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R&D projects generally involve multiple phases with or without overlapping. Moreover,
the investment is usually made in a phased manner, with the commencement of the
subsequent phase being dependent on the successful completion of the preceding phase.
The aim of this article is to analyze the equilibrium strategies of two firms competing
for a two-stage sequential R&D investment, when a firm may infer a private signal from
the strategy played by the other. Thus, firms must formulate their optimal strategies in
a context of imperfect information. We evaluate the resulting compound option with
information revelation as an American compound exchange option using Monte Carlo
simulations. We then show that different equilibria may arise.

Introduction

In standard real options models the timing of option exercise is generally uninformative.
Agents are assumed to be perfectly informed about the fundamental parameters of the
option, and the optimal exercise policy is a deterministic function of the state variables.
However, there are many realistic situations in which agents are imperfectly informed. Let
us consider, for example, an R&D investment project such as oil exploration (see Paddock
et al. [1988] for a general discussion) or the development of a new drug. In the first case, in
addition to possessing the standard feature of options, oil exploration possesses important
private information externalities. Let us consider, just to give an example, the usual practice
in the United States. Due to the leasing practices of the federal government, it is frequently
the case that two or more firms lease adjacent tracts of land that may contain an oil deposit
(see Hendriks and Kovenock [1989]). Prior to obtaining the lease, each firm has obtained
private information about the probability of finding a deposit; that is, each firm obtain a
noisy signal of the likelihood of striking oil by combining seismic surveys with in-house
expertise. However, the existence and magnitude of the deposit can only be known through
drilling. Firms then face a trade-off between the benefits of drilling and potentially obtaining
oil earlier and the benefits of waiting for other firms to drill first and reveal information
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about the size of the deposit. Therefore, in equilibrium, firms must determine their optimal
drilling exercise times in a context of private information and ongoing uncertainty. As far as
the development of new drugs, the R&D project can take more than 10 years to complete.
During the whole period, investments in R&D have to be made without reaping any of
the possible benefits of the investment and with a significant probability of terminating the
effort for technical or economic reasons. In addition, even for successful efforts, there is
uncertainty about the actual costs of development. Furthermore, after the drug has been
successfully developed and approved there is substantial uncertainty about the cash flows
that it will generate. To evaluate the R&D project or patent, these cash flows have to be
assessed long before they are realized. (There are many other cases not discussed here. Let
us consider, among others, the technology of hybrid electric cars in the automotive industry.
General Motors stopped its hybrid project in 1998 and restarted it only recently, just after
having observed Toyota’s success with its hybrid car Prius.)

It is worth noting that in the above-described situations competitive interaction is
fundamentally important in the valuation and exercise of real options, especially in order
to get a dominant position in the final market product. Moreover, in such cases, agents may
impute the private information of others by observing their real options exercise (or lack of
exercise) decisions. Several questions arise: How is information conveyed? How do agents
determine their exercise strategies?

The aim of this article is to address the above questions by analyzing and quantifying
the effect of the irreversible R&D investment project whose investment/development costs
and returns are uncertain, in the presence of information revelation. We derive the optimal
investment strategy by applying the real option approach of modern investment theory,
evaluating each option as an American compound exchange option through Monte Carlo
simulations.

From a methodological point of view, note that R&D investment can be viewed as
an exchange option; that is, a swap of an uncertain investment cost for an uncertain gross
project value. This article is strictly related to Margrabe (1978), McDonald and Siegel
(1985), Carr (1988, 1995), and Armada et al. (2007). Margrabe (1978) developed a model
to price the simple European exchange option (SEEO) to exchange one risky asset for
another at maturity date T , and McDonald and Siegel (1985) considered the case in which
the assets distribute dividends. In a real options context, dividends are the opportunity
costs inherent in the decision to defer an investment project. Thus, deferment implies the
loss of the project’s cash flows (see, Eschenbach et al. [2009] for a close examination on
the waiting costs). Carr’s (1988) model, building on Margrabe (1978) and Geske (1979),
evaluated compound European exchange options (CEEO). This model may be interpreted
as a combination of a time-to-build option—that is, a growth option—and an option to
exchange an asset for another; that is, an operating option. In addition, Carr (1988, 1995)
and Armada et al. (2007) provided an approximation to value a simple American exchange
option (SAEO). When the asset to be received in the exchange pays large dividend yields,
there is always a probability that the American exchange option will be exercised prior
to expiration. This means that managers have the time flexibility to start the development
phase that gives the opportunity to capture the project’s cash flows. With regard to literature
on R&D valuation according to the real options approach, this article can be contrasted
with Herath and Park (1999, 2001, 2002). Herath and Park (1999) applied the option-based
valuation approach to show that sequential exercising of real options can create stockholder
value. In particular, by applying their model to Gillette’s Mach3 project they demonstrated
that more meaningful interpretations are possible by using the option approach rather
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than the traditional Discounted Cash Flow (DCF) method to value R&D projects. Herath
and Park (2001), recognizing the important role played by information on real options
value as business conditions change over time, intersected the real options approach and
Bayesian analysis. Therefore, combining old and new information sequentially over time,
it is possible to capture the real options value changes over time as a result of uncertainty
resolution. Herath and Park (2002) developed a compound real options valuation model
contingent on several uncorrelated underlying variables and, after estimating the volatility
parameter, applied it to a manufacturing case. Finally, the analysis of investment decisions
within the real options approach in a game theoretical setting has been the subject of intense
research interest. Recent surveys of real options and strategic competition may be found
in Boyer et al. (2004), Cortelezzi and Marseguerra (2006), Pennings and Sereno (2011),
Cassimon (2011), and Zandi and Tavana (2010) and applications of strategic competition
can be found, for example in Cortelezzi and Villani (2008), Cortelezzi et al. (2011) and
Marseguerra and Cortelezzi (2010).

