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2Center for Nonlinear and Complex Systems, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy

3Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy
4Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, e CNR-INFM

5Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
6Department of Physics and Center for Computational Science and Engineering, National University of Singapore,

Singapore 117542, Republic of Singapore
7NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597, Republic of Singapore

(Received 28 July 2011; published 30 November 2011)

Using a dynamical model relevant to cold-atom experiments, we show that long-lasting exponential

spreading of wave packets in momentum space is possible. Numerical results are explained via a

pseudoclassical map, both qualitatively and quantitatively. Possible applications of our findings are

also briefly discussed.
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Apart from idealized exceptions like inverted oscillators
[1], exponential growth of observable quantities is thought
to be a rare occurrence in small quantum systems.
Exponential instability, which is the landmark of classical
chaos, does not give rise to long-lasting, physically
observable exponential growth, not even in classical
mechanics, because exponentially fast motion along un-
stable manifolds is concealed as such manifolds fold in
homoclinic or heteroclinic tangles. Moreover, it does not
survive in quantum mechanics beyond a short time scale
tE � � lnð@Þ=� [2], where � is the maximal Lyapunov
exponent. Using a simple dynamical model relevant to
today’s cold-atom experiments, we show in this work
that exponential quantum spreading (EQS) of wave packets
in momentum space does exist for a significantly long time
scale. This is achieved by exploiting two intriguing mecha-
nisms at once. First, our quantum system is set close to a
quantum resonance condition, in a ‘‘pseudoclassical’’ (yet
strictly quantum) regime where the quantum dynamics
follows trajectories of a fictitious classical system, which
emerges at small values of a ‘‘pseudo-Planck’’ constant @�.
This ‘‘constant’’ @

� measures the detuning from exact
quantum resonance and can easily be made quite small
by varying physical parameters while keeping the system
in a deeply quantum regime. Second, appropriate driving
fields are chosen such that a pseudoclassical stable mani-
fold of an unstable fixed point can support easy-to-prepare
quantum states. As shown below, these factors concur in
eventually generating EQS in momentum space (or expo-
nential energy increase) as a transient but long-lasting
dynamical phenomenon, whose duration is given by
ðA=@�Þ lnðC=@�Þ (A and C are constants for small @�) and
therefore can be enlarged to a very long time scale as
parameter @� decreases. The exponential rate of EQS scales
linearly with @

� and is typically small for close-to-
resonance situations, yet the EQS momentum scale can

be huge because it scales with 1=@�. Such long-lasting EQS
does not rest on the chaotic motion which is present in the
classical limit but on quasi-integrable motion which is
instead present in the pseudoclassical limit.
The dynamical model used here is a simple modification

of the well-known kicked-rotor model [2], a paradigm of
quantum chaos that has been extensively studied both
theoretically and experimentally. For all previous variants
of such a type of driven systems, quantum spreading is
known to range from ballistic propagation to superdiffu-
sion as well as standard linear diffusion followed by dy-
namical localization [2]. Our finding of long-lasting EQS is
thus an intriguing result in quantum chaos. In a broader
context, the EQS reported here is different from other
forms of fast wave-packet spreading like, e.g., the ‘‘super-
ballistic’’ diffusion found in a lattice model [3] (where the
wave-packet spreading can be a cubic function of time) and
the transient ‘‘hyperdiffusion’’ found in generalized
Brownian motion [4] (where a square variance may in-
crease at the fifth power of time). Furthermore, analogous
to the novel exponential acceleration of classical particles
[5], the possibility of long-lasting EQS might be useful for
designing some robust acceleration methods for quantum
systems.
Consider then the following Floquet propagator for a

double-kicked-rotor model:

Û¼e�iðT�T0Þðp̂2=2@Þe�iðK=@Þcosðq̂Þe�iT0ðp̂2=2@Þe�iðK=@Þcosðq̂Þ; (1)

with all quantities in dimensionless units. Throughout, q̂
and p̂ are the canonical coordinate and momentum opera-
tors, respectively. This system was first experimentally
studied in Ref. [6] by subjecting cold atoms to two
period-T �-kicking sequences of an optical lattice poten-
tial, time-shifted by T0 < T with respect to each other.
Under the so-called quantum main resonance condition
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T@ ¼ 4�, achievable in a number of cold-atom experi-
ments [7–11], we obtain an ‘‘on-resonance double-
kicked-rotor’’ model (RDKR) [12,13], described by the
Floquet propagator:

