
Exploring the importance of quantum effects in nucleation: The archetypical
Nen case
Wesley Unn-Toc, Nadine Halberstadt, Christoph Meier, and Massimo Mella 
 
Citation: J. Chem. Phys. 137, 014304 (2012); doi: 10.1063/1.4730033 
View online: http://dx.doi.org/10.1063/1.4730033 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v137/i1 
Published by the American Institute of Physics. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 02 Jul 2012 to 193.205.162.64. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1531297333/x01/AIP/Nvidia_JCPCovAd_728x90Banner_06_19_12/TESLA-GPU_SimCluster-WBS_728x90-FINAL.jpg/7744715775302b784f4d774142526b39?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Wesley Unn-Toc&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Nadine Halberstadt&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Christoph Meier&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Massimo Mella&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4730033?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v137/i1?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 137, 014304 (2012)

Exploring the importance of quantum effects in nucleation:
The archetypical Nen case

Wesley Unn-Toc,1 Nadine Halberstadt,1 Christoph Meier,1 and Massimo Mella2,a)

1Laboratoire Collisions Agrégats Réactivité–IRSAMC, Université Paul Sabatier, 118 Route de Narbonne,
31062 Toulouse, France
2Dipartimento di Scienze Chimiche ed Ambientali, Università degli Studi dell’Insubria, via Lucini 3,
22100 Como, Italy

(Received 28 March 2012; accepted 6 June 2012; published online 2 July 2012)

The effect of quantum mechanics (QM) on the details of the nucleation process is explored em-
ploying Ne clusters as test cases due to their semi-quantal nature. In particular, we investigate the
impact of quantum mechanics on both condensation and dissociation rates in the framework of the
microcanonical ensemble. Using both classical trajectories and two semi-quantal approaches (zero
point averaged dynamics, ZPAD, and Gaussian-based time dependent Hartree, G-TDH) to model
cluster and collision dynamics, we simulate the dissociation and monomer capture for Ne8 as a func-
tion of the cluster internal energy, impact parameter and collision speed. The results for the capture
probability Ps(b) as a function of the impact parameter suggest that classical trajectories always un-
derestimate capture probabilities with respect to ZPAD, albeit at most by 15%–20% in the cases
we studied. They also do so in some important situations when using G-TDH. More interestingly,
dissociation rates kdiss are grossly overestimated by classical mechanics, at least by one order of
magnitude. We interpret both behaviours as mainly due to the reduced amount of kinetic energy
available to a quantum cluster for a chosen total internal energy. We also find that the decrease in
monomer dissociation energy due to zero point energy effects plays a key role in defining dissociation
rates. In fact, semi-quantal and classical results for kdiss seem to follow a common “corresponding
states” behaviour when the proper definition of internal and dissociation energies are used in a tran-
sition state model estimation of the evaporation rate constants. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4730033]

I. INTRODUCTION

The formation of a new condensed phase, whether solid
from liquid (e.g., crystallization), liquid from vapor (e.g.,
dew formation), or simply the segregation of a component
as in micelle formation is a widespread process in nature.
Controlling such processes appears to be of paramount im-
portance especially in technologically or environmentally
relevant contexts; in fact, it may lead to near defect-free
crystals (e.g., in silicon or GaAs), improved conduction prop-
erties (e.g., in carbon nanotube-doped polymeric materials1)
or controlled nanoparticle sizes (e.g., in the vapor synthesis of
metal clusters2).

Even the somewhat simple cases of crystal formation
from a molten species, for which classical nucleation the-
ory (CNT) (Refs. 3–6) could be expected to work reasonably
well due to the dense nature of the system, do not cease to
amaze.7 Albeit not complicated by polymorphism in the high
density phase, the process of liquid nucleation from vapor is
also not as clear as one would like it to be with respect to
molecular level details and time scales. For instance, model
calculations8 as well as large scale simulations9–12 have pro-
vided evidence that CNT presents serious shortcomings even
for simple systems such as rare gases. The reason for these

a)On leave from School of Chemistry, Cardiff University, Main Building,
Park Place, Cardiff CF10 3AT, United Kingdom. Electronic addresses:
Massimo.Mella@uninsubria.it and MellaM@cardiff.ac.uk.

shortcomings may be manifold: an incorrect estimate of the
free energy of small clusters,13 the incorrect assumption of
cluster sphericity,12, 14 the capillary approximation,15 or the
assumption of a well-defined system temperature. This last
assumption might be violated due to a poor separation of time
scales between monomer capture by a metastable cluster Mn

and the thermalization of the resulting species. This could ap-
pear to be of minor importance since it is likely to play a
substantial role only in the case of clusters with limited size
(i.e., small n) and only for macroscopically short timespans
after the system has reached supersaturation. However, criti-
cal clusters (i.e., the ones for which growing or shrinking in
size have comparable rates) may be quite small (∼10 ≤ n
≤ 200), and growth can be inhibited by a sudden dilution
which happens during a free expansion through a nozzle.
Hence, studying the key steps (capture, dissociation, and col-
lisional energy transfer) of the nucleation process in the mi-
crocanonical framework may help addressing the concern of
the validity of the constant temperature hypothesis.

Several groups have indeed conducted detailed numerical
investigations on two key dynamical steps in the nucleation
process, namely, monomer capture16–19 and dissociation21–23

from a metastable cluster Mn using microcanonical ap-
proaches. In all cases, classical dynamics simulations were
used to study the dynamical features of the two processes,
thus disregarding the possible impact of quantum mechanics
(QM). In fairness, many of the systems studied previously
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should not be expected to present strong quantum mechani-
cal effects due to a large monomer mass and weak interaction
between monomers (e.g., Ar).16, 17, 21, 22, 40 This, however, can-
not be considered as a general rule. For instance, Aln (Ref.
23) exhibits an important amount of zero point energy. Also,
experiments have suggested that quantum effects should be
important in the free evaporation from H2O/D2O mixtures24

where H2O escapes the condensed phase faster. Hence, the
experiments in Ref. 24 indicate that QM have some impact
on the relative rates of isotopically substituted compounds. It
is reasonable to expect that quantum effects should also play a
role in modifying the absolute quantitative value of condensa-
tion and evaporation rates with respect to a classical mechan-
ics description. Support to this idea is provided by the sim-
ple observation that D2O should be more classical (smaller
rotational constants and vibrational frequencies) than normal
water due to isotopic substitution. This was evidenced in re-
cent simulation results showing a higher Cp for D2O than for
H2O.25 The lower zero point libration energy and the higher
density of states for D2O (Ref. 26) have an impact on dissoci-
ation energies and on the amount of energy exchange, which
obviously bears importance for the nucleation process.

In order to provide more quantitative indications on the
role played by quantum effects during nucleation, we have
investigated both dissociation and capture of Ne atoms from
and by Nen clusters. The rationale for this choice is multi-
faceted. Ne clusters are expected to be sufficiently quantum
in nature to show clear-cut effects in the quantitative details
of the studied processes. Nevertheless, their quantum effects
are not so strong as to invalidate the use of a semi-quantal ap-
proach, since the de Boer parameter is roughly � � 0.58. In
addition, accurate pair potentials for Ne are available. More-
over, the atomic nature of the monomer represents a substan-
tial simplification for theory. Also, the isotropic nature of the
interaction between Ne atoms implies that quantum effects
play a role only because of hindered translational modes (i.e.,
vibrations). Conversely, water, or its isotopomers, would ex-
hibit effects deriving from hindered rotations (or librations) as
well, a fact that complicates the emerging picture.