In this article, we enrich our understanding of strategic investment decisions in R&D,
including a key characteristic of R&D processes; that is, information revelation. R&D
investment decisions are often difficult to reverse, and the timing of investment in an R&D
project is a crucial strategic decision for a firm. Early investment can be expensive, but
could yield a significant competitive advantage. A late investment can benefit from the
information revealed by the competitor. We consider the irreversible investment decisions
of a couple of firms that must decide whether and when to invest in an R&D project. Firms
face different kinds of uncertainty. First, there is exogenous uncertainty about investment
and development costs and final market conditions. Second, there is uncertainty about the
success of the R&D project. Of these two assumptions, the former is distinctive of the
literature on real options approaches to investments, whereas the latter characterizes the
R&D investment project. Both firms have time flexibility; that is, they have the opportunity
either to make the investment or wait for one period and collect new information on
the evolution of the project and the final market conditions. In accordance, we model
the compound R&D options as American exchange options and derive the strategies and
equilibria of the game played by the two firms considered.

This article is organized as follows: the following section describes the basic assump-
tion of the model. The next two sections are devoted to derive the leader’s and the follower’s
value functions respectively in the case of sequential and simultaneous investment. Then
the results of numerical simulations are presented and some comparative static analyses are
performed. The final section concludes the article.

The Model

Let us consider two symmetric and risk-neutral firms, i, j ∈ (A,B), engaged in a two-stage
competition over a finite horizon T . Both firms hold a compound option to invest in an
R&D project. Specifically, both firms have the opportunity to make an R&D investment
by incurring a research investment cost R. If the investment is successful, they obtain the
option to develop the project at the development cost γD, whose returns, γV, are uncertain,
where γ = α > 1

2 is the market share if the firm considered is the market leader (γ = 1−α

is the market share if it is the follower). By setting the R&D investment early on, a firm
may preempt the competitor and capture a significant share of the market, α > 1

2 . This is
an important source of advantage that may establish a sustainable strategic position. At
the same time, the firm that postpones investment can capture information about its R&D
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success by observing the R&D performance of the other. Thus, development costs and
returns are proportional to the market share of the firm considered. We assume that D and
V follow a geometric Brownian motion process, respectively given, by:

dD

D
= (µd − δd )dt + σddZd (1)

dV

V
= (µv − δv)dt + σvdZv (2)

cov

(
dV

V
,

dD

D

)
= ρvdσvσd dt (3)

where µd and µv are, respectively, the expected growth rate of the development cost and
the expected rate of return, δd and δv are the corresponding dividend yields, σd and σv

are the respective variance rates, ρvd is the correlation between changes in D and V , and
(Zdt )t∈[0,T ] and (Zvt )t∈[0,T ] are two Brownian processes defined on a filtered probability
space (�,A,F, P ).

We further assume that R is a proportion of D, R = ϕD, ϕ ∈ (0, 1) . As a consequence,
R follows the same stochastic process. The main difference is that R can be spent either at
the initial time t0 or one period later, at t1, whereas the option γD can be exercised at any
time before T .

The main feature of our model is represented by the assumption relative to the in-
formation revelation. In fact, the precise payoff upon exercise is not fully known to any
of the firms. In particular, once a firm has realized the research investment, R, it holds
an independent signal on the true realized payoff from investment; that is, it verifies the
probability of success of the investment. Therefore, each agent’s optimal exercise strategy
will be contingent not only on his own signal but also on the observed action of the other
agent. As a consequence, we assume that the probabilities of success of each firm, which
we denote by Y for firm A and by X for firm B, are modeled according to two different
Bernoulli distributions:

Y :

{
1 q

0 1 − q
X :

{
1 p

0 1 − p

where q ∈ [0, 1] and p ∈ [0, 1], and they mainly depend on the know-how of each player.
Moreover, the R&D success or failure of one firm generates an information revelation that
influences the investment decision of the other firm. Specifically, if the R&D investment
of firm A is successful, firm B’s probability p changes to positive information revelation
p+, where p changes to negative information revelation p− in the case of A’s failure.
Symmetrically, firm A’s R&D success changes to q+ or in q− respectively, in case of firm
B’s success or failure at time t0. In particular (see Dias [2004] for details),

p+ = Prob[X = 1/Y = 1] = p +
√

1 − q

q
·
√

p(1 − p) · ρ(X, Y )

p− = Prob[X = 1/Y = 0] = p −
√

q

1 − q
·
√

p(1 − p) · ρ(X, Y )
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q+ = Prob[Y = 1/X = 1] = q +
√

1 − p

p
·
√

q(1 − q) · ρ(X, Y )

q− = Prob[Y = 1/X = 0] = q −
√

p

1 − p
·
√

q(1 − q) · ρ(X, Y )

where the correlation coefficient, ρ(X, Y ), is a measure of information revelation from one
player to the other. Obviously, the information revelation is considerable when the invest-
ment is not realized at the same time. On the contrary, if both players invest simultaneously
in R&D or, alternatively, both of them decide to wait to invest, there is no information
revelation [ρ(X, Y ) = 0] and, consequently, we have the unconditional success probabil-
ities p = p+ = p− and q = q+ = q−. In what follows, we are interested in evaluating
the opportunity of this R&D investment project at date s ≤ t0, when two different firms
are competing in the final product market in presence of information revelation. We first
derive the final payoff of being a follower and a leader, in the case of both a sequential
and simultaneous investment. We then derive the optimal strategy of the game described.
We solve the timing game by evaluating the compound option as an American exchange
option. Although it is not possible to obtain a closed-form solution, we develop Monte
Carlo simulations that allow us to value the project and determine the optimal strategy
adopted efficiently by each firm.

