25.1-p21.32 14 4.35 � 106 2.85 � 107

7p15.1 14 3.15 � 107 1.78 � 104

7q11.22 18 6.88 � 107 5.68 � 105

8p21.2 14 2.72 � 107 1.36 � 105

18p 21 Yes

18q (BCL2, NFATC1) 21 Yes

Losses 1p36.21-p36.13 12 1.56 � 107 1.12 � 106 Yes

4p11–12 14 4.81 � 107 6.81 � 105

6q23.3-q24.1 (TNFAIP3) 30 1.37 � 108 2.35 � 106 Yes

13q32.1-q32.2 16 9.69 � 107 8.28 � 105 Yes

Splenic MZL Gains 3q13.13-q29 (NFKBIZ, BCL6) 20 1.10 � 108 8.89 � 107 Yes

6q27 19 1.70 � 108 4.83 � 105

8p23.1-p22 15 1.23 � 107 5.08 � 105 Yes

9q31.1 13 1.05 � 108 3.20 � 104

12q21.31 13 8.07 � 107 4.06 � 104

13q11-q12.11 28 1.80 � 107 5.33 � 105

18q23 (NFATC1) 15 7.35 � 107 2.57 � 106 Yes

21p 17

Losses 1p36.21-p36.13 13 1.51 � 107 1.62 � 106

4p12-p11 13 4.82 � 107 5.72 � 105

7q31.31-q32.3 26 1.20 � 108 1.15 � 107 Yes

8p 13

17p13.3-p13.1 (TP53) 17 1.89 � 104 9.71 � 106 Yes

Nodal MZL Gains 2p16.3 20 4.95 � 107 2.11 � 106

3p25.3 24 1.04 � 107 6.06 � 105

3p14.3-q29 (FOXP1, NFKBIZ, BCL6) 24 5.46 � 107 1.45 � 108 Yes

6p21.2-p21.1 16 4.01 � 107 1.46 � 106

6q27 16 1.70 � 108 1.04 � 106

18q23 (NFATC1) 24 7.42 � 107 1.95 � 106 Yes

Losses 1p36.33-p36.22 16 7.76 � 105 9.76 � 106 Yes

1p21.2 16 9.98 � 107 1.86 � 106 Yes

6q23.3 (TNFAIP3) 16 1.37 � 108 1.44 � 106 Yes

12q21.33-q23.1 16 9.07 � 107 4.81 � 106 Yes

19p13.3-p12 16 2.12 � 105 1.98 � 107 Yes
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Patterns of concomitant genomic aberrations

To identify patterns of unbalanced genomic aberrations, which
might suggest the existence of genes with a cooperative pathoge-
netic role, we performed both unsupervised and supervised analyses.

The application of the unsupervised NMF clustering algorithm
to the whole series of MZL cases first identified 2 clusters,
characterized by the presence or absence of gains of the long arm of
chromosome 3. Then, when applied on these 2 clusters separately,
NMF identified 4 robust groups (Figure 3). Cluster 1 (37 of
218 patients, 17%) was mainly characterized by gains at 3q
(NFKBIZ, BCL6), plus gains at 1q, 8q, 17q, 18q (BCL2, NFATC1),
del(7q) (POT1, MIR29A, MIR29B), del(8p), del(17p) (TP53), and
del(18p). The main lesions of cluster 2 (20 of 218 cases, 9%) were
�3, �18, and del(6q). Cluster 3 (142 of 218 cases, 65%) had very
few recurrent lesions, with only a low frequency of del(7q) (POT1,
MIR29A, and MIR29B) and del(17p) (TP53) observed. Cluster 4
(19 of 218, 8%) mainly displayed del(7q) (POT1, MIR29A,
MIR29B), del(8p), del(17p) and gain at 12q. Half (11 of 20, 55%)
of cluster 2 members were MALT lymphoma, despite the latter

representing only 26% (57 of 218) of the whole MZL series
analyzed. In contrast, 17 of 19 (89%) of cluster 4 cases were splenic
MZLs, and only 1 of 19 (5%) MALT lymphoma. The 4 clusters had
no differences in terms of OS and clinical characteristics.