The organization of the paper is as follows. In Sec. II,
we discuss our methodology and computational techniques
for addressing the role played by quantum mechanics in the
chemical physics of Ne clusters. Section III provides one with
our quantitative results and their analysis. Finally, Sec. IV
gives the final discussion and conclusion, setting the stage for
future work.

II. THEORY

Atomic units (i.e., bohr) will be assumed throughout the
manuscript for distances; energies are given in cm−1. Finally,
velocities are expressed in bohr ps−1.

To investigate the possible effects due to quantum me-
chanics in two fundamental steps of the nucleation pro-
cess, namely, monomer capture and dissociation, several ap-
proaches were employed. We used diffusion Monte Carlo27 to
compute the ground state energy and anharmonic zero point
energy (aZPE) for several cluster sizes. These data are useful
to provide estimates for monomer association and dissocia-

tion energy, as well as to set a lower bound for the internal en-
ergy of the cluster sizes investigated. Comparing with similar
estimates obtained using the harmonic approximation for the
ZPE (hZPE), it is also possible to measure quantitatively the
effect of anharmonicity (or “floppiness”) of these species.
The time-dependent evolution was described using three dif-
ferent approaches, namely, classical trajectories (CT), the
zero point averaged dynamics (ZPAD),28, 29 and the semi-
quantum Gaussian-based time dependent Hartree (G-TDH)
method.30 In the following, a brief account of all the meth-
ods employed is given in order to make the discussion of our
results self-contained.

A. Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) allows one to
sample a distribution of configurations {Ri}, with R
= (r1, . . . , rj , . . . , rn) being a vector giving the position of n
distinguishable or bosonic particles in a 3D Cartesian space,
distributed accordingly to the ground state wave function φ0

of the Hamiltonian

H = −1

2

n∑
j=1

∇2
j

mj

+ V (R). (1)

It relies on the possibility of writing a short-time step
(δt) approximation to Green’s function 〈R′|e−tH|R〉 = G(R
→ R′, t) of the imaginary-time Schrödinger equation associ-
ated to the operator in Eq. (1). In particular, it is important to
assess that a particular approximation to Green’s function is
associated with a well-defined order m of the discretization er-
ror O(δtm), in order to ensure robust and accurate results that
can either be extrapolated a posteriori to δt → 0,32 or “on the
fly” as recently proposed.33

For systems presenting only a partial quantum nature and
sufficiently bound such as Ne clusters, the simplest version
of DMC without importance sampling (noIS-DMC) (Ref. 34)
can be employed provided that a sufficiently large population
N of configurations (walkers or psips) is used in the sampling
process and the “step to step” stochastic error is minimized.35

In this work we opted for the third-order “on the fly” propa-
gator implemented in Ref. 33. It is based on a two-step proce-
dure that allows the extrapolation of second-order branching
weights to third-order ones. For all simulations a time step
δt = 100 a.u. was used, which guarantees a time step bias
of the order of the statistical error associated with our results
even in the case of the simplest second-order Trotter factor-
ization tested previously.34 In order to reduce the bias due to
population error, we linearly extrapolated two calculations (N
= 4000 and 8000) with respect to 1/N.36

As often done for weakly interacting atoms such as rare
gases, the total potential is written as

V (R) =
n∑

j<k=1

u(rjk), (2)

where the pair interaction potential is the one proposed by
Aziz and Slaman.37 To facilitate a few technical steps in
the implementation of the dynamical methods described in
the following, u(rjk) was fitted with a linear combination of
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10 Gaussian functions centered at zero distance. The global fit
is fairly accurate, with a maximum error in the range of 10−6.
The minimum of the potential has a well depth of 29.36 cm−1

at 5.84 bohrs. A mass of 36 443.99 atomic units was used for
Ne in all calculations.

B. Classical trajectory simulations

To simulate both monomer dissociation and capture, clas-
sical dynamics trajectories represent the most convenient and
cost-effective approach. This method has been used previ-
ously in many studies on these topics,18, 22, 23, 38, 39, 41 and it has
inspired several conceptual models useful for predicting the
dependency of the quantitative results on system parameters.
In all classical simulations, we employed the same protocols
followed by one of us in previous investigations;16, 21 there-
fore, we give only a few details in the following.

In short, cluster dissociation at a specific total energy E
(in the center of mass reference frame) was studied after an
initial equilibration stage conducted by means of a Metropo-
lis Monte Carlo (MMC) simulation in the microcanonical
ensemble.42 During the MMC runs, each of the atoms in the
cluster was constrained to have its distance from the center
of mass of the remaining ones shorter than 20 bohrs. Tra-
jectories were started from statistically independent samples
extracted from the MMC simulations; 2000–5000 total tra-
jectories per (n, E) pair were run for n = 8, 13, 14, 19. Tra-
jectories were integrated using the leap frog algorithm and
a time step of 200 a.u. (roughly 5 fs) up to a maximum of
120 ps. The total energy was conserved better than 10 ppm
in all cases. Initial velocities for all particles were chosen ac-
cording to the stochastic procedure suggested in Ref. 43. The
dissociation rates were determined as follows. The time evo-
lution of ln [(N0 − Nτ )/N0] was fitted with −kτ , Nτ being the
number of dissociated trajectories at time τ . A trajectory was
dubbed as “dissociated” whenever a cluster atom was found at
a distance larger than 20 bohrs from the center of mass (CoM)
of the remaining cluster. This procedure assumes that the de-
cay can be described by a single exponential. If this were not
the case, the value of k would represent a lower bound to the
statistical dissociation rate, which is given by the short time
fit.23 However, deviation from single exponential behaviour
was found to be limited in the explored range. We thus only
quote the values obtained with the global fits. Notice that the
total angular momentum J of the Nen cluster is not specified
(i.e., we are working in the microcanonical ensemble without
J resolution): according to the results in Ref. 21, it bears neg-
ligible importance on the quantitative results for rare gas clus-
ters in the range of angular momentum values that is likely to
be populated in the NVE ensemble.

Capture (or sticking) Ps(n, b,E, vp) probabilities of a
monomer by a Nen cluster are defined as the fraction of trajec-
tories (Ns/N0) that led to a monomer-cluster capture for a cho-
sen set of ensemble conditions (i.e., n, impact parameter b, E,
and projectile-target relative speed vp). The initial condition
for the target clusters was generated in the same way as for
the dissociation simulations; the projectile was placed at a dis-
tance of at least 40 bohrs from the CoM of the target in order
to have negligible interaction with the latter. A capture event

was deemed as happened after a collision when the projection
of the relative projectile-cluster velocity vp along the vector
joining the CoM of the two species changed sign a chosen
number of times Ntp. As before,16 we found Ps(n, b,E, vp) to
be very weakly dependent on Ntp if Ntp ≥ 3 and on the angu-
lar momentum J of the cluster; thus, Ntp = 5 was employed
as a convenient definition and no selection was made on the
absolute value of J.