The Leader’s and the Follower’s Value Functions:
The Sequential Investment Case

In this section, we first derive the follower’s value function, with the additional information
revealed by the leader research investment. The follower will revise the expectations on
his probability of success, determining whether the option to invest is deep in the money
or not. The follower is therefore a pure real options case because there is no strategic
interaction after the first exercise. We then compute the leader’s value function. The leader
has to decide whether and when to invest in research and obtain the development option
with some probability, given by his Bernoulli distribution.

The Follower’s Payoff

Let us first consider the case in which the leader (firm A) has already invested at t0 and the
follower (firm B) decides to delay its R&D investment decision until time t1 (we assume
firm A to be the leader and firm B to be the follower. Note that the game is perfectly
symmetric; therefore, the same analysis can be replicated assuming firm B to be the leader
and firm A to be the follower. At the end of this section, we report the result of this last
case.) Two cases must be considered: (1) the leader’s R&D investment is successful; (2) the
leader’s R&D investment is a failure.

Let us first analyze the case in which the leader’s investment is successful. In this case
the follower’s R&D success probability is p+. Therefore, once the follower sustains the
investment cost R, he gets the development option S[(1 − α)V, (1 − α)D, τ )] to invest
(1 −α)D at any time t ∈ (t1, T ) (we remember that the follower claims the residual market
share 1 − α of the overall market value V ). It is worth noting that the investment cost
in R&D will be sustained if and only if p+S[(1 − α)V, (1 − α)D, τ ] ≥ R; that is, if the
value of the development option is greater than the investment cost. The follower’s payoff
at time t0 is therefore a compound American exchange option (CAEO) with maturity
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(a) Follower’s Payoff in case of Leader’s
success
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(b) Follower’s Payoff in case of Leader’s
failure

Figure 1. Follower’s payoffs.

at t1, the exercise price equal to R, and the underlying asset is the development option
S[(1 − α)V, (1 − α)D, τ ]. Figure 1a summarizes the timing of the game.

The CAEO payoff at the expiration date t1 with positive information revelation is given
by:

C{p+S[(1 − α)V, [1−α)D, τ ], R, 0} = max{p+S[(1 − α)V, (1 − α)D, τ ] − R, 0}
Since R = ϕD, denoting by C(p+) the CAEO at time t0, we get:

C(p+) ≡ C{p+s[(1 − α)V, (1 − α)D, τ ], ϕD, t1}
By using Eq. (B5) it is possible to approximate the value of CAEO with positive information
as follows (see Appendix B for a detailed derivation):

C(p+)

� 4c2{p+S2[(1 − α)V, (1 − α)D, τ ], ϕD, t1} − c{p+s[(1 − α)V, (1 − α)D, τ ], ϕD, t1)}
3

(4)

Alternatively, in case of the leader’s investment failure, the follower’s success probability
become p−. As above, he holds the development option S[(1 − α)V, (1 − α)D, τ ] to
invest (1 − α)D at any time t ∈ (t1, T ) and to claim the market value (1 − α)V . The
follower’s payoff at time t0 is a CAEO with maturity t1, the exercise price equal to R, and
the underlying asset is equal to the development option S[(1 −α)V, (1 −α)D, τ ] as shown
in Figure 1b. Hence, the CAEO payoff with negative information revelation at the expiration
date t1 is given by:

C{p−S[(1 − α)V, (1 − α)D, τ ], R, 0} = max{p−S[(1 − α)V, (1 − α)D, τ ] − R, 0}
Denoting by C(p−) the CAEO at time t0, we get:

C(p−) ≡ C{p−S[(1 − α)V, [1 − α)D, τ ], ϕD, t1}
As in the previous case, by using Eq. (B5), the value of CAEO with negative information

is as follow:

C(p−)

� 4c2{p−S2[(1 − α)V, (1 − α)D, τ ], ϕD, t1} − c{p−s[(1 − α)V, (1 − α)D, τ ], ϕD, t1}
3

(5)

It is worth noting that the follower obtains the CAEO C(p+) in the case of the leader’s
success with a probability q or the CAEO C(p−) in the case of the leader’s failure with a
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Figure 2. Leader’s payoff.

probability (1 − q). Hence, the follower’s final payoff computed at time t0, FB(V,D), is
just the expected value of this two cases; that is:

FB(V,D) = q C(p+) + (1 − q) C(p−) (6)

Since the game is symmetric—that is, none of the firms is either a predesignated leader
or follower—one should also consider the case that firm B is the leader. In this case the
follower’s final payoff at time t0, FA(V,D),

FA(V,D) = p C(q+) + (1 − p) C(q−) (7)

The Leader’s Payoff

We now analyze the case in which the leader (firm A) invests in the R&D project at time
t0, whereas the follower (firm B) decides to postpone its decision, waiting for information
revelation. In such a scenario, the leader sustains the investment research cost R at time t0 and
obtains, in the case of success with a probability q, the development option S(αV, αD, T )
that gives the opportunity to invest αD at any time t ∈ (t0, T ) and to get a market share
α > 1

2 , as illustrated in Figure 2. Thus, the leader’s payoff is (for a detailed derivation see
Armada et al. [2007]):

LA(V,D) = −R + q · S(α V, αD, T )

� −R + q

[
4S2(αV, αD, T ) − s(αV, αD, T )

3

]
(8)

Since the game is symmetric and none of the firms is a predesignated leader, one should
also consider the case in which firm B is the leader. In this case the leader’s final payoff at
time t0 is as follow:

LB(V,D) = −R + p · S(α V, αD, T )

� −R + p

[
4S2(αV, αD, T ) − s(αV, αD, T )

3

]
(9)

The Leader’s and the Follower’s Value Functions:
The Simultaneous Investment Case

Let us now consider the case in which both the leader and the follower invest at the same
time, either at t = t0 or at t = t1. In such a situation there are no information externalities
[ρ(X, Y ) = 0] that can be used to revise the expectation about the profitability of the
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(a) Firm A’s payoff
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(b) Firm B’s payoff

Figure 3. A’s and B’s payoff in case of simultaneous investment.

investment. Since the investment is simultaneous, we assume that firms share the overall
market value; that is, α = 1

2 . Two cases must be considered: (1) both firms invest at t = t0;
(2) both firms invest at t = t1.