We then studied the co-occurrence of MCRs in individual
patients by applying a Fisher exact test (P value) followed by
multiple test correction (Table 2). Gains of 3q (NFKBIZ, BCL6)
were associated with different genomic lesions in MALT lym-
phoma and splenic MZLs. An association with gains affecting
chromosome 18 (BCL2, NFATC1) was the only lesion shared
between MALT lymphoma and splenic MZLs. MALT lymphoma
cases bearing gains at 3q also presented more frequent gains at 13q,
5p15.2, del(17p13.1-p13.3) (TP53), and LOH at 2p16.3, compared
with cases without 3q gain. On the converse, in splenic MZLs,
lesions associated with 3q gain included gain at 17q22-q25.3, 1q,
del(6q23.2-q24.1) (TNFAIP3), and del(6q25). Similar patterns
were observed for cases with and without gain at 18q because
almost all cases with this lesion had a concomitant gain at 3q (data
not shown).

Figure 2. The most significantly different MCRs between extran-
odal MZLs and splenic MZLs. (A) Regions more common in MALT
lymphomas MZLs. (B) Regions more common in splenic MZLs.
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Splenic MZLs with del(7q31-q32) (POT1, MIR29A, and
MIR29B) showed a trend for higher occurrence of concomitant
del(8p12-p23). Cases with del(17p) (TP53) had concomitant
deletions of del(8p), del(13q14) (MIR15/MIR16), and gains at
17q22-q25.3. The del(8p) was associated with del(17p13.1-p13.3)
(TP53), del(13q14.2-q14.3) (MIR15/MIR16), and gain at 8q.
Similar results could be obtained comparing cases with and without
del(8p23) (data not shown). Cases with del(13q14.3) (MIR15/MIR16), a
lesion common in chronic lymphocytic leukemia (CLL) and targeting
MIR15/MIR16, had concomitant del(8p), del(6q25.2), del(17p) (TP53),
and gain at 18q11-q23 (BCL2, NFATC1). No differences were observed
regarding the occurrence of del(7q31-q32).

Genomic lesions correlate with worse outcome

A clinical score has been proposed for splenic MZLs,16 in which
low hemoglobin and albumin levels and increased serum lactate
dehydrogenase level divide patients into 3 prognostic categories:
low risk (with no adverse factors), intermediate risk (with one
adverse factor), and high risk (with 2 or 3 adverse factors). Because
in our series, the OS curve for intermediate risk and high risk were
comparable (supplemental Figure 2), we compared the genomic
profiles of these 2 categories with the low-risk patients. Intermedi-
ate- or high-risk patients displayed more del(1p36.21-p36.13) (7 of
43, 16% vs 0 of 29, 0%; P � .037; q � 0.28), del(8p12-p23) (17 of

Figure 3. Frequency of DNA gains (up) and losses (down) in 4 MZLs clusters identified using the unsupervised NMF algorithm. (A-D) NMF clusters 1-4. x-axis
represents chromosome localization and physical mapping; and y-axis, proportion of cases showing the aberrations.
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43, 39% vs 5 of 29, 17%; P � .067; q � 0.28), del(7q31.31-q32.3)
(12 of 43, 28% vs 3 of 29, 10%; P � .08), and del(17p) (10 of 43,
23% vs 2 of 29, 7%; P � .1). The observation of a higher number
of recurrent genomic lesions in splenic MZL patients with an
intermediate to high Intergruppo Italiano Linfomi score strongly
underlines the rationale of such a prognostic score.

We then analyzed the MCRs for their direct impact on survival.
del(8p) was associated with worse OS (P � .048; q � 1) among all
the MZL cases. The lesion showed a similar effect also when
analyzed separately in MALT lymphoma and splenic MZLs,
although not reaching statistical significance. Based on the associa-
tion of del(8p) with del(17p), also reported in other lymphoid
tumors,3,17 we compared the outcome in patients with splenic
MZLs bearing these 2 lesions. As shown in Figure 4, the presence
of both lesions had a significant impact on the outcome (Gehan-
Breslow-Wilcoxon test: P � .004, q � 0.33, C-index � 0.58),
whereas del(8p) alone was of borderline statistical significance
(P � .067, q � 0.9, C-index � 0.57) and isolated del(17p) had no
significant impact. Importantly, only the presence of both del(8p)
and del(17p) was also able to better define the outcome of patients
with an intermediate- or high-risk clinical score (P � .003;
C-index � 0.655). In MALT lymphoma, gain at 3q11.2-q29 (NFK-

BIZ, BCL6) was associated with worse OS (P � .048; q � 0.75).
As already mentioned in “Patterns of concomitant genomic aberra-
tions,” the 4 NMF clusters that we identified were not associated
with differences in outcome.