C. Zero point averaged dynamics

The ZPAD method, originally introduced to study dy-
namical processes in Ne and He droplets,28, 29 hinges on the
idea that it may be possible to describe the dynamical pro-
cesses of a quantum atomic cluster by associating each atom
with a single particle wave function, which replaces the point
particle with a symmetric probability distribution function,
and accounts, at least partially, for quantum effects such as
ZPE and a longer average interatomic distance than predicted
from the minimum of the pair potential. Once defined, the
wave function φ(r) moves with the atom, but it is otherwise
unchanged by the dynamics. As a result, the application of
the Ehrenfest theorem gives equations of motion that are the
same ones as for classical dynamics but on an effective poten-
tial. The latter is the original pair potential averaged over the
atomic wave functions. Clearly, such an approach is appro-
priate if φ(r) is sufficiently compact, i.e., if quantum effects
on the dynamics are not overwhelming. This seems to be the
case even for quantum systems such as solid hydrogen, for
which a similar approach has encountered a good degree of
success.44, 45

To avoid exploiting experimental information in defin-
ing the features of φ(r), the ZPAD approach employs a self-
consistent iterative procedure based on an alternation between
classical simulations on effective potentials and quantum cal-
culations to optimize the atomic wave function φ(r). Since the
original ZPAD method was derived for a constant temperature
system while we work in the microcanonical ensemble, a few
details of the optimization procedure described in Ref. 28 had
to be modified accordingly. In particular, the classical simu-
lations employed to build the inter-particle radial distribution
functions needed to define the caging potential experienced
by each atom must be run with a constant energy method.
For convenience, we employed the same MMC approach used
for the classical simulations, albeit constant energy classical
trajectories would have worked as well. Also, we selected a
spherical Gaussian function Nαe−α(r−rclass )2

as a trial form for
φ(r) in order to maintain simplicity and optimized its width
α by minimizing the average energy of a Ne atom inside the
caging potential; in previous applications, the shape of φ(r)
was obtained by solving numerically the Schrödinger equa-
tion. Assuming a Gaussian form for φ(r) centered on the atom
center of mass rclass facilitates the calculation of the effec-
tive potential, leaving unchanged its sum of Gaussians form.
To avoid starting MMC simulations from a cluster geometry
with a potential energy higher than the assigned cluster total
energy, we found useful to begin those simulations from a lo-
cally minimized structure after every update of φ(r) and the
effective pair potential.
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In conclusion, the ZPAD approach allows one to define
an effective pair potential ueff(rjk) and associated particle wave
functions for any specific value of E. As shown in the follow-
ing, this effective potential exhibits a reduced well depth rep-
resenting the fact that part of the internal energy is “frozen”
into ZPE. Also, its equilibrium distance is found to be longer
than the classical one. Note that ueff(rjk) is, in principle, state
and size dependent and it should be updated “on the fly” after
any changes that alter either n or E. Whether this is indeed
necessary ought to be investigated on a case by case basis.

D. Gaussian-based time dependent Hartree (G-TDH)
dynamics

As hinted in Sec. II C, a possible shortcoming of the
ZPAD dynamics is related to its inability to cope with a
change in the energy content and composition of a system
since it requires an a priori definition of the effective poten-
tial over which the dynamics takes place. In the formulation
presented above, adapting to a new state would be equivalent
to allowing the width of the Gaussian φ(r) to adjust dynam-
ically during the system evolution, a task that requires a set
of equations coupling atomic positions and momenta with α.
This can be achieved, again, assuming that the wave function
for the system can be written as a product of Gaussian terms30

|�(R, t)〉 = a(t)
n∏

j=1

|χj (rj , t)〉, (3)

with

|χj (rj , t)〉 =
(

2αj (t)

π

)3/4

exp[−γj (t)(rj − r0j (t))2

+ ip0j (t)(rj − r0j (t))], (4)

for every particle. From this ansatz and the Dirac–Frenkel
variational principle,46, 47 it is possible to derive a set of equa-
tions of motion that propagate the average atomic positions
r0j (t), momenta p0j (t), phase a(t), and complex width γ j(t)
= αj(t) + iβ j(t). Here, αj(t) and β j(t) are the real and imagi-
nary part of γ j(t) (note that αj > 0). The resulting equations
for each atom in the system are

α̇j = 4αjβj

[
1

mj

− 1

M

]
, (5)

β̇j = −2
(
α2

j − β2
j

)[ 1

mj

− 1

M

]
− 8

3
α2

j V
(αj ,0), (6)

ṙ0j = p0j

mj

− P
M

, (7)

ṗ0j = −∇rj
V , (8)

where V = 〈�(R, t)|V (R)|�(R, t)〉, V (αj ,0) = 〈 ∂�(R,t)
∂αj

|V (R)

|�(R, t)〉 = − 1
16α2

j

〈�(R, t)| ∂2V (R)
∂r2

0j
|�(R, t)〉, P being the total

momentum of the system and M its total mass. Notice that,
thanks to the analytical form of the pair potential, the inte-
grals needed in the propagation of the wave function are com-

puted analytically, and that the number of degrees of freedom
is larger by a factor of two with respect to a classical simu-
lation. Thus, the computational cost of G-TDH scales identi-
cally to the one of molecular dynamics. The equations are in-
tegrated with a 4th order Runge-Kutta algorithm with a time
step of 10 atomic units (i.e., �0.24 fs, compared with �5 fs
for classical trajectories). As an indication, it is mentioned
that the computational time to calculate one point in the cap-
ture probability curve with 2000 trajectories is about 1 h on
12 Xeon 5650 cores.

Equations (5)–(8) can be solved simultaneously for all
atoms, with the initial conditions obtained as follows. For
the clusters, r0j (t = 0) and γ j(t = 0)[=αj(t = 0)] correspond
to the minimum energy configuration obtained by imagi-
nary time propagation, as detailed below. Subsequently, the
p0j (t = 0) is chosen randomly following a normal distribu-
tion over all degrees of freedom in order to obtain the chosen
total energy of the cluster. Given the usually fast intramolecu-
lar vibrational redistribution (IVR) afforded by rare gas clus-
ters, this procedure is not expected to introduce any important
bias into the cluster dissociation rate provided that the aver-
age lifetime is longer than the IVR decay time (roughly 30 ps
(Ref. 20)).

For the collision studies, the initial projectile position and
momentum are chosen according to the given impact parame-
ter and collision energy. It was placed at a distance of 80 bohrs
from the CoM of the cluster to ensure cluster thermalization
(i.e., that the kinetic energy is statistically redistributed among
the degrees of freedom) before collision. To avoid a spread
of the free particle wave packet, the width of the projectile
was maintained frozen (βproj = 0) until the dispersing term in
Eq. (6) from kinetic origin became smaller than a fraction q
of the focusing term coming from the potential, i.e.

∣∣∣∣2(α2
proj − β2

proj )

[
1

mproj
− 1

M

]∣∣∣∣ < q

∣∣∣∣8

3
α2V

(α,0)
proj

∣∣∣∣ (9)

with q chosen so that less than 10% of the trajectories do not
reach this threshold. We found that there is a range of values
(0.375 ≤ α ≤ 1.5) for which the capture probabilities are the
same (vide infra, bottom panel of Fig. 7). Thus, α = 1.5 is
used in the following. Note that in a full quantum approach,
the spread of the projectile wave packet does not pose any spe-
cial problem since it is a superposition of several free particle
energy states, with the result of a collision analyzed as a func-
tion of energy. In our case, however, we defined the energy
and impact parameter of the collision by the corresponding
expectation values of the Gaussian wave packet. Therefore,
it would make no sense to analyze the energy content in the
outgoing wave packet since the method constrains the wave
packet to remain Gaussian at all times.

