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ReMaRkS on a ‘SeRRIn CuRve’ foR SySteMS  
of DIffeRentIaL InequaLItIeS

DanIeLe CaSSanI *

nota presentata dal s. c. Bernhard Ruf
(adunanza del 16 febbraio 2006)

Sunto. – nel presente lavoro consideriamo sistemi ellittici semilineari di disequazioni 
differenziali in tutto RN, N ³2. In particolare, investighiamo la soglia per l’esistenza e 
non esistenza di soluzioni ultra deboli e senza condizioni di segno. otteniamo un risul-
tato di non esistenza ottimale utilizzando stime di capacità non lineare.

1.  IntroductIon

Consider, as a model problem, the following system of differential in-
equalities

 

{
−∆u ≥ |v|q

−∆v ≥ |u|p
(1)

1

 (1)

in all of RN, N ³2, and where p‚ q > 1 (i.e. the super-linear case). We 
address the problem of determining the threshold, depending on p‚ q 
and the dimension N, between existence and non-existence of solu-
tion for (1) under minimal conditions. Before stating our main result, 
for the convenience of the reader we resume some well known facts 

 * università degli Studi di Milano, Dipartimento di Matematica «f. enriques»; 
e-mail: Daniele.Cassani@unimi.it



 

 
 

 

 
 

 

 

 

BOZZE DI STAMPA – 21 Gennaio 2009 

 
 

 
 

114 DANIELE CASSANI

regarding the scalar version of system (1), that is when u = v and p = q, 
besides briefly recalling the critical framework when in (1) inequalities 
are replaced by equations.

So far, semilinear equations of the form 

−∆u = f(u), on RN

1

where ∆ :=
∑N

i=1
∂2

∂x2
i

1

 denotes the Laplace operator on RN and

ƒ : R®R is a nonlinear function, have been intensively studied (see e.g. 
[11] for a survey). Indeed, such problems arise in a variety of situations, 
such as in astrophysics, studying the gravitational equilibrium of stars, 
in quantum field theory and mechanical statistics (see [20] and refer-
ences therein). Concerning existence and nonexistence of solutions in 
the case of a pure power nonlinearity, that is for the equation 

  (2)

with p > 1, it is well known that in dimension N ³3 a key role is played 
by the critical power 1

pc :=
N + 2
N − 2

1

(pc= 2* – 1, where 2* is the Sobolev critical exponent). Precisely, it was 
proved by Gidas and Spruck in [8] that for 1 < p < pc , equation (2) has 
no positive solutions, whence for p > pc one has existence results (see 
[17], [20] and also [3]).

As developed in [7], [16] and [15] passing from the differential 
equation to the differential inequality 

  (3)

gives rise to the so-called Serrin exponent 

ps :=
N

N − 2

1

 1 We mention that the critical power pc appears naturally in Yang-Mills equa-
tions when N = 4  and in differential geometry in the context of Yamabe’s problem.

−∆u = |u|p, on RN (1)

1

−∆u ≥ |u|p (1)

1
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115REMARKS ON A ‘SERRIN CURVE’

which represents the new threshold between existence and nonexistence 
of solutions for (3), in the sense that (3) has no solutions if 1 < p £ ps , 
with ps < pc . The result is also sharp since for p > ps a class of solutions 
for (3) is explicitly known.

Coming to semilinear elliptic systems, the situation is quite dif-
ferent and in particular the notion of criticality extends. Consider the 
following system of coupled Poisson’s equations:

 

{
−∆u = |v|q−1v

−∆v = |u|p−1u
(1)

1

 (4)

in all of RN (N ³ 3). System (4) consists of the Euler-Lagrange equa-
tions related to the functional

 
 (5)

namely, weak solutions of (4) correspond to critical points of the func-
tional J, which posses a strongly indefinite quadratic part. Of course, 
when u = v and p = q we have that (4) and J reduce to

  (6)