Discussion

We analyzed a large series of MZLs using a high-density genome-
wide DNA microarray to better define differences among MALT
lymphoma, splenic MZLs, and nodal MZLs and to identify regions
with prognostic significance. The integration with gene expression
profile data was used to identify genes probably targeted by
genomic events. In support of the current World Health Organiza-
tion classification,2 differences were detected among the 3 sub-
types, especially between MALT lymphoma and splenic MZLs by
both supervised and unsupervised analyses. The splenic MZLs
presented more frequently the well-known del(7q31-q32), but also
deletions at 8p and 17p, whereas MALT lymphomas more com-
monly displayed deletions at 1p and 6q, as well gains on
chromosomes 3 and 18, and on the short arm of chromosome 6.

Table 2. Patterns of association among MCR as evaluated by applying Fisher exact test (P ) followed by multiple test correction (q)

Associated regions
No. with
lesion

% with
lesion

No. without
lesion

% without
lesion P q

MALT lymphoma, 3q gain 18q gain (BCL2, NFATC1) 9/17 53 3/40 8 .00036 0.0018

del(17p13.1-p13.3) (TP53) 5/17 29 0/40 0 .0015 0.0067

2p16.3 LOH 3/17 18 0/40 0 .023 0.082

13q gain 3/17 18 0/40 0 .023 0.082

5p15.2 gain 4/17 23 1/40 3 .024 0.082

Splenic MZL, 3q gain 18q gain (BCL2, NFATC1) 8/22 36 4/112 4 � .00001 0.0003

17q22-q25.3 gain 6/22 27 4/112 4 .0014 0.0061

1q gain 5/22 23 3/112 3 .0031 0.012

del(6q23.2-q24.1) (TNFAIP3) 6/22 27 7/112 6 .0079 0.027

del(6q25) 5/22 23 3/112 3 .011 0.035

Splenic MZL, del(7q31-q32) del(8p12-p23) 8/35 23 8/99 8 .032 0.19

Splenic MZL, del(17p) (TP53) del(8p) 8/23 35 9/111 8 .002 0.012

del(13q14.2-q14.3) (MIR15/MIR16) 5/23 22 6/111 5 .022 0.078

17q22-q25.3 gain 5/23 22 5/111 4 .014 0.06

Splenic MZL, del(8p) del(17p13.1-p13.3) (TP53) 8/17 47 15/117 13 .002 0.019

del(13q14.2-q14.3) (MIR15/MIR16) 5/17 29 6/117 5 .005 0.034

8q gain 4/17 24 3/117 3 .005 0.034

Splenic MZL, del(13q14.2-q14.3) (MIR15/MIR16) del(6q25.2) 4/11 36 6/123 5 .004 0.061

del(8p) 5/11 45 11/123 9 .006 0.062

18q gain (BCL2, NFATC1) 4/11 36 7/123 6 .006 0.062

del(17p) (TP53) 5/11 45 13/23 10 .007 0.061

Figure 4. Kaplan-Meier graph showing OS in splenic MZLs according to the presence of del(8p) only (P � .068), del(17p) only (P � .256), or del(8p) and del(17p)
together (P � .004). Green represents patients bearing the lesion(s); and blue, patients without the lesion(s). x-axis represents time (months); and y-axis, percentage of
patients alive.
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Deletion of the long arm of chromosome 7, which was present
in more than one-fourth of splenic MZLs but in less than 5% of the
MALT lymphoma cases, is the best known lesion in splenic
MZLs.18-25 The presence of del(7q31-q32) was the most common
lesion in splenic MZLs; but despite the large number of samples
analyzed, the minimal common deleted region was still very large,
composing more than 4 Mb. POT1, a gene reported as possibly
affected by the deletion,23 was down-regulated in patients carrying
del(7q31-q32), but it was not the only affected gene. The MCRs
contained MIR29A and MIR29B, suggested as altered in splenic
MZLs with del(7q),22 and were also mapped within the MCR. Our
analysis, performed with a high-resolution array, strongly suggests
that the deletion could target not single, but multiple, transcripts.