As stated above, the initial positions and width pa-
rameters for the cluster atoms are obtained by the imagi-
nary time propagation. This method consists in solving the
time-dependent Schrödinger equation in which time is re-
placed by an imaginary variable, thus resulting in an en-
ergy minimization as a function of the parameters describ-
ing the high-dimensional wave function. The corresponding
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TABLE I. Global minimum potential (Vmin), ground state energy obtained using DMC simulations (EDMC
0 (n)), the harmonic approximation (EHA

0 (n)), and
the G-TDH model (EG-TDH

0 (n)) for Nen species, in cm−1. The energy difference 
0(n) for the Nen → Nen−1 + Ne process is shown in a few selected cases as
obtained from the DMC, HA, and G-TDH results. (See Fig. 1 for energy definitions.)

n Vmin EDMC
0 (n) 
DMC

0 DMC ZPE EHA
0 (n) 
HA

0 EG-TDH
0 (n) 
G-TDH

0

5 − 263.809 − 156.771(4) 106.533(4) − 140.903 − 126.637
7 − 474.504 − 288.17(4) 186.334(4) − 262.053 − 250.201
8 − 569.317 − 346.77(8) 58.60(9) 221.65(8) − 316.043 65.842 − 305.070 54.8687
12 − 1078.5 − 682.7(1) 402.5(1) − 638.671 − 625.503
13 − 1258.25 − 801.5(2) 118.7(2) 456.1(2) − 754.993 129.49 − 746.214 120.711
14 − 1356.57 − 866.3(2) 64.8(3) 489.7(2) − 814.251 59.2582 − 803.277 57.0634
18 − 1870.58 − 1208.2(3) 662.2(3) − 1145.44 − 1132.490
19 − 2048.14 − 1329.6(2) 118.5(3) 721.6(2) − 1266.37 120.711 − 1248.810 116.322

equations are

α̇j = −
{

2
(
α2

j − β2
j

)[ 1

mj

− 1

M

]
+ 8

3
α2

j V
(αrj ,0)

}
, (10)

β̇j = −4αjβj

[
1

mj

− 1

M

]
, (11)

ṙ0j = βj

αj

(
p0j

mj

− P
M

)
+ 1

2αj

∇rj
V , (12)

ṗ0j = −2|γ |2j
αj

[(
p0j

mj

− P
M

)
+ βj

2|γ |2j
∇rj

V

]
. (13)

The initial conditions for imaginary time propagation are
taken from the Cambridge Cluster Database48 Arn structure,
appropriately rescaled, and αj initial value is chosen as the
width of the best Gaussian approximation for the vibrational
ground state of Ne2. Notice that the parameter β j goes to zero
whatever its initial value according to Eq. (11), so it is set to
zero.

The clear advantage of G-TDH with respect to the ZPAD
method discussed above is its ability to adjust the wave func-
tion, at least in a mean field sense, to the current situation of
the system. In this respect, our model wave function for the
Nen systems describes each atom in the cluster with an inde-
pendently optimized or propagated Gaussian width. In princi-
ple, this permits to tailor the atomic description to the differ-
ent local environment (e.g., in the core of the cluster or on its
surface), thus allowing to account for a different “pressure”
or caging exerted by the nearest neighbours. At this stage,
we would expect the chosen model (Eqs. (3) and (4)) to guar-
antee reasonably accurate results since it implicitly contains
terms depending on inter-particle distances (also, vide infra
Table I for a quantitative comparison); this can be evidenced
by re-expressing the product between the Gaussians centered
on two different atoms in terms of their relative distance vec-
tor and center of mass position using the Gaussian multiplica-
tion theorem.

III. RESULTS

In the following we shall discuss the results obtained
for monomer capture and dissociation of Ne8, for which we

employed all the approaches discussed in Sec. II to investi-
gate the effects due to quantum behaviour. Results for larger
clusters obtained using classical dynamics and ZPAD on Nen

(n = 13, 14, 19) can be found in the supplementary material31

and are referred to only if needed.
To facilitate the comparison between results and the en-

suing discussion, Fig. 1 provides a graphical definition for all
the energetic quantities employed in this work. Notice that our
energy zero is taken as the situation of infinite separation and
complete rest for all the Ne atoms.

A. DMC results

The results of the DMC simulations on Nen for n = 5, 7,
8, 13, 14, 18, and 19 are shown in Table I. Classical minimum
potential energy structures are shown in Fig. 2. These clusters
were chosen to be as representative as possible of the size-
dependent features that can be presented by Nen. In particular
n = 13 and 19 represent closed-shell or magic number clus-
ters, whereas Ne14 is archetypical for species with adatoms.
Ne8 was chosen for its partial fluxional nature. Some of the
studied clusters (e.g., n = 7, 13, and 18) were included to pro-
vide statistically exact dissociation energies as references for

FIG. 1. Definition of various energetic quantities used in the main text. The
energy zero is taken as the situation of infinite separation and complete rest
for all the Ne atoms. X stands for classical, ZPAD, or G-TDH simulation
method. Vmin(n) is the minimum of the Nen potential energy, and EX

0 (n) is
the energy of the Nen ground state level for method X. Note that EClass

0 (n)
= Vmin(n). 
X

0 is defined as the binding energy of the nth Ne atom for
method X, i.e., 
X

0 = EX
0 (n − 1) − EX

0 (n). E is the total energy of the sys-
tem in the center of mass reference frame, and EX

int the corresponding internal
energy for method X, i.e., EX

int = E − EX
0 (n).
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FIG. 2. Global minimum geometries for Nen (n = 7, 8, 13, 14, 18, 19) on
the classical pair potential surface.

the dynamical simulations. Table I also provides the results
for the ground state energy of these clusters computed with
the harmonic approximation or the G-TDH model. The clus-
ters studied in this work maintain their classical global min-
imum shape when ZPE effects are taken into account using
either the harmonic approximation or the G-TDH model to
approximate the ground state. In the latter case, the inter-
atomic equilibrium distances are slightly longer than in the
classical minima shown in Fig. 2. For reference, also the
potential energy of the global minimum for each species is
given.

As expected, Table I shows that the DMC ground state
energies are lower than the ones provided by the harmonic
approximation (HA) and G-TDH, with the value for the latter
being only slightly higher than for the HA. This shows the
good performance of the model wave function employed in
G-TDH in describing Nen clusters.

