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In this paper we study the minimum radius of Minkowski ellipses (with antipodal foci on
the unit sphere) necessary to contain the unit ball of a (normed or) Minkowski plane. We
obtain a general upper bound depending on the modulus of convexity, and in the special
case of a so-called symmetric Minkowski plane (a notion that we will recall in the paper)
we prove a lower bound, and also we obtain that 3 is the exact upper bound.
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1. Introduction

A 2-dimensional real normed space X will be called a Minkowski plane (as it is usual in the literature). We shall say that
X is a symmetric Minkowski plane when the norm in X satisfies the following symmetry conditions∥∥(a,b)

∥∥ = ∥∥(b,a)
∥∥ = ∥∥(|a|, |b|)∥∥. (1.1)

Note that a symmetric Minkowski plane is just a (very) special case among rearrangement invariant spaces.
In this paper X will always be a Minkowski plane. With B and S we denote its unit ball and unit sphere, respectively.

For k > 0 and x ∈ S let El(x,k) = {y ∈ X; ‖y − x‖ + ‖y + x‖ � k} denote a Minkowski ellipse. Some properties of ellipses
and conics in Minkowski planes can be found in the papers [2–4,6,7]. In this paper we investigate the dimension of planar
Minkowski ellipses needed to contain the unit ball B . More precisely, we study the minimum number k0 such that there
exists a vector x implying B ⊂ El(x,k0). This problem is equivalent to the evaluation of the following constant:

A(X) = inf
x∈S

sup
y∈S

(‖x + y‖ + ‖x − y‖) = inf
x∈S

sup
y∈ext(S)

(‖x + y‖ + ‖x − y‖).
The study of this constant has started in [1]. More precisely, in that paper the constant A1(X) = A(X)

2 was considered, where

it is proved that in Minkowski planes we have A(X) � 1+√
33

2 (� 3.372) and A(X) � 3+√
21

3 (� 2.528) and, in particular, if

X is a normed space in which James orthogonality is symmetric we have A(X) � 1+√
17

2 (� 2.561). In this paper a better
estimate is obtained. In the next section we will prove that A(X) < 3.042. Then we will prove that A(X) � 3 when X is
a symmetric Minkowski plane, and for this case we will prove the same lower bound already obtained for spaces with

symmetric James orthogonality, that is A(X) � 1+√
17

2 . Finally we present an example of a Minkowski plane for which the
constant A(X) is “small”.
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2. A general upper bound

In this section we will obtain an upper bound depending on δX (1) where δX (ε) is the classical modulus of convexity
of X ; that is, for 0 < ε < 2: δX (ε) = inf{1 − ‖x+y‖

2 ; ‖x‖ = ‖y‖ = 1, ‖x − y‖ � ε}.

Lemma 1. Let δ = 2δX (1). Then A(X) � 3 + δ2(1−2δ)

1−δ+δ2 .

Proof. By definition and the fact that X is finite dimensional we can choose x and y such that ‖x‖ = ‖y‖ = ‖x − y‖ = 1 and
‖x+ y‖ = 2−δ. Notice that if z1, z2 ∈ S and ‖z1 − z2‖ = 1, then ‖z1 + z2‖ � 2−δ and, in particular, ‖2x− y‖,‖x−2y‖ � 2−δ.
We have:

A(X) � sup
z∈S

(∥∥z + (y − x)
∥∥ + ∥∥z − (y − x)

∥∥)
.

When z belongs to the arc joining y − x and y we have A(X) � 3 since ‖z − (y − x)‖ � ‖y − (y − x)‖ = 1, and the same is
true for z belonging to the arc joining x − y and x. So we suppose that z lies on the arc x̂y. Let α � 0 and β � 0 be such
that ‖αx + β y‖ = 1. Notice that, since ‖x − y‖ = 1, this implies α � 1, β � 1 and α + β � 1. Then we have∥∥αx + β y − (y − x)

∥∥ + ∥∥αx + β y + (y − x)
∥∥

= ∥∥(α + 2β − 1)x − (1 − β)(y − 2x)
∥∥ + ∥∥(2α + β − 1)y − (1 − α)(x − 2y)

∥∥
� α + 2β − 1 + (1 − β)(2 − δ) + 2α + β − 1 + (1 − α)(2 − δ)

= 3 + {
(1 + δ)(α + β) − 1 − 2δ

}
. (2.1)