Aberrations affecting chromosome 6, losses of its long arm and
gains of the short arm, were more common in MALT lymphoma
and in nodal MZLs than in splenic MZLs. The 6q MCR contained
the gene TNFAIP3, coding for a negative NFKB regulator, which
has been recently identified as frequently inactivated by somatic
mutations and deletions in different lymphoma subtypes, including
MALT lymphoma and diffuse large B-cell lymphoma (DL-
BCL).26-28 Our data, showing also the down-regulation of the
transcripts in patients with del(6q23), strongly underline the
importance of the gene, particularly among MALT lymphomas.
Deletions of TNFAIP3 have been reported as being associated with
gains at 6p, involving the TNFA/B/C locus, in MALT lymphoma29

and in Waldenstrom macroglobulinemia (WM).30 In our series,
losses of the TNFAIP3 locus were not associated with 6p gains
affecting the TNFA/B/C locus. These differences could be the
result of different primary sites of MALT lymphoma analyzed, but
also of different technical approaches because we used an array
covering the entire 6p arm, whereas some of the published data29

were obtained with fluorescence in situ hybridization using probes
targeting the TNFA/B/C region only, thus unable to detect more
telomeric regions, but with a higher sensitivity for perhaps
subclonal lesions of the TNFA/B/C locus. Indeed, the scenario
might be complex, involving the genetic background of the host
(single nucleotide polymorphisms and CNV).

Similar to follicular lymphomas and DLBCL,3,31,32 6p was the
site of copy-neutral LOH, suggesting the presence of advantageous
mutations or polymorphisms in this region. Polymorphisms of
genes mapped in 6p, such as TNFA itself (6p21.33) and IRF4
(6p25), have been associated with risk of lymphoma, particularly
of MZLs.33,34 The 6p region also contains the genes coding for the
human leukocyte antigens, which can be down-regulated in
lymphoma cells via copy-neutral LOH.35 Further studies are
needed to understand the potential role of the specific patterns of 6q
deletion and 6p gain and their relation to the microenvironment
involved in the pathogenesis of MZLs, especially of MALT
lymphoma. It is worth mentioning that, different from other
lymphoma subtypes,3,31,32 copy-neutral LOH did not appear to be a
common event in MZLs.

Although also present in other lymphomas, such as DLBCL,6

recurrent gains affecting chromosomes 3 and 18 are considered
hallmarks of MZLs. Interestingly, the short arms of both chromo-
somes were more commonly affected in MALT lymphoma or nodal
MZLs than in splenic MZLs. Differences in the prevalence of
whole chromosome gains or of preferential gains of long arms
could reflect different underlying mechanisms of lymphomagen-
esis, some of which could be the result of exogenous or host
factors, such as DNA polymorphisms of the pericentromeric
region.36,37 The 2 aberrations determined an overexpression of
different genes, including FOXP1, NFKBIZ, and BCL6 (on chromo-

some 3) and BCL2, MALT1, and NFATC1 (on chromosome 18).
Whereas genes mapped on the long arms might provide a survival
advantage to neoplastic cells in all MZLs, genes mapped to the
short arms might only be useful for MZLs developing in an
extranodal or nodal environment. Here, gains affecting 3q and
18 seemed to affect B-cell receptor signaling pathways (P � .04),
Wnt signaling (P � .014), cell cycle (P � .02), and apoptosis
(P � .04), whereas genes associated with 3p and 18p gains
composed transcripts involved in chemokine and cytokine signal-
ing pathway (P � .01), ubiquitin proteasome pathway (P � .01),
Ras signaling (P � .04), and in tight junction regulation (P � .05).
FOXP1 (3p14.1) is overexpressed in a small fraction of MALT
lymphomas because of its juxtaposition to the immunoglobulin
heavy chain gene promoter after chromosomal translocation.38 The
3p21.31 region contains a cluster of genes coding for chemokine
receptors: CCR9, CXCR6, XCR1, CCR3, CCR1, CCR3, CCR5, and
CCRL2. CXCR6 and the ligand of CCR5, CCL5, have recently
been reported as part of the gene expression signature of pulmonary
MALT lymphoma,39 and CCR5 has been shown to be overex-
pressed in MALT lymphoma cells compared with normal MZL
cells.40 CCR4 (3p22.3) has been previously reported as overex-
pressed in MALT lymphoma bearing trisomy 3,40 and it could be
involved in the differential homing of the MZL subtypes. In our
series, 3q gains were associated with a worse outcome in MALT
lymphoma, but not in the remaining MZL subtypes. Similar results
have been reported in mantle cell lymphoma41 and DLBCL.6

Besides the different frequency of gains, the pattern of concomitant
lesions associated with gains at 3q and 18q were also different in
the 2 main MZLs subgroups. Although MALT lymphoma showed
an association with gain at 13q (containing also MIRHG1/MIR-17–
92) and del(17p) (TP53), in splenic MZLs the lesions were
associated with gains at 1q, and 17q22-q25.3, del(6q23.2-q24.1)
(TNFAIP3), and del(6q25), suggesting different pathogenetic mecha-
nisms in the 2 MZL types.