ÛR¼e�ið4�=@�T0Þðp̂2=2@Þe�iðK=@Þcosðq̂Þe�iT0ðp̂2=2@Þe�iðK=@Þcosðq̂Þ:

(2)

Because of spatial periodicity of the kicking potential
cosðqÞ, changes in momentum p must occur in integer
multiples of @. The momentum eigenvalues of the system
are hence given by m@þ �@, where � 2 ½0; 1Þ is a quasi-
momentum variable determined by the initial state and
conserved by the dynamics. In cold-atom experimental
realizations of the kicked-rotor model, the initial state is
a mixture of states with a certain spread of �, where the
spread can be made small by loading a Bose-Einstein
condensate into the lattice such that the initial-state coher-
ence spans over many lattice constants [9–11]. For � ¼ 0,

the Floquet spectrum of ÛR plotted against T0@ 2 ½0; 4��
yields the famous Hofstadter’s butterfly structure [13], with
the spectra identical with that of the kicked-Harper model
[14] for arbitrary irrational values of T0@=� [15].

Representative numerical EQS results for the quantum

map ÛR are depicted in Fig. 1, with the time dependence of
the mean value hn2i � hp̂2=@2i plotted in a log scale for a
zero-momentum initial state (hence � ¼ 0). As seen
clearly from Fig. 1, apart from a short transient initial
stage, logðhn2iÞ displays a striking linear dependence on

the number of iterations of ÛR (denoted by t). That is,

Fig. 1 demonstrates exponential spreading in momentum
space, with the exponential behavior sustaining over a wide
range of time and momentum scales. For example, in
Fig. 1(a), the exponential spreading occurs from t � 103

up to t � 104, and hn2i increases from 10�1 to 106. For the
case in Fig. 1(b), the exponential spreading also brings hn2i
from 102 to 105, over a time scale of the order of 104. In all
cases when such exponential behavior is observed in our
extensive numerical studies, @T0 is close to 2�M=N, with
M and N being odd integers. For instance, @T0 is close
to 2� for the case in Fig. 1(a), whereas for the case of
Fig. 1(b) it is slightly away from 30�=13.
To explain the EQS discovered in our numerical work, in

our theoretical analysis we exploit the above-mentioned
close-to-resonance condition. To that end, we consider
cases when @T0 is close to a low-order resonance, i.e.,
@T0 ¼ 2�þ @

� with j@�j � 1. The reason for the notation
@
� will become manifest in Eq. (3). We note that under the
precise condition @T0 ¼ 2� and� ¼ 0we have a so-called
quantum antiresonance and that interesting aspects of long-
time quantum diffusion in the vicinity of quantum antire-
sonance were previously analyzed for a different model,
describing a kicked charge in a magnetic field [16]. The
long-time asymptotic behavior of quantum motion is not,
however, in the scope of the present work, as we are instead
interested in the transient, though long-lasting EQS. We
now proceed by adopting a pseudoclassical approximation
which was successfully implemented in the study of other
close-to-resonance phenomena observed in cold-atom op-
tics [17]. That is, quantum dynamics under close-to-
resonance conditions, and hence far away from its proper
classical limit, may be nevertheless extremely close to the
behavior of a fictitious classical system, unrelated to the
classical limit. Cases with � ¼ 0 will be studied first. For
convenience, we also set @� > 0. With such specifications,

the first factor in ÛR in Eq. (2) reduces to eiT0ðp̂2=2@Þ, a time
reversal of the normal free-rotor propagator and a feat
experimentally achieved in Ref. [10]. Next we introduce
the rescaled kicking strength ~K � K@

�=@ and the rescaled

momentum ~̂p � p̂@�=@. As � ¼ 0, ~p is quantized in in-

teger multiples of @
�, so the relation e�iT0ðp̂2=2@Þ ¼

e�ði=@�Þð ~̂p2=2þ� ~̂pÞ holds true, and using it in Eq. (2) yields

Ûð�¼0Þ
R ¼ eði=@�Þð ~̂p2=2þ� ~̂pÞe�ði=@�Þ ~K cosðq̂Þe�ði=@�Þð ~̂p2=2þ� ~̂pÞ

� e�ði=@�Þ ~K cosðq̂Þ: (3)

In Eq. (3), @� manifestly plays a Planck-constant-like role,
so that in the pseudoclassical limit when @

