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Abstract

A characterization of the L0

k
-subdifferentiable functions (k positive inte-

ger) is obtained. Recall that a function f : Rn → R ∪ {+∞} is called Lk-
subdifferentiable (Rubinov [4]) if it admits a Lk-subgradient at any point
x0 ∈ dom f , that is a functional ℓ : Rn → R, ℓ(x) = min1≤i≤k〈l

i, x〉, such
that f(x) ≥ ℓ(x) − ℓ(x0) + f(x0), ∀x ∈ Rn. We call f L0

k
-subdifferentiable if f

admits at any x0 ∈ dom f an Lk-subgradient of special form (as explained in
the paper).
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1. Introduction. The abstract convex analysis, grown after the monographs
of Pallaschke, Rolewicz [2], Singer [7] and Rubinov [4] to a mathematical
discipline with its own problems, aims to generalize the results of convex analysis
to abstract convex functions on the base of global aspects of the subdifferential
(generalizations on the base of local aspects lead to nonsmooth analysis). Its im-
portance is due mainly to applications to global optimization. One of the problems
of abstract convex analysis is to characterize the class of abstract subdifferentiable
functions. In this paper we characterize the class of L0

k-subdifferentiable functions,
k positive integer. The L0

k-subdifferentiability is defined in the next section. The
paper continues the research from [1] where this problem is solved for positively
homogeneous (PH) functions in the special case k = n, and from [4] where the
case k ≥ n + 1 is studied.

799



2. Preliminaries. Denote by R+∞ := R∪{+∞}. Let X be a given set and
L be a set of functions ℓ : X → R. The functions from L are called abstract
linear functions. For a function f : X → R+∞ the function ℓ ∈ L, such that
f(x) ≥ ℓ(x) − ℓ(x0) + f(x0), ∀x ∈ X, is called an L-subgradient of f at x0. The
set ∂Lf(x0) of all subgradients of f at x0 is called the L-subdifferential of f at
x0. If ∂Lf(x0) 6= ∅, then f is called L-subdifferentiable at x0. The function f is
called L-subdifferentiable, if it is L-subdifferentiable at any point x0 ∈ dom f :=
{x ∈ X | f(x) 6= +∞}.

The set H = HL = {h : X → R | h(x) = ℓ(x) − c, ℓ ∈ L, c ∈ R} forms the
set of abstract affine functions. A function f : X → R+∞ is said H-convex at x0,
if f(x0) = sup{h(x0) | h ∈ H, h ≤ f}, and H-convex if it is H-convex at any
x0 ∈ X. Here h ≤ f means h(x) ≤ f(x) for all x ∈ X.

In the sequel we consider the case X = R
n. Then 〈x, y〉 =

∑n
j=1 xjyj denotes

the scalar product of the vectors x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n,
and ‖x‖ = 〈x, x〉1/2 stands for the Euclidean norm of x.

In this paper we are interested in abstract subdifferentiability with respect
to min-type functions. For a positive integer k we define the class of abstract
linear functions Lk (min-type functions) as the set of the functionals ℓ : R

n → R

such that ℓ(x) = min1≤i≤k〈l
i, x〉 for some l1, . . . , lk ∈ R

n. Abstract convexity, and
in particular abstract subdifferentiability, with respect to min-type functions is
studied in [4,5] and [6]. The original aim of the present paper was to characterize
the class of Lk-subdifferentiable functions. This aim underwent some change as
it is explained below. When k ≥ n + 1 the problem finds a satisfactory solution
(compare with Rubinov [4], Theorem 5.19). So, the interesting case is k ≤ n.
Confining to PH functions in [1], we consider the case k = n as a crucial one.
Observe also that L1 is the class of the linear functions, so the case k = 1 leads
to the usual convexity and subdifferentiability.