A closer inspection of the energy differences between
DMC and HA or G-TDH shows that anharmonic effects do
not play a key role for the Nen studied in this work. How-
ever, slightly larger differences are seen for a cluster such as
Ne7 that has nearly degenerate low energy minima.34 Quan-
titatively, the ZPE reduces by roughly 30% the total binding
energy for a cluster (i.e., the energy difference for the reaction
Nen → nNe), and as such it represents a substantial contribu-
tion to the energetics of any transformation involving these
species. As an example, Ne14 is predicted by DMC to require
roughly 66 cm−1 to dissociate an atom. However, the classical
dissociation energy, given by the potential energy difference,
is 98 cm−1, i.e., roughly 50% larger. Both the HA and G-
TDH methods provide estimates close to the DMC ones. The
impact of quantum effects is actually expected to be stronger
than a simple reduction of the dissociation barrier, since the
non-availability of the ZPE for the dynamical processes re-

FIG. 3. Classical and effective ueff(rjk) pair potentials for Ne8 as a function
of the total cluster energy. For E = −285.3 cm−1, ueff(rjk) is also shown for
selected iteration numbers.

duces the amount of energy that can flow into the reactive
modes for a given value of the total energy (see Sec. IV).

B. Dissociation rates

1. ZPAD effective potentials

The first step in the ZPAD dynamical simulations is
the determination of the (state-dependent) effective potential
ueff(rjk) (see Sec. II C). In practice, we employed MMC sim-
ulations to generate at least 50 millions of statistically inde-
pendent samples for the structure of a cluster at each chosen
energy. This allowed us to generate precise inter-particle dis-
tributions. The converged results for ueff(rjk) at several ener-
gies for Ne8 are shown in Fig. 3, together with the results
for selected iteration steps at E = 285.3 cm−1, the lowest en-
ergy at which we ran the ZPAD simulations. As can be seen,
ueff(rjk) requires only a few iterations to converge (usually
4–5 iterations) and only minor fluctuations are evidenced at
a close scrutiny, thanks to the large statistical sample used
to compute the inter-particle distributions. Also, the state-
dependent nature of ueff(rjk) emerges clearly from the fact that
the bottom of the well rises and the equilibrium distance in-
creases upon increasing the total energy of the clusters. Bear-
ing in mind that higher energy usually implies wider structural
fluctuations, we consider this feature a clear expression of the
larger ensemble of states made available to our systems by
shallower wells. These structural and energetic changes upon
increasing the internal energy are also paralleled by an in-
crease in the width of the Gaussian “dressing” each Ne atom,
which is interpreted as an indication that the atomic particles
become less localized following an increase of E. However,
the ueff(rjk) well depth appears to depend only weakly on E;
in fact, the well depth changes by at most 15% upon increas-
ing the internal energy by roughly 50%. Similarly, the pair
equilibrium distance increases by roughly 6% over the same
energy interval. Such weak dependency on E will be used
in the following to interpret the numerical results for both
kdiss and Ps.

Downloaded 02 Jul 2012 to 193.205.162.64. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



014304-7 Unn-Toc et al. J. Chem. Phys. 137, 014304 (2012)

TABLE II. Dissociation rate kdiss for Ne8 as a function of the total energy
of the cluster E as computed using classical, ZPAD, and G-TDH simulations.
Also shown is the dissociation energy 
ZPAD

0 for the process Nen → Nen−1

+ Ne as a function of E when both Ne8 and Ne7 are described by the effective
potential ueff(rjk) specifically optimized for Ne8 at its chosen energy. Energies
in cm−1 and rates in ps−1. For the classical simulations, 
0 = 93.71 cm−1.

E kClass
diss kZPAD

diss kG-TDH
diss 
ZPAD

0

−374.424 0.0000559765
−329.212 0.000924297
−285.317 0.00496395 0.00001 65.6229
−241.422 0.0173174 0.000173469 64.0866
−219.475 0.024344 0.000819547 62.9892
−197.527 0.0374608 0.00304012 61.8918
−175.58 0.00593788 0.00012 60.7945
−153.632 0.0112638 0.00074 60.3555
−131.685 0.0257542 0.0046 59.9166
−109.737 0.010
−87.7899 0.015
−65.8424 0.056

2. Ne8 dissociation rates

Table II provides the microcanonical dissociation rates
of Ne8 obtained with the classical trajectories, ZPAD, and G-
TDH methods as a function of the total energy E, and the top
panel of Fig. 4 provides a pictorial view of the results. The
ZPAD and G-TDH methods clearly provide much lower val-
ues than the classical ones. This is a consequence of quantum
effects. In ZPAD they translate into a lower well depth, and in
G-TDH they result in a large amount of the classical internal
energy being locked into zero-point motion. In other words,
for a given value of the total energy, the species described with
ZPAD and G-TDH have a lower amount of rotational and vi-
brational energy to inject into the dynamics along the reaction
coordinate. Thus, it becomes less likely for an atom to gather
enough kinetic energy to escape the cluster, despite the fact
that the dissociation threshold is also lowered (see the DMC
and G-TDH results in Table I).

The effect due to barrier reduction or to changes in the
phase space volume between the three methods can be high-
lighted by comparing dissociation rates obtained with the
same amount of available internal energy (EX

int , defined in
Fig. 1 which depends on the method). The bottom panel in
Fig. 4 shows the same Ne8 dissociation rates as in the top
panel, but this time as a function of EX

int , X ≡ classical, ZPAD,
or G-TDH. Surprisingly, the classical dissociation is slower
by two orders of magnitude than the other two, while G-TDH
and ZPAD differ only by roughly 50%.

3. Rice–Ramsberger-Kassel (RRK) analysis of Ne8
dissociation rates

The top panel of Fig. 5 shows a log-log plot of the disso-

ciation rates against Eint−
Class
0

Eint
, with Eint − 
Class

0 being the
maximum internal energy available to the daughter cluster
Ne7 (see Fig. 1). As found previously for these systems,21 the
classical dissociation rates closely follow an RKR behaviour

(i.e., kdiss ∝ (Eint−
Class
0

Eint
)s−1). This seems to be also the case

FIG. 4. Top panel: Ne8 dissociation rates kdiss (log scale) versus total energy
E. Bottom panel: Same dissociation rates shown as a function of EX

int , the
internal energy of Ne8 in each method. Rates in ps−1, energies in cm−1.

for the ZPAD and the G-TDH rates, albeit the slope (hence
s) seems to be higher than in the classical case. A change

in slope is readily apparent at Log(Ekin−
Class
0

Ekin
) ∼ −0.1 in the

G-TDH rates. A closer inspection shows a similar feature for
the classical trajectories and ZPAD dynamics, even though it
seems less marked.

Such a characteristic is often attributed to the transfor-
mation of a rare gas cluster from solid-like to liquid-like,21

and it is reminiscent of the “back bending” often witnessed
in its caloric curve.49 This phenomenon is responsible for a
reduction of the average kinetic energy available to the atoms
upon transition to a less compact, thus more energetic, struc-
ture or structural ensemble when its microcanonical energy is
increased.