Let us first assume that both firms invest at t = t0; that is, both firms A and B decide
separately to incur the sunk cost R in the R&D project. They have respectively some
probability q and p to hold the development option S( 1

2 V, 1
2 D, T ) and invest 1

2D at any
time t ∈ (t0, T ), as illustrated in Figures 3a and 3b.

Thus, by using Eq. (B3), the payoffs for firm A, SA(V,D), and B, SB(V,D), are
respectively the following (see Appendix B for a detailed derivation):

SA(V,D) = −R + q · S

(
1

2
V,

1

2
D, T

)

� −R + q

[
4S2

(
1
2V, 1

2D, T
)− s

(
1
2V, 1

2D, T
)

3

]
(10)

SB(V,D) = −R + p · S

(
1

2
V,

1

2
D, T

)

� −R + p

[
4S2

(
1
2V, 1

2D, T
)− s

(
1
2V, 1

2D, T
)

3

]
(11)

Let us now assume that both firms invest at t = t1; that is, both firms A and B decide
separately to incur the sunk cost R in the R&D project one period later. As before, in
the case of success, each firm holds the development option S( 1

2 V, 1
2D, τ ) to invest 1

2D

at any time t ∈ (t1,T ) and claims a market share 1
2V . Therefore, at time t0, the firms’

payoffs are two compound American exchange options with maturity t1, the exercise price
equal to R = ϕD, and the underlying asset is the development option S( 1

2V, 1
2D, T ) with

probabilities q and p, respectively, as illustrated in Figures 4a and 4b.

t
0

t
1 T

R 1/2D

τ

qS(1/2V, 1/2D, τ) 1/2VC(qS,R,t
1
)

(a) Firm A’s payoff

t
0

t
1 T

R 1/2D

τ

pS(1/2V, 1/2D, τ) 1/2VC(pS,R,t
1
)

(b) Firm B’s payoff

Figure 4. A’s and B’s payoffs in the case of waiting to invest.
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Figure 5. Final payoffs at time t0.

Thus, A’s and B’s payoff, WA(V,D) and WB(V,D), at time t0 is given by:

WA(V,D) = C

[
q · S

(
1

2
V,

1

2
D, τ

)
, ϕD, t1

]
(12)

WB(V,D) = C

[
p · S

(
1

2
V,

1

2
D, τ

)
, ϕD, t1

]
(13)

As above, by using Eq. (B5), it is possible to approximate firm A’s and B’s waiting payoffs
as follows:

WA(V,D) � 4c2
[
qS2

(
1
2V, 1

2D, τ
)
, ϕD, t1

]− c
[
qS
(

1
2V, 1

2D, τ
)
, ϕD, t1

]
3

(14)

WB(V,D) � 4c2
[
pS2

(
1
2V, 1

2D, τ
)
, ϕD, t1

]− c
(
pS
[

1
2V, 1

2D, τ
)
, ϕD, t1

]
3

(15)

The Firms’ Payoffs Matrix

The final payoffs can be represented by a two-by-two matrix (see Figure 5). The first value
in each cell indicates the final payoff for firm A at time t0 and the second value represents
the final payoff for firm B. We can distinguish four basic cases: (i) both firms decide to
postpone the R&D investment at time t1; (ii) and (iii) one firm invests first (the leader) and
the other decides to invest one period later (the follower); (iv) both firms decide to invest
simultaneously in R&D at time t0.

Analysis of the Model

We now examine the characteristics of the optimal investment strategies through the de-
termination of the Nash equilibria of the game and show how they depend on the value of
some fundamental parameters. This model can be applied to analyze the R&D investments
in several industrial sectors such as high-tech, pharmaceutical, telecommunication, or oil
extraction, in which competitors can substantially influence a firm’s investment opportunity.
Because it is not possible to obtain a closed-form solution, we perform some numerical
simulations using a Monte Carlo method.
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We established a set of central values for the parameters based on Lee and Paxson
(2001) and Dias and Teixeira (2004).

Let us consider a firm that faces the possibility of sustaining a research investment cost
R either at time t0 or t1. If the investment is made at t0, we set the research investment cost,
R, equal to $150,000; otherwise, it occurs at t1 and it is a proportion, ϕ, equal to 0.375, of
the total development cost, D. As a consequence, at time t1, the research investment cost
R follows the same stochastic process of D. We set the total investment cost, D, equal to
$400,000.

We assume that the first firm to invest, namely, firm A in our simulated example, has
greater and more efficient know-how than her competitor, firm B. Thus, firm A’s success
probability is q equal to 0.60, whereas firm B’s success probability is p equal to 0.55.

As is standard in real options models, we assume that the volatility of quoted shares
and traded options is an adequate proxy for the volatility of the final market value V and the
development investment cost D. Moreover, the R&D investments usually present greater
uncertainty in their results. Thus, we set the volatility of the project value, σv , equal to
0.90% annually and the volatility of the development option, σd, equal to 0.23% annually.
The loss of cash flow during the life of the option by deferring the project, δv , is established
equal to 0.15% annually and the dividend yield on the development cost, δd , has been set
equal to 0.

The time to maturity, T —that is, the project’s deferment option after which each
opportunity disappears—has been set equal to 3 years. Moreover, because the follower
needs at least 6 months to know the leader’s outcome and, consequently, to receive the
information revelation, we set t1 equal to 0.5 years.

Table 1 summarizes the set of base-case parameter values for our numerical simulation
results.