� ! 0, the
quantum dynamics described by (3) comes closer and
closer to that of a classical double-kicked rotor whose

kinetic energy term alternates between �ð~p2

2 þ �~pÞ but

with a fixed kicking potential ~K cosðqÞ. The associated
pseudoclassical map can then be obtained directly:

〈 
  〉

〈 
  〉

FIG. 1. Two examples of long-lasting exponential
quantum spreading (solid lines) in RDKR [see Eq. (2)].
(a) K ¼ 5, T0 ¼ 1, and T0@ ¼ 2�þ @

� with @
� ¼ 10�3. The

dotted line represents the pseudoclassical result, and the dash-
dotted line represents 	e2�þt with �þ found analytically.
(b) K ¼ 9, T0 ¼ 1, and T0@ ¼ 30�=13þ 1:7� 10�4. The
dash-dotted line represents the best exponential fitting (shifted)
that suggests an exponential rate of �0þ ¼ 4:1� 10�4. Here and
in all other figures, plotted quantities are in dimensionless units.
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qnþ1 ¼ qn þ ~K sinð~pnþ1 þ qnþ1Þ;
ð~pnþ1 þ qnþ1Þ ¼ ð~pn þ qnÞ þ ~K sinðqnÞ:

(4)

Remarkably, this map can be recognized as a kicked-
Harper model [14], with the canonical pair identified as q
and ~pþ q. This map has unstable fixed points at q ¼ m�,
and ~pþ q ¼ n�, with mþ n being an even number, and

Lyapunov exponents �� ¼ ln½ð ~K2 þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~K4 þ 4 ~K2
p

Þ=2�.
In the limit of ~K ! 0, stable and unstable manifolds of
such fixed points connect in a periodic network, and phase
space is divided into cells in the shape of parallelograms,
with two sides parallel to the q (zero-momentum) axis and
the other two inclined by arctanð2Þ. For small nonzero ~K,
splitting of such separatrices occurs, giving birth to an
exponentially thin stochastic web. Figure 2(a) depicts a
typical phase-space structure, which is indeed a portrait
deformed from that of a kicked-Harper model [14]. The
almost straight lines in Fig. 2(a) are the stochastic web.

The exponential spreading seen in Fig. 1(a) can now be
understood with our pseudoclassical map. The initial state
p ¼ 0 corresponds to an ensemble placed almost perfectly
astride the stable manifold of the unstable fixed point at
ðq; ~pÞ ¼ ð�; 0Þ. The dynamics first pulls this ensemble
towards this fixed point and then repels the ensemble
away from the fixed point at the exponential rate �þ along
the unstable manifold. A key point is that, although this
exponential increase involves a maximum change of 2� of
the pseudoclassical momentum ~p, it translates into expo-
nential behavior of the physical momentum p over a huge
scale for j@�j � 1, because p	 ~p@=@�.

Figure 1(a) shows that results of pseudoclassical
and quantum calculations nicely agree on the ensemble
level. It is interesting to note that because the separatrix
structure in the standard kicked-Harper model [14] is tilted
away (45
 for vanishing kicking strength) from the

zero-momentum axis, our exponential spreading mecha-
nism cannot be generated there, because a state sitting on
the stable branch of a separatrix would be delocalized on a
huge momentum scale right at the start. It should also be
stressed that this mechanism does not rest on chaos;
although chaotic diffusion inside the thin stochastic web
is itself an intriguing phenomenon [18], EQS is instead an
outcome of quasi-integrability.
The time scale of the found exponential spreading,

denoted by texp, can also be estimated. Here we sketch a

crude heuristic argument, leaving a more formal version
for the Supplemental Materials [19]. For a pseudoclassical
ensemble aligned with the q (zero-momentum) axis with a
momentum width �~p, exponential momentum growth
~pðtÞ / �~p expð�þtÞ along the unstable manifold continues
until ~pðtÞ 	 �, and therefore texp 	 ��1þ lnð�=�~pÞ. It can
be shown that �~p / @

� for the zero-momentum quantum
initial state, so, on account of �þ � ~K ¼ K@�=@ (for small
~K), we obtain texp 	 ð@=K@

�Þ lnð�=@�Þ. Figure 3 shows that
this theoretical scaling with @

� is in excellent agreement
with the numerically found time scale of EQS. Additional
numerical results (not shown) of the K dependence of texp
also agree with our theory. It is now clear that as @