For a given function f : R
n → R+∞ and x0 ∈ dom f the problem to find a

generic Lk-subgradient ℓ meets with constructive difficulties. So, we will confine
to look for Lk-subgradiends ℓ(x) = min1≤i≤k〈l

i, x〉 from ∂Lk
f(x0) having the

property

(1) 〈l1, x0〉 = 〈l2, x0〉 = · · · = 〈lk, x0〉 (= ℓ(x0)) .

The set of all these subgradients is denoted by L0
k(x

0). By definition Lk(x
0) ⊂ Lk.

We say that f is L0
k-subdifferentiable at x0 if it is L0

k(x
0)-subdifferentiable at x0,

and we use to write often ∂L0
k
f(x0) for this subdifferential instead of ∂L0

k
(x0)f(x0).

In the sequel we use the notion of calmness originating from [3]. The function
f : R

n → R+∞ is called (globally) calm at the point x0 ∈ dom f if

Calm f(x0) := inf

{

f(x) − f(x0)

‖x − x0‖
| x ∈ R

n, x 6= x0

}

> −∞ .

The value Calm f(x0) is called the (global) calmness of f at x0.
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Proposition 1. If f is L0
k-subdifferentiable at x0 ∈ dom f , then Calm f(x0)

> −∞.

Proof. If ℓ ∈ ∂L0
k
f(x0) and ℓ(x) = min1≤i≤k〈l

i, x〉, then for x 6= x0 holds

f(x) − f(x0)

‖x − x0‖
≥

ℓ(x) − ℓ(x0)

‖x − x0‖
=

min1≤i≤k〈l
i, x − x0〉

‖x − x0‖
≥ − max

1≤i≤k
‖li‖ ,

whence Calm f(x0) ≥ − max1≤i≤k ‖l
i‖ > −∞.

3. L
′
‖-subdifferentiability. Given a function f : R

n → R+∞, a point x0 ∈
R

n, an m-dimensional subspace L ⊂ R
n, and a vector ζ ∈ R

n, we introduce the
function

f̃x0,L,ζ(x) =

{

f(x0) + 〈ζ, z〉 , x = x0 + z, z ∈ L ,

f(x) , otherwise .

With the function f we relate the following condition:

C(f, x0, L, ζ) : inf
z∈L

Calm f̃x0,L,ζ(x
0 + z) > −∞ .

Given a function g : R
n → R+∞ and a subspace L, we denote by g|L the

restriction of g on L. The dual space of L is denoted by L∗ (that is L∗ stands
for the set of the linear functionals on L). The notation ∂g|L(x0) denotes the
subdifferential of g|L at x0 ∈ L, that is

∂g|L(x0) = {ℓ∗ ∈ L∗ | g|L(x) ≥ ℓ∗(x) − ℓ∗(x0) + g|L(x0) for all x ∈ L} .

The elements ℓ∗ ∈ ∂g|L(x0) are called subgradients of g|L at x0. From the repre-
sentation ℓ∗(x) = 〈ζ, x〉 with appropriate ζ ∈ R

n, we can identify the functional ℓ∗

with the vectors ζ, considering equivalent any two vectors ζ1, ζ2, which difference
ζ1 − ζ2 is orthogonal to L. On the basis of this identification the subdifferential
∂g|L(x0) is considered as a set of vectors ζ ∈ R

n. In this sense in the sequel we
use to write ζ ∈ ∂g|L(x0).

Theorem 1. Let f : R
n → R+∞ and x0 ∈ dom f . Let k be integer with

1 ≤ k ≤ n. Then f is L0
k-subdifferentiable at x0 if and only if there exists an

(n + 1− k)-dimensional subspace L ⊂ R
n with x0 ∈ L, and there exists ζ ∈ ∂f |L,

such that condition C(f, x0, L, ζ) is satisfied.