We first observe that, when the expected market value V is equal to 0, the simple
and compound American exchange option values are zero and so Li(0) = Si(0) = −R

and Fi(0) = Wi(0) = 0, for i = A,B. We present in Table 2 the results of the Monte Carlo
simulations for the follower’s and waiting payoffs, given the base-case parameters described
above. We consider five different expected overall market values, V , according to the

Table 1
Base case parameter values

Parameter Value

R&D investment R = $150,000
Development investment D = $400,000
Costs volatility σd = 0.23% annually
Market volatility σv = 0.90% annually
Proportion of D required for R ϕ = R

D
= 0.375

Convenience yield of D δd = 0
Convenience yield of V δv = 0.15% annually
Correlation between V and D ρvd = 0.15
Expiration date of compound option t1 = 0.5 years
Expiration date of simple option T = 3 years
A’s and B’s success probability q = 0.60; p = 0.55
Information revelation ρ(X, Y ) = 0.70
Leader’s market share α = 0.60
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Table 2
Simulated values of follower and waiting strategies

1st 2nd 3rd 4th Average
Strategy Monte Carlo Monte Carlo Monte Carlo Monte Carlo value

FA(800,000) 26,620 26,525 26,573 26,663 26,595
FB(800,000) 23,936 23,862 23,916 23,999 23,928
WA(800,000) 30,760 30,675 30,777 30,875 30,772
WB(800,000) 25,191 25,133 25,227 25,323 25,219

FA(1,000,000) 47,146 47,147 47,103 47,087 47,120
FB(1,000,000) 43,232 43,060 43,024 42,988 43,076
WA(1,000,000) 56,355 56,123 56,089 56,004 56,143
WB(1,000,000) 47,146 46,925 46,900 46,780 46,938

FA(1,200,000) 72,288 72,286 71,908 72,176 72,164
FB(1,200,000) 66,707 66,711 66,359 66,608 66,596
WA(1,200,000) 87,566 87,618 87,150 87,484 87,455
WB(1,200,000) 74,349 74,369 73,977 74,261 74,239

FA(1,400,000) 100,510 100,750 100,510 100,420 100,548
FB(1,400,000) 93,460 93,687 93,460 93,356 93,491
WA(1,400,000) 123,240 123,530 123,240 123,030 123,260
WB(1,400,000) 105,810 106,060 105,810 105,650 105,833

FA(1,600,000) 130,940 131,290 131,430 131,440 131,275
FB(1,600,000) 122,380 122,720 122,830 122,870 122,700
WA(1,600,000) 161,490 162,000 162,020 162,130 161,910
WB(1,600,000) 139,850 140,290 140,330 140,460 140,233

evolution of the market conditions: V = $800,000 (low expected return); V = $1,000,000,
V = $1,200,000 (medium expected return), and V = $1,400,000 and V = $1,600,000
(high expected return). Note that V corresponds to the present value of the expected cash
flows derived by R&D innovations. For each scenario, we perform four different simulations
and, specifically, for each simulation, the number of simulated values n is equal to 100,000.
As shown in Cortelezzi and Villani (2009), this simulation number allows us to obtain a
low variance and to improve the efficiency of computations.

Tables 3 and 4 summarize the strategic payoffs for A and B considering different
expected market values, and Figures 6 and 7 show firm A’s and from B’s strategic values.

Table 3
Firm A’s final payoffs assuming α = 0.60 and ρ(X, Y ) = 0.70

Market Leader’s Follower’s Simultaneous Waiting
value V value LA value FA value SA value WA

800,000 −4,474 26,595 −28,728 30,772
1,000,000 48,152 47,120 15,126 56,143
1,200,000 102,894 72,164 60,745 87,455
1,400,000 159,113 100,548 107,594 123,260
1,600,000 216,402 131,275 155,335 161,910
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Table 4
Firm B’s final payoffs assuming α = 0.60 and ρ(X, Y ) = 0.70

Market Leader’s Follower’s Simultaneous Waiting
value V value LB value FB value SB value WB

800,000 −16,601 23,928 −38,834 25,219
1,000,000 31,639 43,076 1,366 46,938
1,200,000 81,819 66,596 43,183 74,239
1,400,000 133,354 93,491 86,128 105,833
1,600,000 185,869 122,700 129,891 140,233

In order to determine the Nash equilibria of the game, we first perform Monte Carlo
simulations to compute the critical market values V ∗

Wi and V ∗
Si such that, respectively,

Li(V ∗
Wi) = Wi(V ∗

Wi) and Si(V ∗
Si) = Fi(V ∗

Si), for i = A,B. We obtain the following values:

V ∗
WA � $1,070,000; V ∗

WB � $1,130,000; V ∗
SA � $1,320,000; V ∗

SB � $1,490,000.

Moreover, the critical price value, P ∗
2 , that realizes the indifference between exercising

the option or not at τ
2 of a Pseudo-simple American Exchange Option (PSAEO) S2(V,D, τ

2 ),
is the solution of Eq. (A13) illustrated in Appendix A. For our adapted numbers it results
in P ∗

2 = 1.6722.
Thus, defining V ∗

W = min(V ∗
WA, V ∗

WB ), V ∗
Q = max(V ∗

WA, V ∗
WB ), V ∗

P = min(V ∗
SA, V ∗

SB ),
and V ∗

S = max(V ∗
SA, V ∗

SB ), the following relations hold:

Li(V ) < Wi(V ) if V < V ∗
W

Li(V ) > Wi(V ) if V > V ∗
Q
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Figure 6. Firms A’s strategic values.
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Si(V ) < Fi(V ) if V < V ∗
P

Si(V ) > Fi(V ) if V > V ∗
S

Moreover, if A’s probability of success is higher (lower) than B’s

LA(V ) > (<)WA(V )

LB(V ) < (>)WB(V )

SA(V ) > (<)FA(V )

SB(V ) < (>)FB(V )

Let us first assume that the expected market value, V, is equal to $800,000 (low
return). In such a scenario, we find a Nash equilibrium in which both firms prefer to
wait for better market evolutions and delay their R&D investment decision at time t1 (see
Figure 8a).