Denoting with 1‚a(RN) the completion of ¥c (RN) with respect to the 
La-norm Ñ×a, it is then natural to look for solutions of the variational 
problem in the Sobolev space 1‚2(RN), where the functional j is of 
class 1 provided p + 1 £ 2*, the critical Sobolev exponent; in particu-
lar, the critical growth is given by p + 1 = 2*, that is p = pc . For system 
(4) the choice of the function space to set up the problem is of particular 
interest because of its connection with criticality. Indeed, if we consider 
the functional in (5) defined on 1‚2(RN) ´1‚2(RN) again we find 
that maximal growth is given by p + 1 = q + 1 = 2*. On the other hand, 
the functional (5) is well defined for (u‚ v) Î1‚a(RN) ´1‚b(RN),
1
α + 1

β = 1

1

, by using Hölder’s inequality in the term 
∫

∇u∇v dx

1

and J is of class 1 by Sobolev’s inequalities, provided the nonlineari-
ties satisfy p + 1 £ a*, q + 1 £ b*. Here α∗ := Nα

N−α

1

, β∗ := Nβ
N−β

1

 are the 
critical Sobolev exponents in the embeddings 

J(u, v) =
∫

∇u∇v dx − 1
p + 1

∫
|u|p+1 dx − 1

q + 1

∫
|v|q+1 dx (1)

1

−∆u = |u|p−1u, j(u) =
1
2

∫
|∇u|2 dx − 1

p + 1

∫
|u|p+1 dx (1)

1
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116 DANIELE CASSANI

	

In this case, new critical growth phenomena occur; in fact, the max-
imal growth now is given by setting p + 1 = a* and q + 1 = b*. This 
extends the notion of criticality and gives rise to a critical	 continuum 
represented by the so-called critical	hyperbola	2:

 1
p + 1

+
1

q + 1
= 1 − 2

N
(1)

1

 (7)

in the (p‚ q) plane with asymptotes p = 2
N−2

1

 and q = 2
N−2

1

; see Fig.	1. 
Then, one of the nonlinearities may have super-critical growth (with 
respect to the situation in (6)) provided the other one has a suitable 
sub-critical growth.

However, the analogy with the scalar case is not yet complete, 
and several basic questions are still open. In [12], [10] it was shown 
that, for (p‚ q) belonging to the critical	hyperbola (7), system (4) has a 
(ground state) solution. Moreover, Serrin and Zou in [19] proved the 
existence of solutions even in the super-critical case (above the critical 
hyperbola). The conjecture on the validity of a non-existence result, the 
analogous of the Gidas-Spruck [8] result in the scalar case, for (p‚ q) in 
the whole region between the Serrin curve and the critical hyperbola 
seems to be unsettled at the moment even though there are evidences 
in this direction. In particular, for (p‚ q) below the critical hyperbola, it 
turns out that there are no positive solutions with radial symmetry or 
satisfying some decay conditions at infinity (see [4] for a survey).

Nevertheless, one may expect that for the system of inequalities 
(1) the Serrin exponent has to be replaced by a continuum. Indeed, the 
following result was proved by E. Mitidieri in [13]: 

[Corollary 2.1, p. 468] Suppose	that	p‚ q > 1,	N > 3	and 

 
1

p + 1
+

1
q + 1

≥ 1 − 2
N − 2

max
(

1
p + 1

,
1

q + 1

)
(1)

1

 (8)

Then	the	problem	(1)	has	no	positive	solutions	of	class	2(RN).

 2 This was introduced in [13], see also [2], [9], [5] and [6] for a more general 
approach by using Sobolev-Orlicz spaces.

D1,α(RN ) �→ Lα∗
(RN ) and D1,β(RN ) �→ Lβ∗

(RN )

1
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117REMARKS ON A ‘SERRIN CURVE’

Remark	1.1. The equality in condition (8) yields a curve which, as we 
are going to show, plays the role of the Serrin exponent in the scalar 
case (notice that when p = q  we get the Serrin exponent ps ; see Fig.	1), 
and for this reason we take the liberty to call it Serrin	curve. 