Now for 1/2 � λ � 1 we have∥∥λy + (1 − λ)x
∥∥ = ∥∥λ(x + y) + (1 − 2λ)x

∥∥
� λ‖x + y‖ − (2λ − 1)‖x‖ = λ(2 − δ) − 2λ + 1 = 1 − δλ,

and also∥∥λy + (1 − λ)x
∥∥ = ∥∥(2 − λ)y + (λ − 1)(2y − x)

∥∥
� (2 − λ)‖y‖ − (1 − λ)

∥∥(2y − x)
∥∥

� (2 − λ) − (1 − λ)(2 − δ) = λ(1 − δ) + δ.

So ‖λy + (1 − λ)x‖ � max(1 − δλ,λ(1 − δ) + δ), and this implies ‖λy + (1 − λ)x‖ � 1 − δ + δ2. The same result is also true
for 0 � λ � 1/2.

Now

1 = ‖αx + β y‖ = (α + β)

∥∥∥∥ α

α + β
x + β

α + β
y

∥∥∥∥ � (α + β)
(
1 − δ + δ2).

Using this estimate in (2.1) we obtain:

A(X) � sup
z∈S

(∥∥z + (y − x)
∥∥ + ∥∥z − (y − x)

∥∥)
� max

{
3, sup

‖αx+β y‖=1, α�0, β�0

∥∥αx + β y − (y − x)
∥∥ + ∥∥αx + β y + (y − x)

∥∥}

� 3 +
{

1 + δ

1 − δ + δ2
− 1 − 2δ

}
= 3 + δ2(1 − 2δ)

1 − δ + δ2
. �

Theorem 2. A(X) � 7
√

3−3
3 (� 3.042).

Proof. This is a consequence of the fact that the function f (δ) = δ2(1−2δ)

1−δ+δ2 is increasing (at least in [0,0.3]) and that, by a

result of Nordlander (see [5]), δ = 2δX (1) � 2δH (1) = 2 − √
3 < 0.3 where δH (ε) is the modulus of convexity of an inner

product space. �
Corollary 3. If δX (1) = 0, then we have A(X) � 3.
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Remark 4. Notice that if α = β = 1
2−δ

(the “middle” point of the arc x̂y) using (2.1) we have:∥∥∥∥ x + y

2 − δ
− (y − x)

∥∥∥∥ +
∥∥∥∥ x + y

2 − δ
+ (y − x)

∥∥∥∥ � 3 +
{

2(1 + δ)

2 − δ
− 1 − 2δ

}
= 3 − δ(1 − 2δ)

2 − δ
< 3.

3. An upper bound in the symmetric plane

By using a convenient Auerbach basis we see that the unit sphere of every Minkowski plane X can be represented
by using a continuous concave function γ : [−1,1] → [0,1] such that γ (−1) = γ (1) = 0; γ (0) = 1. There will be no re-
striction in assuming that γ is differentiable, then γ ′(t) � 0 in [−1,0] and γ ′(t) � 0 in [0,1]; also γ ′ is decreasing and
limt→1− γ ′(t) = −∞, limt→−1+ γ ′(t) = +∞, γ ′(0) = 0. The Minkowski plane X is fully described by the function γ .

Any P ∈ X will be a pair (a,b) and, since obviously ‖(a,b)‖ = ‖(−a,−b)‖, we assume that b � 0. Then, if |a| � 1, we
have ‖P‖ = 1 ⇔ b = γ (a); that is, S is the set of points (t, γ (t)), t ∈ [−1,1] together with the opposite vectors.

3.1. Parametrization and symmetry assumptions

Let the space X defined by γ be given, denote by α the positive abscissa such that α = γ (α). It is easy to see that
1/2 � α � 1 (note that in the limit cases the space X is a parallelogram). We shall call this α the parameter of X (indeed,
α parametrizes a family of spaces). We assume now that X is a symmetric Minkowski plane, i.e. that the norm in X satisfies
the conditions (1.1). Consequently, for our function γ the following properties hold:

1. γ (−t) = γ (t), t ∈ [0,1], since ‖(a,b)‖ = ‖(−a,b)‖;
2. γ (t) = γ −1(t) (the inverse function), t ∈ [0,1], since ‖(a,b)‖ = ‖(b,a)‖;
3. γ is determined by its values in the interval [0,α];
4. γ ′(α) = −1, since γ ′(γ (t))γ ′(t) = 1, and for t = α we have γ ′(α)2 = 1;
5. γ (t) � 2α − t , because γ is concave and γ ′(α) = −1;
6. γ (t) � 1 − 1−α

α t for t ∈ [0,α].