Let us now assume that the expected market value V is equal to $1,600,000 (high
return). In this case there is a Nash equilibrium (SA, SB) in which both firms decide to invest
simultaneously in R&D at time t0 to take advantage of high market value (see Figure 8d).
Assuming now V = $1,400,000, there exists one Nash equilibrium (LA, FB) in which firm
A is the leader and firm B is the follower (see Figure 8c).

Finally, by assuming V = $1,200,000, we find two Nash equilibria, (LA, FB) and
(FA,LB ), as represented in Figure 8b. In the first equilibrium firm A invests immediately
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Figure 8. Final payoffs.

at time t0 and B postpones its R&D decision at time t1 for waiting better information; the
opposite holds in the second equilibrium.

It is worth noting that for the extreme value of the expected market value V , see
Figures 8a and 8d, there are equilibria in dominant strategies. Moving from these extreme
values, the dominant strategy survives only for one of the two firms (Figure 8c). This ensure
the existence of a unique Nash equilibrium. However, there are intermediate values of V

for which none of the firms have dominant strategies. In this case, multiple equilibria are
possible (Figure 8b) and a refinement of the equilibria is necessary.

Comparative Static Results

We are now interested in analyzing the, effects that the information revelation, ρ(X, Y ); the
first mover’s advantage, α; and the dividend yield, δv, have on the Nash equilibria derived
above.

First, comparing strategic payoffs computed using American options versus European
ones, it is immediately observed that the first are larger then the second. This result is
essentially due to the value of managerial flexibility to realize the investment D prior to
maturity T . In particular, it is worth noting that the critical market values V ∗

WA and V ∗
SB

achieved using American exchange options decrease rapidly with respect to those obtained
by European options. Denoting by V ∗E

WA and V ∗E
SB the critical market values obtained using

McDonald and Siegel’s (1985) and Carr’s (1988) models of European option value (see, for
details, Villani [2008]), we find that V ∗E

WA = $1,349,400 and V ∗E
SB = $1,898,700. Thus, the

length of range game [V ∗
WA, V ∗

SB ] is equal to [1,070,000, 1,490,000] = $420,000, which is
smaller than [1,349,400, 1,898,700] = $549,300 obtained using European options. This
means that the managerial time flexibility regarding the realization of the development phase
allows both firms to reduce the critical market values that bound both the opportunity to
delay the R&D investment decision (the so-called wait-and-see policy) and the simultaneous
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Table 5
Variation in information revelation with α = 0, 60 and δv = 0.15

ρ(X, Y ) V ∗
SA V ∗

SB V ∗
WB − V ∗

WA V ∗
SA − V ∗

WB V ∗
SB − V ∗

SA

0 1,155,000 1,228,000 60,000 25,000 73,000
0.10 1,165,000 1,262,000 60,000 35,000 97,000
0.30 1,203,000 1,307,000 60,000 73,000 104,000
0.50 1,235,000 1,380,000 60,000 105,000 145,000
0.70 1,320,000 1,490,000 60,000 190,000 170,000
0.90 1,439,000 1,690,000 60,000 309,000 251,000

investment implementation. Evaluating the R&D investment problem according to the
American exchange options methodology allows manager’s to invest earlier. It is worth
noting that in this case the R&D investment can be realized at time t0 with an initial value
V equal to $1,070,000 instead of an initial value V equal to $1,349,400.

Table 5 shows the impact of information revelation on the ranges game. Moreover, the
ranges game are the intervals in which arise particular equilibria. Note that in order to have
0 ≤ p+ ≤ 1, and 0 ≤ p− ≤ 1, the following condition must be respected:

0 ≤ ρ(X, Y ) ≤ min

{√
p(1 − q)

q(1 − p)
,

√
q(1 − p)

p(1 − q)

}
(16)

In our applications, the result is 0 ≤ ρ(X, Y ) ≤ 0.9026. We can observe that the investing
and waiting strategies are independent of ρ(X, Y ). Therefore, the critical market values
V ∗

WA and V ∗
WB do not change and the range [V ∗

WA, V ∗
WB ] remains unchanged and equal to

$60,000. Moreover, as the information revelation increases, the payoff ranges [V ∗
WB, V ∗

SA]—
that is, the area in which we find two Nash equilibria—and [V ∗

SA, V ∗
SB ]; that is, where we

find one Nash equilibrium, are enlarged.
Table 6 shows the impact of the first mover’s advantage on the critical market values.

We observe that, if the leader’s market share α increases, then all of the critical market
values decrease (in the limit case of α = 1; that is, the firm acts as a monopolist on the final
market product, and the follower’s strategy has no value). In particular, we can observe
that as the market share, α, increases, the ranges [V ∗

WA, V ∗
WB] and [V ∗

SA, V ∗
SB ] are reduced,

whereas [V ∗
WB, V ∗

SA] increases; that is, the area in which it is possible to find two Nash
equilibria increases.

Table 6
Variation in leader’s market share with ρ(X, Y ) = 0.70 and δv = 0.15

α V ∗
WA V ∗

WB V ∗
SA V ∗

SB

0.60 1,070,000 1,130,000 1,320,000 1,490,000
0.70 858,000 906,000 1,070,000 1,161,000
0.80 742,000 791,000 975,000 1,042,000
0.90 662,000 703,000 935,000 998,000
1 609,000 645,000 932,000 993,000
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Finally, when the dividend yields δd and δv go to zero, then the CAEO and SAEO
prices are equal to CEEO (see Carr [1988]) and SEEO (see McDonald and Siegel [1985]),
respectively, because there is no incentive to exercise the American option prior to maturity
date T . Thus, if δv is set equal to 0, we find that V ∗

WA � $860,000 and V ∗
SB � $1,305,000.