The relative behaviour of ZPAD and G-TDH with respect
to classical kdiss shown in the bottom panel of Fig. 4 suggests
that an important role is played by the different dissociation
energy afforded by each method. Hence in the bottom plot

of Fig. 5 we compare the kdiss results as function of EX
int−
X

0

EX
int

,

where EX
int − 
X

0 is the maximum internal energy available
to the daughter cluster Ne7 in each method (see Fig. 1).
(Note that 
ZPAD

0 was calculated using ueff(rjk) of the parent
cluster.)50 Compared to the top panel, the ZPAD and G-TDH
rate constants are shifted to the left and show a smaller slope,
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FIG. 5. Top panel: log10(kdiss) versus log10[ Eint −E0
Ekin

] = log10[
EClass

int
−
Class

0
EClass

int

]

for Ne8, with EClass
int − 
Class

0 being the maximum internal energy avail-
able for the daughter cluster Ne7. Bottom panel: log10(kdiss) versus

log10[
EX

int
−
X

0
EX

int

] for Ne8, with EX
int − 
X

0 being the maximum internal energy

available for the daughter cluster Ne7 for X = classical (black line, squares),
ZPAD (red line, circles), or G-TDH (blue line, triangle), simulation method.
Rates in ps−1, energies in cm−1.

which brings them in much better agreement with the classical
ones. This change up to two orders of magnitude in the ZPAD
and G-TDH rates comes from the reduction of EX

int and 
X
0

for these methods compared to the classical quantities. For
instance, 
ZPAD

0 is lower than 
Class
0 (93.7 cm−1) by 30%–

40% in the energy range explored. The decrease in 
0 for
G-TDH is even larger (roughly 50%). Given the some-
what limited amount of kinetic energy available (153.6–
241.4 cm−1) to both classical and ZPAD clusters in the energy
range studied, and the large number of internal degrees (21)
of freedom over which it is distributed (the average kinetic
energy per degree of freedom is roughly 7.3–11.5 cm−1), it is
not surprising that the different 
0 values can induce a sub-
stantial difference in the dissociation rates.

The minor discrepancy remaining between the classical,
ZPAD, and G-TDH curves in the bottom plot of Fig. 5 can be
attributed to different effects of the anharmonicity, which is
expected to increase the density of states more in the ZPAD
case than in the others.21, 51 The shallower (and more an-
harmonic) pair interaction used in ZPAD simulations allows

wider fluctuation than in the classical case for a given value
of the internal energy, thus letting the system explore a larger
volume of the phase space. This idea is supported by the fact
that fitting the data shown in Fig. 5 with the usual RRK form
kdiss = ν(Eint−
0

Eint
)s−1 provides one with a fairly accurate rep-

resentation of their behaviour as a function of Eint; the most
appropriate (i.e., the effective) value for s, the number of ac-
tive degrees of freedom, is in both cases (sZPAD = 19.4 and
sC = 18.6) slightly higher than the theoretical one, s = 18.
This finding can be interpreted51 as indicating a faster growth
of the number of states for the ZPAD generalized transition
state compared to the density of state for the ZPAD reac-
tant than in the classical case, in the framework of the tran-
sition state theory. This comes from the shallower well, lower
dissociation energy and longer pair equilibrium distance in
ZPAD species, which lead to stronger anharmonic behaviour
compared to the classical case. The analysis of the G-TDH
results is not as straightforward since the Gaussian width is
variable, and hence the dynamics cannot be described by an
effective potential. However, the width of the surface atoms
varied in a fairly homogeneous way over the time needed
to escape the cluster. Hence, the interpretation of the resid-
ual difference with classical dynamics is similar to that in the
ZPAD case.

Similar conclusions can be reached from the classical
and ZPAD results presented in the supplementary material for
Ne13, Ne14, and Ne19.

C. Capture probabilities

In Sec. III B it was shown that the different amounts of
kinetic energy available for the vibrational and rotational mo-
tion of Nen obtained in the different simulation methods have
a major influence on the dynamics. For a given total energy, a
cluster could be considered as “colder” than in classical sim-
ulations when either the ZPAD or the G-TDH method is used.
Such difference may also have an effect in the case of post-
collisional capture. Indeed, a colder cluster can be more ef-
ficient as an energy “sink” as shown in the detailed analysis
of post-collision capture for classical Arn species.16 However,
there is a competing effect in the case of quantum clusters.
A weaker effective pair interaction (in the ZPAD case) or
a less efficient energy redistribution due to more sparse en-
ergy states52 will make energy transfer less efficient. It seems
therefore interesting to us to investigate such a case in some
depth.

1. Classical and ZPAD results

Figure 6 shows the capture probability obtained by
employing classical trajectories and ZPAD ones for Ne8

at two different target energies, namely E = −285.3 and
−241.4 cm−1. For these two energies, evaporation lifetime
is much larger than the duration of the capture event, see
Table II: not a single dissociation event was recorded in
4000 G-TDH trajectories. The relative impact velocities were
vp = 4.17 and 8.34 bohrs ps−1 (corresponding to a relative
kinetic energy of 39.98 and 159.93 cm−1). The first one is
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FIG. 6. Capture probability Ps (n, b,E, vp) as a function of the impact pa-
rameter b for Ne8, computed using two different values of the cluster total en-
ergy, two projectile-target relative velocities and both classical (C) and ZPAD
simulations. Average capture probabilities computed employing 2000 trajec-
tories. A projectile was considered captured after the projection of its velocity
on the line joining its center of mass with the cluster one had changed sign
5 times. Notice that both values of the cluster energy were sufficiently low
to eliminate the chance for a dissociation event before a collision could take
place.

close to the maximum of the Maxwell–Boltzmann distribu-
tion for Ne at ∼70 K. The second is in the high speed tail with
a probability about 10 times lower. Its corresponding kinetic
energy is roughly twice the well depth of the effective pair in-
teraction and 20% larger than the classical well depth. Hence,
the relative collision energy is substantial compared with
the average internal energy per degree of freedom, roughly
15.9–18.4 cm−1 in the classical case.

As expected, Fig. 6 shows a substantially lower capture
probability for high speed projectiles for all values of the im-
pact parameter b. It also shows that higher cluster internal en-
ergies give lower Ps, with a larger relative change in classi-
cal simulations for a high speed projectile. Also, the ZPAD
method gives substantially higher capture probabilities, espe-
cially for the more energetic targets (E = −241.4 cm−1). This
finding indicates that the simple concept of “colder” clusters
is winning over the weaker target-projectile interactions in the
quantum mechanical effects over sticking probabilities.

It is also interesting to note that both classical and ZPAD
simulations give similar values of Ps at large values of b for
a given (E,vp) pair. This finding is probably due to the fact
that ueff(rjk) differs from the classical pair potential mainly in
the well region, while its shape at large b is only slightly af-
fected by the Gaussian “smearing” of the particle wave func-
tion. For ZPAD, a value of α ≥ 1.5 a.u. (width δ = α−1/2

≤ 0.82 bohrs) characterizes the cluster and projectile atoms.
In other words, the potential experienced by a projectile dur-
ing a glancing collision is very much the same for both
methods. Overall, the classical and ZPAD data provided in
the supplementary material for Ne13, Ne14, and Ne19 fully
support this discussion.

2. G-TDH results, frozen width projectile

The G-TDH method was also used to investigate the in-
fluence of quantum effects on the capture process. As a first

experiment, we opted for freezing the projectile width param-
eter αproj (βproj = 0 in Eq. (6)), while propagating the width
parameters of the target atoms. Since the capture probability
is expected to depend on α through the effective projectile-
target atoms interaction potential, we ran calculations for a
range of αproj values, in order to help interpreting the re-
sults obtained further down with a variable projectile width.
This way we can see how quantum target cluster atoms dif-
fer from classical ones (at the mean field level) in absorb-
ing part of the collisional energy and temporarily forming
a metastable energized species. This is one step up from
the ZPAD approach which, although including zero point ef-
fects in an average sense, still remains fundamentally classi-
cal with respect to energy exchange. G-TDH is expected to
incorporate at least some of the changes in the wave func-
tion induced during a collision. In particular, it is expected to
correctly describe the compression of atomic functions upon
collision.