�
decreases and exact antiresonance is approached, texp in-

creases and �þ decreases [20].
To motivate experimental interest, we now examine the

effects of a nonzero quasimomentum �. Let us generalize
our previous definition of ~p, i.e., ~p � j@�jðp� �@Þ=@. Still
focusing on T0@ ¼ 2�þ @

� as an example, we find the
following pseudoclassical map associated withU at� � 0:

~p0
n ¼ ~pn þ ~K sinðqnÞ;

q0n ¼ qn þ ~p0
n þ ð2�þ 1Þ�;

~pnþ1 ¼ ~p0
n þ ~K sinðq0nÞ;

qnþ1 ¼ q0n � ~pnþ1 þ ð2�þ 1Þ�:

(5)

FIG. 2. Phase-space portrait of the pseudoclassical limit
of RDKR for K ¼ 5, T0 ¼ 1, and T0@ ¼ 2�þ @

� with
@
� ¼ 3

ffiffiffi

2
p � 10�4�. � ¼ 0 in (a) and � ¼ 4� 10�5 in (b).

FIG. 3. Numerical texp (after which the spreading in momen-
tum space deviates from the exponential law) for RDKR (black
squares) with K ¼ 1, � ¼ 0, T0@ ¼ 2�þ @

�, and a varying @
�.

The dashed line represents the theoretical prediction.
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Here ~p0
n and q0n are two intermediate variables. Note also

that this mapping reduces to Eq. (4) if � ¼ 0. The phase-
space structure of themapping in Eq. (5) is still periodic in ~p
with a period 2�, with one example shown in Fig. 2(b).
Within the regime �� � ~p < �, there are two unstable
fixed points located at ~p ¼ 2��, q¼2���, or q¼�þ�,
with � � arcsinð4��= ~KÞ. As indicated by Fig. 2(b), for a
sufficiently small�, the stable direction of the two unstable
fixed points is still almost parallel to the q axis, and the
unstable direction is still extended in ~p. The exponential
spreading mechanism hence survives. The exponential di-
vergence rate can be found from a linear stability analysis
of the fixed points. A simple calculation gives that the

rate is now dependent on �, i.e., �þð�Þ ¼ ln½ð ~K02 þ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~K04 þ 4 ~K02p
Þ=2�, with ~K02 ¼ ~K2 � 16�2�2. As such,

�þð�Þ is maximal for � ¼ 0. This indicates that, in the
presence of a distribution of values of � centered at � ¼ 0,
the spreading dynamics will be dominated by the � ¼ 0
component. On the other hand, when j�j � �cr �
~K=4� ¼ K@�=ð4�@Þ, the fixed points disappear, and then
the pseudoclassical mechanism for EQS is lost.

In Fig. 4(a), we numerically examine how a nonzero �
affects the exponential spreading behavior. There it is seen
that an exponential spreading law eventually turns into a
periodic oscillation as � increases. Using this transition,
we have also numerically extracted critical � values as a
function of K and then compared them with our theoretical
analysis of �cr. Such a comparison is shown in Fig. 4(b),
with excellent agreement. The important message from
Fig. 4 is then the following: To observe exponential spread-
ing with nonzero � values, it is advantageous to increase
�cr, which can be achieved by increasing the kicking
strength K. Assuming that experimental uncertainty in �
is around �� ¼ 10�3 and that the near-resonance condi-
tion can be achieved at an accuracy of @�=ðT0@Þ � 10�3,
then this requires KT0 � 4�, which is in the appropriate
regime for current cold-atom experiments [8–11].

As illustrated in Fig. 1(b), EQS is also observed near
higher-order resonances, i.e., T0@ ’ 2�M=N. There the
pseudoclassical approach requires nontrivial modifications
[21], which are not examined in the present work. Finally,
we briefly mention some interesting applications of the
EQS found here. First, if we introduce a phase shift be-
tween the two �-kicking potentials as in Ref. [22] and then
tune T0@ close to a resonance condition, we find that not
only hn2i but even the current (i.e., the momentum expec-
tation value) can increase exponentially over a long time
scale. A novel type of ratchet accelerator can hence be
formed. Second, because the dynamical model used here
can be equally realized in spin chain models kicked by an
external parabolic magnetic field [12,23], an exponential
propagation of quantum excitation along a spin chain is in
principle possible.
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