Concluding Remarks

The R&D investment is one of the most important strategic variables for a successful
firm performance. However, a R&D investment opportunity is not held by one firm in
isolation; therefore, competitive considerations are extremely important. In this article,
we evaluate these kinds of projects according to the theory of option games, which bring
together real options analysis and game theory. In particular, we apply the Monte Carlo
simulations to value R&D as an American exchange option that take into account the
managerial flexibility to realize the development investment D. We also consider the
possibility of strategic interactions between the two firms. The first firm to invest, acquires
a first mover advantage, and the second receives an information revelation from the leader’s
R&D investment. We computed the critical market values V ∗

WA, V ∗
WB , V ∗

SA, and V ∗
SB , used

to determine the range of parameters in which it is optimal to play each strategy, namely,
to invest or to wait, and we show the effects that the most important parameters have on
the game. We finally perform a comparative static analysis on the base case parameters and
analyze how the equilibria of the game are modified.
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Appendix A

This appendix is devoted to the pricing of CEEO and Pseudo Compound American Ex-
change Option (PCAEO) through Monte Carlo simulations. The typical simulation ap-
proach suggests pricing the CEEO and PCAEO as the expected value of discounted cash
flows under the risk-neutral probability Q. Therefore, as far as the risk-neutral version of
Eqs. (1) and (2), we replace the expected rates of return µi by the risk-free interest rate r

plus the risk premium, namely, µi = r + λiσi , where λi is the market price of risk for asset
i = V,D. Thus, the risk-neutral stochastic equations are as follows:

dV

V
= (r − δv)dt + σv(dZv + λvdt) = (r − δv)dt + σvdZ∗

v

dD

D
= (r − δd )dt + σd (dZd + λddt) = (r − δd )dt + σddZ∗

d

where the Brownian processes dZ∗
v = dZv + λvdt and dZ∗

d = dZd + λddt are the new
Brownian motions under the risk-neutral probability Q and Cov(dZ∗

v , dZ∗
d ) is equal to

ρvddt . After some simple substitution and applying Itō’s lemma (Itō 1951), we get the
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equation of the simulated price ratio, P = V
D

, under the risk-neutral measure Q:

dP

P
= (− δ + σ 2

d − σvσdρvd

)
dt + σvdZ∗

v − σddZ∗
d (A1)

By applying the log-transformation to DT , under the probability measure Q, we obtain:

DT = D0 exp {(r − δd )T } · exp

(
−σ 2

d

2
T + σdZ

∗
d (T )

)
(A2)

We define U ≡ (− σ 2
d

2 T +σdZ
∗
d (T )) ∼ N (− σ 2

d

2 T , σd

√
T ). As a consequence, exp(U ) is log-

normally distributed with an expected value, EQ[exp(U )], equal to exp(− σ 2
d

2 T + σ 2
d

2 T ) = 1.
By Girsanov’s theorem (Girsanov 1960), we can define the new probability measure Q̃

equivalent to Q. The Radon-Nikodym derivative is

dQ̃

d Q
= exp

(
−σ 2

d

2
T + σdZ

∗
d (T )

)

Hence, by using Eq. (A2), we can write:

DT = D0 e(r−δd )T · dQ̃

d Q
(A3)

Moreover, by Girsanov’s theorem, the following processes:

dẐd = dZ∗
d − σddt (A4)

dẐv = ρvddẐd +
√

1 − ρ2
vd dZ′ (A5)

are two Brownian motions under the risk-neutral probability measure Q̃ and Z′ is a Brow-
nian motion under Q̃ independent of Ẑd . By using the Brownian motions defined in Eqs.
(A4) and (A5), we can rewrite Eq. (A1) for the asset P under the risk-neutral probability
Q̃, which results in

dP

P
= −δ dt + σv dẐv − σd dẐd (A6)

By simple substitution, we have

σvdẐv − σddẐd = (σvρvd − σd ) dẐd + σv

(√
1 − ρ2

vd

)
dZ′

where Ẑv and Z′ are two independent processes under the risk measure Q̃. Therefore, since
(σvdẐv − σddẐd ) ∼ N (0, σ

√
dt), we can rewrite Eq. (A6) as follows:

dP

P
= −δ dt + σdZp (A7)

where σ =
√

σ 2
v + σ 2

d − 2σvσdρvd and Zp is a Brownian motion under Q̃. By using the
log-transformation, we obtain the equation for the risk-neutral price P :

Pt = P0 exp

{(
−δ − σ 2

2

)
t + σZp(t)

}
(A8)
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We can now price the CEEO as the expected value of discounted cash flows under the
risk-neutral probability Q and by using Dt1 as the numeraire, we obtain:

c(s, ϕD, t1) = e−rt1EQ[max(s(Vt1 ,Dt1 , τ ) − ϕDt1 , 0)]

= e−rt1D0e
(r−δd )t1EQ

{
max[s(Pt1 , 1, τ ) − ϕ, 0]

dQ̃

dQ

}

= D0e
−δd t1EQ̃[gE(Pt1 )] (A9)

where

gE(Pt1 ) = max{Pt1 e−δvτN [d1(Pt1 , τ )] − e−δd τN [d2(Pt1 , τ ] − ϕ, 0}. (A10)

It is possible to approximate the value of CEEO through Monte Carlo simulation as:

c(s, ϕD, t1) ≈ D0e
−δd t1

(∑n
i=1 gi

E

(
P̂ i

t1

)
n

)
(A11)

where n is the number of simulated paths and gi
c(P̂ i

t1
) are the n simulated CEEO payoffs.