The top panel of Fig. 7 shows the results for three sets
of such calculations for Ne8 at −285.3 cm−1 and vp = 4.17
bohrs ps−1. The results obtained using the ZPAD approach
under the same conditions are also shown for comparison.

FIG. 7. Capture probability Ps (n, b,E, vp) as a function of the impact pa-
rameter b for Ne8, computed using the G-TDH approach. Top panel: the
width of the projectile was kept frozen at the value indicated in the picture,
whereas the width of the cluster atoms is allowed to adapt. ZPAD results
also shown for comparison. Bottom panel: G-TDH calculations employing
a q value (see main text) for which the projectile width is activated in at
least 90% of the trajectories. In all cases, E = −285.3 cm−1 and v = 4.17
bohrs ps−1.
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Figure 7 shows that the G-TDH method gives higher capture
probabilities than ZPAD (frozen Gaussian for all atoms with α

= 1.66 a.u., or δ = 0.776 bohrs) over a large range of impact
parameters (b < 15 bohrs) when the width of the projectile
Gaussian is small, i.e., when the projectile is nearly classi-
cal. In this case, the “colder nature” of a G-TDH-described
cluster accounts for the results. Also, the decay of the capture
probability upon increasing b in the G-TDH simulation with
αproj = 1.5 and 3.0 a.u. (δ = 0.82–0.58 bohr) is sharper
than with the ZPAD approach that, in turn, gives a sharper
drop than classical trajectories. When using a wider projec-
tile Gaussian (αproj = 0.375 a.u., δ = 1.63 bohrs), the sticking
probability is lower than both the ZPAD results and the G-
TDH ones obtained with high αproj values, a fact clearly evi-
dent at large b values. This can be explained by the fact that a
wider Gaussian for the projectile raises the bottom of the ef-
fective potential well (e.g., see Fig. 3) and induces the onset of
the repulsive wall at larger interatomic distances. Conversely,
a narrow width corresponds to a deeper well due to a narrower
averaging range. Notice that, around b = 0, Ps(b) is insensi-
tive to the Gaussian width. In that region, there is enough rel-
ative energy in the collision for the projectile to experience
the repulsive wall of the cluster-atom potential, so that energy
exchange is mainly similar to “hard sphere knock”-type col-
lisions, with substantial disregard to the G-TDH widths. It is,
clearly, at the outskirt of a cluster where differences in the
interaction potential due to a different width can play a sub-
stantial role in defining the capture probability.

Despite the differences in the onset of the decay and in
the absolute value of Ps(b), both ZPAD and G-TDH computed
Ps(b) decay toward zero in the same range of impact param-
eters, 10 ≥ b ≥ 15 bohrs. This range is consistent with the
size of Ne8 and the location of the minimum in the effective
pair potential. The classical capture probabilities also decay
in the same b range, indicating the common origin of this
feature. A direct comparison with classical simulations (see
Fig. 6) shows that G-TDH sticking probabilities are higher
than classical ones over the whole range of impact parameters
when narrow initial widths are used. For αproj = 0.375 a.u.
(δ = 1.63 bohrs) this is true only at low b values.

This suggests the existence of two different regimes: low
(b � cluster radius) impact parameters which is dominated by
highly sticking “hard-knock” type collisions that are quite in-
sensitive to the effective potential depth, and high (b � clus-
ter radius) impact parameters where the sticking probability
strongly depends on the potential attraction and hence on the
α value. At low impact parameters G-TDH gives higher Ps(b)
because the G-TDH cluster is even “colder” than the ZPAD
one, which favors energy exchange between cluster and pro-
jectile. At high impact parameters the same effect is at play,
but it can be compensated by a smaller potential attraction for
larger αproj values.

Needless to say, the lowest value of αproj = 0.375 a.u.
used in the G-TDH simulations ought to be considered largely
unphysical when compared with the width associated to
atoms in a cluster such as a metastable Ne∗

9 formed during
a sticking collision, (1.7 < α < 2.5 a.u., or 0.63 ≤ δ ≤ 0.76
bohr), if it is assumed that the latter survives long enough to
statistically redistribute the excess energy. Such conclusion

FIG. 8. Capture probability Ps (n, b,E, vp) as a function of the impact pa-
rameter b for Ne8, computed using G-TDH with a dynamically adapting
width for the projectile. Initially, α = 1.5 in all calculations; q was chosen to
have more than 90% of trajectories activating width adaptation. Also shown,
there are the results obtained by classical (C) and ZPAD trajectories. Top
panel, E = 285.3 cm−1; bottom panel, E = −241.4 cm−1.

can be inferred from our description on the dependency of α

with respect to E (vide supra).

3. G-TDH, variable projectile width

We now turn to investigating the changes induced by al-
lowing the width of the projectile to dynamically adapt to its
local environment and energy density. We have checked that
Pb does not depend on the initial value chosen for αproj if q
(defined in Eq. (9)) is chosen to have more than 90% of tra-
jectories with the projectile width adaptation activated (see
Sec. II D and bottom panel of Fig. 7).

As shown in Fig. 8, G-TDH gives higher sticking prob-
abilities than classical mechanics for b < 10, which is
the range of hard sphere type collisions. This is consistent
with the results found employing the ZPAD method. In this
range, the quantum clusters are colder and can more easily
dissipate the collision energy. For the high impact parameter
range, we found classical dynamics to be more efficient for
sticking than G-TDH, indicating a weaker attraction in the
quantum case. This is different from the ZPAD and the frozen
projectile G-TDH (αproj = 1.5 and 3) methods, which pre-
dict higher sticking probabilities than the classical ones. This
surprising result can be explained as follows. In this range of
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TABLE III. Capture cross section σ (n,Eint , vp) (in bohr2) as a function of
the cluster energy E (in cm−1) and the projectile speed vp (in bohr ps−1) for
Ne8 computed using classical trajectories, ZPAD dynamics and G-TDH.

σ (8, E, vp)

(E,vp) Classical ZPAD G-TDH

(−285.3,4.17) 436.3 506.5 388
(−285.3,8.34) 51.0 55.2 53.3
(−241.4,4.17) 336.3 462.6 351.5
(−241.4,8.34) 31.6 33.5 38.6

large impact parameter, the sticking probability is governed
by the long range attractive part of the cluster-projectile in-
teraction. In the case of G-TDH, the Gaussian wave packet
is spreading in this region which results in a smaller attrac-
tion. This effect is strong enough to counterbalance the lower
“temperature” of the target cluster due to quantum effects.

4. Capture cross sections

To provide a more global quantitative measure of the dif-
ference between classical and ZPAD simulations, we have
computed the capture cross sections for the cases shown in
Figs. 6 and 8. This was performed by computing numerically
the integral

σ (n,Eint , vp) =
∫ ∞

0
db bPs(n, b,Eint , vp), (14)

using the trapezoidal rule and the data shown in Figs. 6 and 8.
The results are displayed in Table III.