2.  main reSultS

The argument used in [14] relies on the method of spherical means. 
Exploiting the nonlinear	capacity methods introduced by S.I. Pohožaev 
in [18], we next show that the regularity assumptions in the above result 
can be weakened, as well as the positivity condition removed. The argu-
ment we use was developed by Mitidieri-Pohožaev in [15] where many 
different classes of differential inequalities and in particular quasi-linear 
systems were considered. Our aim is to exploit this flexible technique to 
show how the argument becomes simpler in the case of the differential 
system of inequalities (1) and at the same time giving optimal results.

Remark	 2.1. The regularity assumptions on solutions of inequalities 
are in general more meaningful with respect to equations. Indeed, in 
contrast to equations, there exists no regularity theory for solutions of 
differential inequalities, and in fact such a theory cannot exist!

We confine ourselves to the following heuristic but persuasive 
argument. It is well known from classical elliptic regularity theory that 
any solution of the equation:

for a suitable function ƒ and where g is a positive function, inherits the 
features of the right-hand side and belongs to a function space depend-
ing on g. On the other hand this solution satisfies the inequality

Therefore, if we have only the inequality and know nothing about its 
origin, we cannot recover the regularity properties of this solution. 
Thus the definition of a class of solutions for differential inequalities 
plays an important role. 

Before stating our main result we make precise the notion of 
solution we deal with:

−∆u = f(u) + g(x)

1

−∆u ≥ f(u)

1
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Definition 2.1. A couple (u‚ v) Î Lp
loc(R

N) ´Lq
loc(R

N) is a weak solu-
tion of (1) provided the following hold 

  (9)

  (10)

for all test functions j Î 2
0 (R

N;R+).

The main result we prove is the following: 

Theorem 1. Let	be	N ³ 3	and	suppose	that	p‚ q > 1	satisfy	(8),	namely	

1
p + 1

+
1

q + 1
≥ 1 − 2

N − 2
max

(
1

p + 1
,

1
q + 1

)

1

Then	problem	(1)	has	no	nontrivial	weak	solutions.	Moreover,	if	N = 2  
then	the	system	(1)	has	no	nontrivial	weak	solutions	for	any	p‚ q > 1.

3.  nonlinear capacity eStimateS

We first consider the case of dimension N ³ 3. Let (u‚ v) Î
Î Lp

loc(R
N)´Lq

loc(R
N) be a weak solution of (1). Then if j Î  2

0 (R
N;R+) 

we have by (9) and Hölder’s inequality 3

  (11)

 

 3 We use the notation p ¢ to denote the conjugate exponent of p i.e. 1p + 1
p′ = 1

1

1
p + 1

p′ = 1

1

 
. 

Moreover, from now on the integration domain is RN unless otherwise stated.

∫

RN

|v|qφ dx ≤
∫

RN

u(−∆φ) dx (1)
∫

RN

|u|pφ dx ≤
∫

RN

v(−∆φ) dx (2)

1

∫

RN

|v|qφ dx ≤
∫

RN

u(−∆φ) dx (1)
∫

RN

|u|pφ dx ≤
∫

RN

v(−∆φ) dx (2)

1

∫
|v|qφ dx ≤

(∫
|u|pφ dx

) 1
p

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

≤ (by (10))

≤
(∫

v(−∆φ) dx

) 1
p

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

≤ (again by Hölder)

≤
(∫

|v|qφ dx

) 1
pq

(∫
|∆φ|q′

φq′−1 dx

) 1
pq′

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

(1)

1

∫
|v|qφ dx ≤

(∫
|u|pφ dx

) 1
p

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

≤ (by (10))

≤
(∫

v(−∆φ) dx

) 1
p

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

≤ (again by Hölder)

≤
(∫

|v|qφ dx

) 1
pq

(∫
|∆φ|q′

φq′−1 dx

) 1
pq′

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

(1)

1

∫
|v|qφ dx ≤

(∫
|u|pφ dx

) 1
p

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

≤ (by (10))

≤
(∫

v(−∆φ) dx

) 1
p

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

≤ (again by Hölder)