Proof. Necessity. Let f be L0
k-subdifferentiable at x0 ∈ dom f , and let

ℓ ∈ ∂L0
k
f(x0). Then ℓ(x) = min1≤i≤k〈l

i, x〉 and (1) holds. Actually (1) is a homo-
geneous linear system with k − 1 equations, hence of rank at most k − 1. Taking
into account that x0 also solves (1), we can find an (n + 1 − k)-dimensional sub-
space L ⊂ R

n such that x0 ∈ L and ℓ∗ := ℓ|L ∈ L∗. Restricting the inequality
f(x) − f(x0) ≥ ℓ(x) − ℓ(x0), x ∈ R

n, to L, we get ℓ∗ ∈ ∂f |L(x0). Using this
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inequality and the representation ℓ∗(x) = 〈ζ, x〉, x ∈ L, we get

Calm f̃x0,L,ζ(x
0 + z) = inf

x∈Rn

x 6=x0+z

f̃x0,L,ζ(x) − f̃x0,L,ζ(x
0 + z)

‖x − x0 − z‖

≥ min



 inf
x∈Rn

x 6=x0+z

f(x) − f(x0) − 〈ζ, z〉

‖x − x0 − z‖
, inf

x=x0+w, w∈L

w 6=z

f̃x0,L,ζ(x) − f(x0) − 〈ζ, z〉

‖x − x0 − z‖





≥ min



 inf
x∈Rn

x 6=x0+z

ℓ(x) − ℓ(x0) − 〈ζ, z〉

‖x − x0 − z‖
, inf

w∈L

w 6=z

〈ζ, w − z〉

‖w − z‖





≥ min

(

− max
1≤i≤k

‖li‖ , −‖ζ‖

)

.

The right-hand side of this inequality is finite and does not depend on z, whence
condition C(f, x0, L, ζ) is satisfied.

Sufficiency. Due to condition C(f, x0, L, ζ) there exists a constant C > 0
such that

(2) inf
z∈L

Calm f̃x0,L,ζ(x
0 + z) ≥ −C > −∞ .

Consider the subspace M = {x ∈ R
n | 〈l, x〉 = 0 for all l ∈ L} of R

n orthogonal
to the subspace L. Since M is a (k − 1) -dimensional subspace, we can find k

vectors m1, . . . ,mk such that their convex hull S, which is a simplex, contains the
ball B = {x ∈ M : ‖x‖ ≤ 1}. Let q(x) = max1≤i≤k〈m

i, x〉 be the support function
of S. Since S ⊃ B and the support function of B is equal to ‖x‖, it follows that

(3) q(x) := max
1≤i≤k

〈mi, x〉 ≥ ‖x‖, x ∈ M .

Fix x ∈ R
n and let x̄ be the orthogonal projection of x on L. Then x̄=

n+1−k
∑

i=1

〈ui, x〉ui,

where {u1, . . . , un+1−k} is an orthonormal basis of L. Since x̄ = x0 + (x̄ − x0) ∈
x0 + L, we have

(4) f̃x0,L,ζ(x̄) = f(x0) + 〈ζ, x̄ − x0〉 .

Since x̄ ∈ L, from (2) we have

f̃x0,L,ζ(x) − f̃x0,L,ζ(x̄) ≥ −C ‖x − x̄‖ .

Due to (3) and x − x̄ ∈ M we get

‖x − x̄‖ ≤ max
1≤i≤k

〈mi, x − x̄〉 ,
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so that

f̃x0,L,ζ(x) − f̃x0,L,ζ(x̄) ≥ −C ‖x − x̄‖ ≥ −C max
1≤i≤k

〈mi, x − x̄〉 .