Along the same line, assuming Dt1 as the numeraire, we can price the PCAEO as the
expected value of discounted cash flows under the risk-neutral probability Q:

c2(S2, ϕD, t1) = e−rt1EQ{max[S2(Vt1 ,Dt1 , τ ) − ϕDt1 , 0]}

= e−rt1D0e
(r−δd )t1EQ

{
max[S2(Pt1 , 1, τ ) − ϕ, 0]

dQ̃

dQ

}

= D0e
−δd t1EQ̃[gA(Pt1 )] (A12)

where:

gA(Pt1 ) = max

{
Pt1e

−δvτN2

[
−d1

(
Pt1

P ∗
2

,
τ

2

)
, d1(Pt1 , τ ),−ρ1

]

+Pt1e
−δv

τ
2 N

[
d1

(
Pt1

P ∗
2

,
τ

2

)]

−e−δd τN2

[
−d2

(
Pt1

P ∗
2

,
τ

2

)
, d2(Pt1 , τ ),−ρ1

]

− e−δd
τ
2 N

[
d2

(
Pt1

P ∗
2

,
τ

2

)]
− ϕ; 0

}

and the critical price ratio, P ∗
2 , that realize the indifference between waiting and investing

at the mid-life time, time τ
2 , is the solution to the following equation:

P ∗
2 e−δv

τ
2 N

[
d1

(
P ∗

2 ,
τ

2

)]
− e−δd

τ
2 N

[
d2

(
P ∗

2 ,
τ

2

)]
= P ∗

2 − 1 (A13)

If the option S2(Vt1 ,Dt1 , τ ) is exercised at time τ
2 , we get (Vτ/2 −Dτ/2); otherwise, we have

an SEEO s(Vτ/2t , Dτ/2,
τ
2 ) with a time to maturity τ

2 .
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By using Monte Carlo simulation, we can approximate the value of PCAEO as:

c2(S2, ϕD, t1) ≈ D0e
−δd t1

(∑n
i=1 gi

A

(
P̂ i

t1

)
n

)
(A14)

where n is the number of simulations. From Eq. (A8), we can observe that Y = ln( Pt

P0
)

follows a normal distribution with mean (−δ − σ 2

2 )t and variance σ 2t . Therefore, the

random variable Y can be generated by Y = F−1(u; (−δ − σ 2

2 )t, σ 2t); that is, the inverse
of the normal cumulative distribution function, where u is a function of a uniform random
variable U [0, 1].

Appendix B

This appendix is devoted to the pricing of simple and compound American exchange
options. Carr’s (1988, 1995) models allow us the evaluate a pseudo-simple American
exchange option. Let t0 = 0 be the evaluation date and let T be the maturity date of the
exchange option. Let us assume that V and D follow the geometric Brownian motion given
by Eqs. (1)–(3) in the text. Carr (1988) showed that the value of a PSAEO (S2) at time T

2
or T is

S2(V,D, T ) = V e−δvT N2
(−d∗

1 , d1; −ρ1
)− De−δdT N2

(−d∗
2 , d2; −ρ1

)
+V e−δv

T
2 N
(
d∗

1

)− De−δd
T
2 N
(
d∗

2

)
(B1)

where:

� P = V

D
; σ =

√
σ 2

v − 2ρv,dσvσd + σ 2
d ; δ = δv − δd ;

� d1 ≡ d1(P, T ) =
log P +

(
σ 2

2 − δ
)

T

σ
√

T
; d2(P, T ) = d1(P, T ) − σ

√
T ;

� d∗
1 ≡ d1

(
P

P ∗
1

,
T

2

)
=

log
(

P
P ∗

1

)
+
(

σ 2

2 − δ
)

T
2

σ

√
T
2

;

� d∗
2 ≡ d2

(
P

P ∗
1

,
T

2

)
= d∗

1 − σ

√
T

2
; ρ1 =

√
T

2 · T
=

√
0.5 ;

� N (d) is the cumulative standard normal distribution;
� N2(x1, x2; ρ) is the standard bivariate normal distribution function evaluated at x1

and x2 with a correlation coefficient ρ;
� P ∗

1 is the unique value that makes it indifferent to exercise the option or not at time
T
2 and it is the solution to the following equation:

P ∗
1 e−δv

T
2 N

[
d1

(
P ∗

1 ,
T

2

)]
− e−δd

T
2 N

[
d2

(
P ∗

1 ,
T

2

)]
= P ∗

1 − 1 (B2)

Moreover, Armada et al.’s (2007) corrected the two-moments extrapolation given
in Carr (1988, 1995) to approximate the value of a simple American exchange option
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S(V,D, T ). By using Armada et al.’s (2007) formula, we have that:

S(V,D, T ) � S2(V,D, T ) + S2(V,D, T ) − s(V,D, T )

3
(B3)

where s(V,D, T ) is the value of a simple European exchange option given by Mc-
Donald and Siegel (1985); that is,

s(V,D, T ) = V e−δvT N [d1(P, T )] − De−δdT N [d2(P, T )] (B4)

Now, we consider the value of a compound American exchange option whose under-
lying asset is S(V,D, τ ), the expiration date is t1, and the exercise price is a proportion ϕ

of asset D. By using Armada et al.’s (2007) extrapolation, we can approximate the value
of a CAEO as:

C[S(V,D, τ ), ϕD, t1] � 4c2[S2(V,D, τ ), ϕD, t1] − c[s(V,D, τ ), ϕD, t1]

3
(B5)

where:

� τ = T − t1 is the time to maturity of the SAEO with t1 < T ;
� c2[S2(V,D, τ ), ϕD, t1] is the pseudo-compound American exchange option whose

underlying asset is the PAEO S2(V,D, τ ) that can be exercised at middle τ
2 and final

time T ;
� the maturity date is the time t1;
� the exercise price is a proportion ϕ of asset D;
� c[s(V,D, τ ), ϕD, t1] is the value of a compound European exchange option whose

underlying asset is the simple European exchange option s(V,D, τ ).

The value of PCAEO can be determined using Monte Carlo simulation.
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