≤
(∫

|v|qφ dx

) 1
pq

(∫
|∆φ|q′

φq′−1 dx

) 1
pq′

(∫
|∆φ|p′

φp′−1 dx

) 1
p′

(1)

1
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119REMARKS ON A ‘SERRIN CURVE’

and then (12) yields the following estimate 

 
 (12)

 

where we have set 

Remark	3.1. If K ÌW is a compact set and we define 

then, the nonlinear capacity induced by the operator A(u) := –Du –ua 
is given by 

Now we specialize the test function j  by setting 

  (13)

for a scaling parameter R > 0 and where y is a smooth and positive 
standard cut-off function e.g. such that y(s) = 1 for 0 £ s £ 1 and 
y(s) = 0 for s > 2. The real parameter g > 0 has to be suitably chosen 
in order to have finite capacity.

Lemma 3.1. If	g	satisfies	the	condition

	 γ > max
{

2q′, 2p′
}

(1)

1

	 (14)

then	the	following	estimates	hold	

	 cap
(
φ, q′

)
≤ C1

R2q′−N
and cap

(
φ, p′

)
≤ C2

R2p′−N
(1)

1

	 (15)

where	Ci	are	positive	constants	which	do	not	depend	on	R.

∫
|v|qφ dx ≤

(∫
|∆φ|q′

φq′−1 dx

) q
q′(pq−1)

(∫
|∆φ|p′

φp′−1 dx

) pq
p′(pq−1)

=
{[

cap
(
φ, q′

)]q−1 [
cap

(
φ, p′

)]q(p−1)
} 1

pq−1 (1)

1

∫
|v|qφ dx ≤

(∫
|∆φ|q′

φq′−1 dx

) q
q′(pq−1)

(∫
|∆φ|p′

φp′−1 dx

) pq
p′(pq−1)

=
{[

cap
(
φ, q′

)]q−1 [
cap

(
φ, p′

)]q(p−1)
} 1

pq−1 (1)

1

cap (φ, α) :=
∫

|∆φ|α

φα−1 dx

1

C2
0(K, Ω) :=

{
ψ ∈ C2

0(Ω) | 0 ≤ ψ ≤ 1, ψ ≡ 1 on K
}

1

capA(K, Ω) = inf
ψ∈C2

0(K,Ω)
cap (ψ, α)

1

φ(x) := φγ
0 (x), where φ0(x) := ψ

(
|x|
R

)
(1)

1
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Proof. It is straightforward by the following calculations, where we 
denote by Ci positive constants depending only on g, q¢, N and the 
choice of y but not on the parameter R :

and performing the substitution x = xR, the integration domain 
becomes 1 £ |x| £ 2 and one easily gets the first claim

cap
(
φγ

0 , q′
)
≤ C

R2q′−N

1

The second estimate in (15) follows in a similar fashion. 

By (12) and Lemma 3.1 we obtain the estimate

 
 (16)

 

Therefore letting R ®+¥, the monotone convergence theorem yields 
v Î Lq(RN) and v º 0 (hence u º 0) provided:

 2q − N(q − 1) + 2pq − N(p − 1)q > 0

1

By using the same argument but starting with u in place of v, i.e. start-
ing with (11) in (12), we get the analogous estimate for u, namely the 
following 

and again, if the following condition is satisfied

∫
|v|qφ dx ≤

(
Cq−1

1

R(2q′−N)(q−1)

C
q(p−1)
2

R(2p′−N)q(p−1)

) 1
pq−1

=
(

C

R2q−N(q−1)+2pq−N(p−1)q

) 1
pq−1

(1)

1

∫
|v|qφ dx ≤

(
Cq−1

1

R(2q′−N)(q−1)

C
q(p−1)
2

R(2p′−N)q(p−1)

) 1
pq−1

=
(

C

R2q−N(q−1)+2pq−N(p−1)q

) 1
pq−1

(1)