Since mi ∈ M, i = 1, . . . , k, and x̄ belongs to the subspace L being orthogonal to
M , it follows that 〈mi, x̄〉 = 0 for i = 1, . . . , k. Using these equalities and (4) we
obtain

f(x) ≥ f̃x0,L,ζ(x) =
(

f̃x0,L,ζ(x) − f̃x0,L,ζ(x̄)
)

+ f̃x0,Lζ(x̄)

≥ −C max
1≤i≤k

〈mi, x〉 + f(x0) + 〈ζ, x̄ − x0〉

≥ −C max
1≤i≤k

〈mi, x〉 + f(x0) +

n+1−k
∑

i=1

〈ui, x〉 〈ζ, ui〉 − 〈ζ, x0〉 ,

or equivalently

(5) f(x) − f(x0) ≥ min
1≤i≤k

〈−C mi +

n+1−k
∑

i=1

〈ζ, ui〉ui , x 〉 − 〈ζ, x0〉 .

Here we have used the inequality f(x) ≥ f̃x0,L,ζ(x) which needs to be explained
only when x = x0 + z, z ∈ L. Then this inequality reduces to

f(x0 + z) − f(x0) ≥ 〈ζ, z〉 , z ∈ L ,

which is true by definition since ζ ∈ ∂f |L(x0) is a subgradient of the convex
function f |L.

Put now

li = −C mi +

n+1−k
∑

i=1

〈ζ, ui〉ui , i = 1, . . . , k ,

and observe that these vectors do not depend on x (from here on x could be
considered an arbitrary vector). Define the functional ℓ : R

n → R by ℓ(x) =
min1≤i≤k〈l

i, x〉. We have obviously

〈li, x0〉 = 〈−C mi , x0 〉 +

n+1−k
∑

i=1

〈ζ, ui〉 〈ui, x0〉

= 〈

n+1−k
∑

i=1

〈ζ, ui〉ui , x0 〉 = 〈ζ̄ , x0〉 , i = 1, . . . , k ,

where ζ̄ =
∑n+1−k

i=1 〈ζ, ui〉ui is the orthogonal projection of ζ on L. These equal-
ities show that ℓ ∈ L0

k(x
0) and

ℓ(x0) = 〈ζ̄ , x0〉 = 〈ζ, x0〉 − 〈ζ − ζ̄ , x0〉 = 〈ζ, x0〉 .

Now inequality (5) can be written as

f(x) − f(x0) ≥ ℓ(x) − ℓ(x0) ,
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which shows that ℓ ∈ ∂L0
k
(x0), that is f is L0

k-subdifferentiable at x0.

The next two theorems characterize the L0
k-subdifferentiability in the case

k ≥ n + 1. For shortness the proofs are omitted.
Theorem 2. The function f : R

n → R+∞ is L0
n+1-subdifferentiable at 0

(provided 0 ∈ dom f) if and only if Calm f(0) > −∞. It is L0
k-subdifferentiable at

0 with k > n + 1 if and only if it is L0
n+1-subdifferentiable at 0.

Theorem 3. The function f : R
n → R+∞ is L0

k-subdifferentiable with k ≥
n + 1 at x0 ∈ dom f , x0 6= 0, if and only if f is L0

n-subdifferentiable at x0.

The following example shows that in Theorem 1 condition C(f, x0, L, ζ) can-
not be substituted by Calm f̃x0,L,ζ(x

0 + z) > −∞ , ∀z ∈ L.
Example 1. The function f : R

2 → R+∞ given by

f(x1, x2) =



























−
√

|x1x2| , x1 ≥ x2
2 and |x2| ≥ x2

1 ,
√

|x1x2| , x1 ≤ −x2
2 and |x2| ≥ x2

1 ,

0 , x1 x2 = 0 ,

+∞ , otherwise .

is calm at any x ∈ dom f , but not L0
2-subdifferentiable at any nonzero point

x0 of the coordinate axes (at such a point, choosing L and ζ as in Theorem 1,
we have L = {tx0 | t ∈ R}, 〈ζ, z〉 = 0 when z = tx0 ∈ L, f̃x0,L,ζ(x) =

f(x) whence Calm f̃x0,L,ζ(x
0 + z) = Calm f(x0 + z) > −∞ for z ∈ L, but

infz∈L Calm f̃x0,L,ζ(x
0 + z) = −∞).
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