Let us note that the infimum which defines A(X) is attained, i.e., there exists τ ∈ [−1,1] such that

A(X) = sup
t∈[−1,1]

{∥∥(
τ + t, γ (τ ) + γ (t)

)∥∥ + ∥∥(
τ − t, γ (τ ) − γ (t)

)∥∥}
. (3.1)

We remark that the properties of γ imply that there is no restriction assuming that τ ∈ [α,1], α = γ (α) being the param-
eter of the space.

A point (τ ,γ (τ )) such that (3.1) holds will be called a Center for X .
We shall use the notion of center for any point c ∈ X which we choose as a candidate (surrogate) for a true Center; we

pick such a c in order to compute the quantity

sup
‖y‖=1

(‖c − y‖ + ‖c + y‖).
Theorem 5. If X is a symmetric Minkowski plane, then A(X) � 3.

Proof. Consider a 2-dimensional symmetric space X with describing function γ and parameter α: we pick a center c ∈ X ,
and we look for an upper bound for the quantity

sup
‖y‖=1

(‖c − y‖ + ‖c + y‖).
The first observation is that using the π/4-rotation (a,b) → ( a+b

2α , −a+b
2α ) we can suppose that α ∈ ( 1√

2
,1). We will consider

only the center c = (1,0). Our goal is to find a (good) upper bound for the function

G(t) = ∥∥(
1 − t,−γ (t)

)∥∥ + ∥∥(
1 + t, γ (t)

)∥∥ = ∥∥(
1 − t, γ (t)

)∥∥ + ∥∥(
1 + t, γ (t)

)∥∥.

It is enough to consider t ∈ [0,1] and to note that ‖(1 − t, γ (t))‖ � 1 if γ (t) � γ (1 − t), and this is true if t � 1/2; since
obviously ‖(1 + t, γ (t))‖ � 2, we conclude that G(t) � 3 if t � 1/2. All this means that it is enough to consider G(t) only
for t ∈ [0,1/2). Assume that 0 � t < 1/2; we have(

1 + t, γ (t)
) = c1(α,α) + c2

(
γ (1 − α),1 − α

)
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with

c1 = γ (t)

α
− (1 − α)(1 + t − γ (t))

α(γ (1 − α) − 1 + α)
, c2 = 1 + t − γ (t)

γ (1 − α) − 1 + α
.

Notice that c2 is trivially positive and c1 is positive if and only if 1+t
γ (t) � γ (1−α)

1−α . This condition is satisfied noting that the

function 1+t
γ (t) is increasing and using the inequality γ (t) � 1 − 1−α

α t:

1 + t

γ (t)
� 3

2γ (1/2)
� 6α

6α − 2
� 3α − 1 − α2

α(1 − α)
� γ (1 − α)

1 − α
.

The third inequality is satisfied for 1/
√

2 < α < 1. Since ‖(α,α)‖ = ‖(γ (1 − α),1 − α)‖ = 1, we obtain∥∥(
1 + t, γ (t)

)∥∥ � γ (t)

α
− (1 − α)(1 + t − γ (t))

α(γ (1 − α) − 1 + α)
+ 1 + t − γ (t)

γ (1 − α) − 1 + α
. (3.2)

Similarly we have(
1 − t, γ (t)

) = d1(α,α) + d2
(
1 − α,γ (1 − α)

)
with

d1 = γ (t)

α
− γ (1 − α)(t + γ (t) − 1)

α(γ (1 − α) − 1 + α)
, d2 = t + γ (t) − 1

γ (1 − α) − 1 + α
.

Again d2 is trivially positive, and d1 is positive, if and only if γ (t)
1−t � γ (1−α)

1−α and, using t < 1/2, and 1/
√

2 < α < 1, this is
true since

γ (t)

1 − t
� 2 � α

1 − α
= γ (α)

1 − α
� γ (1 − α)

1 − α
.