As for capture probabilities, the difference between clas-
sical and ZPAD capture cross sections is larger for higher
energies (roughly 15% at E = −285.3 cm−1 compared to
roughly 30% at E = −241.4 cm−1) and for the lower
projectile collision speed, whereas the cross section given
by G-TDH is 12% lower than classical trajectories at E
= −285.3 cm−1 and 4% higher at E = −241.4 cm−1. No-
tice that these differences are due to a slower decrease of the
ZPAD and G-TDH σ upon increasing E compared to classi-
cal σ . This is due to the fact that ueff becomes shallower upon
increasing E (see Fig. 3). This in turn implies a slower in-
crease of the internal energy in the ZPAD and G-TDH targets.
At higher vp, the difference between classical, ZPAD and G-
TDH is roughly the same for the two different values of E.
In our view, this is the result of two counterbalancing effects,
namely the fact that the major effect on Ps is the kinetic en-
ergy of the projectile (its value is much higher than the aver-
age kinetic energy available per internal degree of freedom),
and the b-weighting of the sticking probabilities, which gives
more importance to higher impact parameter regions where
Ps is largely independent of the simulation method employed.

IV. DISCUSSION AND CONCLUSIONS

In this work, we investigated quantum mechanical effects
on the quantitative description of rare gas cluster dissocia-

tion and projectile capture, two key steps in the description of
homogeneous nucleation in the gas phase. Given the many-
body nature of the systems involved, we had to resort to ap-
proximate methods, ZPAD and G-TDH, in our exploration.
The G-TDH method contains the key ingredients needed for
a correct quantum description, namely, a reasonably accu-
rate treatment of the ZPE and single particle wave functions
that correctly adapt their width to the local interactions as the
process evolves. Thus, our results, although not strictly ex-
act, should be expected to give a correct quantum mechanical
description.

The results obtained with quantum methods for Nen dif-
fer from the ones produced by classical trajectories because
of the effect of zero point motion, which substantially reduces
the available energy content in the quantum case. As stressed
in Ref. 57, it is standard practice in classical simulations not
to add zero-point energy in the initial conditions, because it
could lead the system to explore regions of phase space com-
pletely ignored by quantum mechanics. In our case, capture
probabilities are enhanced for quantum clusters compared to
classical ones for the ZPAD and frozen projectile width G-
TDH methods. This is a direct indication that quantum effects
“cool” the target cluster, in the sense that less kinetic energy
is available to each degree of freedom. This favors energy re-
laxation of the projectile in the target internal modes. In prac-
tice, we found the capture cross sections to be increased by
15%–30% in a quantum cluster with respect to a classical one
when the projectile impact speed corresponds to the average
for Ne gas at 70 K. These considerations are also true for G-
TDH. However, in this case the spreading of the projectile
wave function makes the cluster-projectile attraction less effi-
cient. This leads to lower total capture cross sections because
of the high weight of the large impact parameter region in
the total cross section. In addition, we showed that the cross
section is less sensitive to an increase of the cluster internal
energy or “temperature” when using quantum methods rather
than the classical one.

The quantitative impact of a quantal description is strik-
ingly more evident in the case of dissociation, with lifetimes
that differ by a factor of 20–200 over the explored energy
range. The difference between quantum and classical uni-
molecular dissociation rates has been discussed in the frame-
work of RRKM theory by, e.g., Hase and Buckowski.56 When
zero-point energy is included in a classical dynamics simu-
lation, it is allowed to move freely between all the degrees
of freedom and can thus induce a non-physical dissociative
event. The authors have compared the ethyl unimolecular dis-
sociation rate constant obtained using the classical and vibra-
tionally adiabatic quantal expressions of the semi-empirical
Whitten-Rabinovitch approximation.58 The classical rates are
higher and the difference decreases with increasing total en-
ergy, as expected since the relative weight of the zero-point
energy decreases. Comparing dissociation rates with the same
total energy (this work) amounts to including the zero-point
energy in the classical simulation. In our case, the classical
simulations indeed suggest a faster dissociation process. This
is interesting because the energy required to dissociate one
atom is lower in the quantum simulation than in the classical
one.
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Amazingly, the large differences in kdiss obtained by the
different methods could be reconciled by means of simple
concepts borrowed from transition state theory, namely the ef-
fective dissociation barrier (approximated by the dissociation
energy 
0 for one monomer) and the maximum amount of in-
ternal energy available to the daughter cluster. This is clearly
a novel finding.

We now discuss the consequences of our findings on
the time evolution of a condensing system. Our dissociation
rate data suggest that the quantum metastable clusters sur-
vive longer, making it more likely for a collision with another
body to quench their energy content (recall that metastable
pre-critical clusters are likely to be highly energized species).
This suggests that quantum species should be expected to nu-
cleate and condense faster than classical ones. This conclu-
sion is also supported by the capture results given in Table III.
The two results at the higher energy E = −241.4 cm−1 are
of particular relevance for the initial stages of the nucleation,
which are expected to be highly “out of equilibrium.” The
quantum capture cross section is higher than the classical one.
This is of high relevance; whether this translates into faster
quantum nucleation rates remains to be tested by compar-
ing collisional energy exchange efficiency for quantum and
classical systems. The “continuous energy” nature of classi-
cal mechanics could lead to third body collisions being more
efficient in stabilizing “hot” species, and this could invert the
tendency of the quantum effects for capture and dissocia-
tion. However, such possibility needs to be verified by means
of a full simulation of a nucleation process via a statistical
approach.17 This will be the subject of future work.

Some of our conclusions can be extended to molecular
species. Zero-point effects should play the same role, with
the intramolecular modes added. The relative contribution of
translations and rotations should depend largely on the struc-
tural details of the molecules, the strength of their interac-
tion as well as the isotopic composition even for small rigid
species such as ammonia.53–55 It would thus be interesting to
investigate zero-point energies and quantum averaged struc-
tures for large molecular clusters, in order to extract useful
information on the parents and daughters in monomer cap-
ture and dissociation. In addition, molecular dissociation can
exhibit an entropic effect that is not present in atomic clus-
ters. The orientation of the leaving monomer becomes free
at or near the transition state, which increases entropy. This
could compensate the gain in free energy in the quantum
simulations.

The G-TDH method has proved to be a useful tool to de-
scribe the dissociation process in atomic clusters. The flexibil-
ity of the atom wave function allowed us to show that the more
approximate ZPAD method contains all the basic ingredients
needed for a reasonable description of such process. Hence
the ZPAD method can be used to describe capture and disso-
ciation in other similar systems, as well as for including some
quantum effects in the description of cluster isomerization.
The G-TDH method should be useful in simulations of parti-
cle collisions and energy exchange. Besides, a generalization
to describe small molecular species would also be useful for
future studies on molecular clusters. The G-TDH method can
also be used for quantum systems whose constituents can be

described by a compact wave function such as para-H2 clus-
ters and condensed phases. It should also be valid for the de-
scription of He droplets in the presence of strongly binding
impurities capable of localizing He atoms in the first few sol-
vation shells. The description of interesting processes such as
energy and mass transport (e.g., after ionization or excitation)
would then become approachable within the computing time
affordable nowadays. Work in these directions is underway in
our laboratories.
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