Both del(8p) and del(17p) (TP53) were more common in
splenic MZLs than in MALT lymphoma. In our series, the loss of
the TP53 locus did not affect the prognosis of splenic MZLs. TP53
somatic mutations, and not the simple allelic loss, might confer a
poor outcome in splenic MZLs,42-44 similar to DLBCL.45 On the
converse, del(8p) was associated with a poorer outcome among all
MZL cases. In splenic MZLs, similar to recent observations in CLL
and DLBCL,3,17 del(8p) was often present together with del(17p13.1-
p13.3). Importantly, although del(17p) did not determine a worse
outcome and del(8p) was only of borderline significance, the
presence of both deletions had a highly significant impact on
outcome of patients with splenic MZLs. The demonstration of both
losses also better defined the prognosis of patients with an
intermediate- or high-risk clinical score. TNFRSF10A (TRAILR1)
and TNFRSF10B (TRAILR2), coding for the transmembrane pro-
apoptotic death receptors, and MCPH1, coding for microcephalin 1
involved in DNA damage repair, have been proposed as targets of
deletions in aggressive B-cell lymphomas.46,47 Genes mapped to 8p
have also been linked to a higher risk of autoimmune disorders.48

Here, we did not observe down-regulation of any of these genes in
association with del(8p).

Chromosomal translocations identified in MALT lymphoma are
usually absent in nodal MZLs.2 Similar to splenic MZLs, nodal
MZL cases with both mutated and unmutated IgH genes exist.19,49

In our series, nodal MZLs appeared extremely similar to MALT
lymphoma and different from splenic MZLs. In particular, nodal
MZLs lacked the main recurrent lesions specific for splenic MZLs,
such as 7q loss, and presented gains of both short and long arms of
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chromosomes 3 (FOXP1, NFKBIZ, and BCL6) and 18 (BCL2 and
NFATC1), as well of 6p, all lesions associated with MALT
lymphoma. No unbalanced genomic lesions specific for nodal
MZLs were identified. Nodal MZLs might represent a distinct
entity derived from a heterogeneous B-cell counterpart similar to
the progenitors of splenic MZLs but that have undergone a
selection process more similar to MALT lymphoma cells. Alterna-
tively, nodal MZLs could represent MALT lymphomas clinically
presenting as nodal MZLs.

Differential diagnosis of small B-cell lymphomas is often
difficult, and this could be partially the result of the existence of a
large overlapping of common genomic aberrations across the
different lymphoma subtypes.50 Of particular interest is the compari-
son of MZLs with lymphoplasmacytic lymphoma, whether accom-
panied by an IgM component (WM) or not, and CLL. The genomic
profile, which has been reported for WM,30 partially overlaps with
what we see in MZLs: 3q and 18q gains, common to all MZLs; 6p
gains and del(6q23) (TNFAIP3), common in MALT lymphoma;
and del(8p) and 8q gains, common in splenic MZLs. On the
converse, del(6q21) (PRDM1), gains of chromosome 4, and
del(14q32.32) (TRAF3) appear specific for WM. Genome-wide
data are not available for lymphoplasmacytic lymphoma without an
IgM component. The del(13q14.3) (MIR15/MIR16), observed in
less than 10% of MZL cases, is considered to be the typical lesion
of CLL, in which it is present in at least half of the cases, but it has
also been reported in other types of low-grade lymphomas.50

Importantly, cases of splenic MZLs with del(13q14.3) showed a
genetic profile, which was consistent with the diagnosis of splenic
MZLs and not of CLL, with the frequency of 7q loss being similar
to the remaining splenic MZL cases.

In conclusion, we have identified the differences in terms of
unbalanced genomic lesions between the 2 main MZL subtypes and
suggested that the rare subtype of nodal MZLs is intermediate
between them. We also showed that gain of 3q and del(8p) possibly
determine a poor OS in MZL patients and that the presence of the
latter lesions concomitant with del(17p) determines a very poor

outcome in splenic MZL patients. The implication of these last
observations for the clinical practice will require validation on
large independent prospective series.
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