So we obtain∥∥(
1 − t, γ (t)

)∥∥ � γ (t)

α
− γ (1 − α)(t + γ (t) − 1)

α(γ (1 − α) − 1 + α)
+ t + γ (t) − 1

γ (1 − α) − 1 + α
. (3.3)

Adding (3.2) and (3.3) we have:

G(t) � γ (t)

α
+ 1

α
+ 3α − 1 − γ (1 − α)

α(γ (1 − α) − 1 + α)
t.

Note that the coefficient of t is positive (since 1 − α � γ (1 − α) � 3α − 1). We now can prove that G(t) � 3 in the interval
for t ∈ (1 − α,1/2). We have γ (t) � γ (1 − α) and t < 1/2. Thus

G(t) � γ (1 − α) + 1

α
+ 3α − 1 − γ (1 − α)

2α(γ (1 − α) − 1 + α)
.

We have G(t) � 3 if

2γ 2(1 − α) − (4α + 1)γ (1 − α) + (
11α − 6α2 − 3

)
� 0;

and this last is true if γ (1 − α) belongs to the roots interval of the second degree equation

2z2 − (4α + 1)z + (
11α − 6α2 − 3

) = 0.

The roots being 3−2α
2 and (3α − 1) we have the condition

3 − 2α

2
� γ (1 − α) � 3α − 1,

which is fulfilled. Indeed, γ (1 − α) � (3 − α − 1/α) and (3 − α − 1/α) � 3−2α
2 if α > 1/

√
2, which we assume, and trivially

γ (1 − α) � 1 � (3α − 1) is true.
Finally we have to consider the interval [0,1 − α) and, using the inequalities γ (t) � 1 and t < (1 − α), we obtain

G(t) � 2

α
+ (1 − α)(3α − 1 − γ (1 − α))

α(γ (1 − α) − 1 + α)
.

Note that the function s → 3α−1−s
s−1−α is decreasing, and therefore we can replace γ (1 − α) with 3α−1−α2

α obtaining

G(t) � 1 + 3α − 2α2

α
,

and we have G(t) � 3 if α > 1/
√

2. �
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4. A lower bound in the symmetric plane

We will give a general lower bound for A(X) under the assumption that X is a symmetric Minkowski plane.

Theorem 6. For any symmetric Minkowski plane X one has

A(X) � 1 + √
17

2
(� 2.5615). (4.1)

Proof. Using the parameter α of the space X we first introduce a new norm: let us denote by ‖(·,·)‖Eα the norm defined
by

∥∥(u, v)
∥∥

Eα
=

{
max(|u|, |v|) if min(|u|, |v|) � (2α − 1)max(|u|, |v|),
max(|u|,|v|)+min(|u|,|v|)

2α if min(|u|, |v|) > (2α − 1)max(|u|, |v|). (4.2)

It easy to verify that this is an octagonal (not regular) norm, and for any u, v one has∥∥(u, v)
∥∥

Eα
�

∥∥(u, v)
∥∥

X . (4.3)

Define

V (z) = sup
t∈[−1,1]

{∥∥(
z + t, γ (z) + γ (t)

)∥∥ + ∥∥(
z − t, γ (z) − γ (t)

)∥∥}
.

Then we have because of symmetry

A(X) = min
z∈[0,α] V (z),

and also, using the observation on the π/4-rotation, we can suppose that 1/
√

2 � α � 1. We get lower bounds with special
choice of t , namely t = −α:

V (z) �
∥∥(

z − α,γ (z) + α
)∥∥ + ∥∥(

z + α,γ (z) − α
)∥∥ = ∥∥(

α − z,α + γ (z)
)∥∥ + ∥∥(

γ (z) − α,α + z
)∥∥,

and by (4.3)

V (z) �
∥∥(

α − z,α + γ (z)
)∥∥

Eα
+ ∥∥(

γ (z) − α,α + z
)∥∥

Eα
.

In order to compute these norms we use (4.2). Clearly,

α − z � α + γ (z), γ (z) − α � α + z,

and setting f (z) = α−z
α+γ (z) and g(z) = γ (z)−α

α+z we see that f , g are decreasing (z ∈ [0,α]) and both will be less or equal to

(2α − 1) if α2 � 1/2. By (4.2) we have∥∥(
α − z,α + γ (z)

)∥∥
Eα

= α + γ (z),
∥∥(

γ (z) − α,α + z
)∥∥

Eα
= α + z,

and therefore

V (z) � 2α + γ (z) + z.