1

∫
|u|pφ dx ≤

(
C

R2p−N(p−1)+2pq−N(q−1)p

) 1
pq−1

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+

2q′−1(N − 1)q′

Rq′
ψγ−q′ |ψ′|q′

|x|q′
+

2q′−1

R2q′
|ψ′′|q′ψγ−q′ dx

1

cap
(
φγ

0 , q′
)

=
∫ |∆(φγ

0 )|q′

φ
γ(q′−1)
0

dx ≤ C

∫
φγ−2q′

0 |∇φ0|2q′ + φγ−q′

0 |∆φ0|q
′
dx

≤ C

∫
ψγ−2q′ |ψ′|2q′

R2q′
+
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2p − N(p − 1) + 2pq − N(q − 1)p > 0

1

we obtain that u is identically zero as well as v by (9).

Remark	3.2. Observe that

  (17)

yields surprisingly the same curve as in (8)!

It remains to show how to handle the case when p and q lie on the 
curve (17). This is achieved by observing that, e.g. in the case p ³ q , 
estimate (16) yields the bound

where C is independent of R and passing to the limit as R ®+¥ we 
get 
  (18)

Therefore resuming the calculations carried out in (12) we have

Thus, by (21), letting R ®+¥ we obtain v º 0 also in this case. 

Remark	3.3. Condition (9) is sharp, in the sense that for (p‚ q) satisfy-
ing 

one can easily check that the the following functions

yield a solution to system (1), provided that e > 0 is sufficiently small. 

{
2q − N(q − 1) + 2pq − N(p − 1)q = 0, q ≥ p

2p − N(p − 1) + 2pq − N(q − 1)p = 0, q ≤ p
(1)

1

∫

RN

|v|qφ dx ≤ C

1

∫

RN

|v|q dx ≤ C (1)

1

∫

RN

|v|qφ dx ≤ C

(∫

R≤|x|≤
√

2R
|v|q dx

) 1
pq

1

1
p + 1

+
1

q + 1
< 1 − 2

N − 2
max

(
1

p + 1
,

1
q + 1

)

1

u(x) =
ε

(1 + |x|2)
q+1

pq−1

, v(x) =
ε

(1 + |x|2)
p+1
pq−1

1
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3.1.	The	case	of	dimension	N = 2

It is a remarkable fact that the computations carried out in section 3 
are still meaningful when we come to dimension N = 2. In particular 
estimates (16) are still valid. On the other hand we see from (8) that 
the asymptotes of the Serrin curve, which are the same of that of the 
critical hyperbola (8), go to infinity and the situation degenerates. Nev-
ertheless, by the previous argument, we can state the following

Corollary 3.1. Let	the	dimension	N = 2	and	consider	the	following	sys-
tem	in	all	of	R2

  (19)

where	the	nonlinearities	ƒ	and	g	satisfy,	for	positive	constants	Ci,

  (20)

Then,	problem	(19)	has	no	nontrivial	weak	solutions	provided	p‚ q > 1.

Remark	 3.4. Observe that Definition 2.1 of weak solution now re-
quires

f(v), g(u) ∈ L1
loc(R

2)

1

Remark	 3.5. Notice that we do not require any lower bound on the 
solutions which of course would yield the classical Liouville’s theorem 
because of the parabolic character of the manifold R2.

This concludes the proof of Theorem 1 stated in Section 2. As a con-
crete example, one may think of the following 

Example	 3.1. Let l‚ > 0. Then any weak solution of the following 
system 

  (21)

vanishes identically.

Remark	3.6. Observe that the local integrability of the right hand side 
in (21) holds e.g. for all (u‚ v) Î H1(R2) ´ H1(R2) by means of the 
Trudinger-Moser inequality (see [1]).

{
−∆u ≥ f(v)
−∆v ≥ g(u)

(1)

1

f(t) ≥ C1|t|q and g(t) ≥ C2|t|p, t ∈ R (1)

1




−∆u ≥ λ
(
ev2 − 1

)

in R2

−∆v ≥ µ
(
eu2 − 1

) (1)

1
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