Using t = 1 we obtain

V (z) �
∥∥(

z + 1, γ (z)
)∥∥ + ∥∥(

1 − z, γ (z)
)∥∥ � 2

∥∥(
1, γ (z)

)∥∥ � 2
∥∥(

1, γ (z)
)∥∥

Eα
= 1 + γ (z)

α
.

So we get

V (z) � max

(
2α + γ (z) + z,

1 + γ (z)

α

)
,

and using again the inequality γ (z) � 1 − 1−α
α z we obtain

V (z) � max

(
2

α
− 1 − α

α2
z,2α + 1 + 2α − 1

α
z

)
,

where the first term, call it f1, is decreasing and the second, call it f2, is increasing. Thus

A(X) � min
z

max
(

f1(z), f2(z)
) = S(α). (4.4)
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If α �
√

17−1
4 ∼ 0.78, then S(α) = 2α + 1 and A(X) � 1+√

17
2 ; if α �

√
17−1

4 in (4.4), the minimum is attained when the two

terms are equal, giving the value S(α) = 5α−2α2−1
1+2α2−2α

. It is not hard to prove that for 1√
2

� α �
√

17−1
4 we have 5α−2α2−1

1+2α2−2α
�

1+√
17

2 . This proves that also for α ∈ [ 1√
2
,1] we have A(X) � 1+√

17
2 . �

This lower bound for A(X) improves, in the case of symmetric norm, the general lower bound 3+√
21

3 ∼ 2.52752 for

A(X) given in [1]. We remark that in [1] our lower bound 1+√
17

2 ∼ 2.56155 is proved in the special case when James
orthogonality is symmetric in X . This is curious since neither symmetry of the norm implies that James orthogonality is
symmetric nor the symmetry of James orthogonality implies that the norm is symmetric.

5. An example and special results

5.1. A space with small A(X)

We now present a Minkowski plane with A(X) “small”. Let X be a 16-gonal space such that ||(x, y)|| = ||(|x|, |y|)|| for
any (x, y) ∈ X . Our symmetry assumption allows to consider only the following vertices in the first quadrant:

(0,1);
(

u

1 + v
,1

)
; (u, v);

(
1,

u − v

u

)
.

The norm is defined by

∥∥(x, y)
∥∥ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x 0 � y � u−v
u x,

(uv−u+v)x+u(1−u)y
u(2v−u)

u−v
u x � y � v

u x,

(1−v2)x+uv y
u

v
u x � y � 1+v

u x,

y y � 1+v
u x.

We pick (0,1) as center, and so we compute the quantity

M := sup
‖(x,y)‖=1

(∥∥(0,1) − (x, y)
∥∥ + ∥∥(0,1) + (x, y)

∥∥)
.

Because of symmetry and convexity we have

A(X) � M = max

{∥∥∥∥(0,1) −
(

u

1 + v
,1

)∥∥∥∥ +
∥∥∥∥(0,1) +

(
u

1 + v
,1

)∥∥∥∥;∥∥(0,1) − (u, v)
∥∥ + ∥∥(0,1) + (u, v)

∥∥;∥∥∥∥(0,1) −
(

1,
u − v

u

)∥∥∥∥ +
∥∥∥∥(0,1) +

(
1,

u − v

u

)∥∥∥∥
}

= max

{
2 + u

1 + v
;1 + v + 2uv − 2u + 1

2v − u
; 2 − 2v2 + 2uv

u

}
.

Numerical optimization gives: u = 0.924263 and v = 0.626018. Hence we have A(X) < 2.56811.

We recall that for any 2-dimensional space X we have: A(X) � 3+√
21

3
∼= 2.5275.

5.2. Octagons

Let Oα denote the (symmetric) octagon whose vertices in the first quadrant are (0,1), (α,α = γ (α)), (1,0). With
a simple, but somewhat lengthy computation one can calculate exactly A(Oα). We quote here the result:

Proposition 7. For 1/2 � α � 1 one has

A(Oα) = 1

α
+ 2α.

Moreover, for α2 < 1/2 the Centers are (±α,±α), for α2 > 1/2 the Centers are (0,±1), (±1,0), and for α2 = 1/2 every point of the
unit sphere is a Center. Note that A(Oα) � 2

√
2.

Problem 8. We finish our paper mentioning two problems which arise naturally:
1) Is it true that for every Minkowski plane A(X) � 3?
2) Find the exact value of min{A(X): X is a Minkowski plane}.
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