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Abstract

We first survey some recent results on optimal embeddings for the
space of functions with Au € L(Q), where  C R? is a bounded domain.
The target space in the embeddings turns out to be a Zygmund space and
the best constants are explicitly known. Remarkably, the best constant
in the case of zero boundary data is twice the best constant in the case
of compactly supported functions. Then, following the same strategy,
we establish a new version of the celebrated Trudinger-Moser inequality,
as embedding into the Zygmund space Z;/ Q(Q), and we prove that, in
contrast to the Moser case, here the hest embedding constant is not
attained.

1 Introduction

Brezis and Merle in the seminal paper [5] considered the following problem

—~Au = flz} € L}Y{Q)
{u =0, ondQ &

for a bounded domain £ C R?. In the non-borderline case in which f € L¥(Q),
p > 1, elliptic regularity theory yields v € W%*?(Q); in analogy, one may
conjecture that in the borderline case p =1, one has u € W (Q): this is false!
Indeed, the Sobolev embedding for the space W5?(Q) whenp = land N = k =
2 gives W(2) <= L*(f2), whereas the maximal summability for solutions to

(1) is of exponential type and namely

/ Al dz < 0o, YASO 2)
o
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as established in [5], where actually the following stronger uniform bound has

been proved

<O, if A<dr
sup f el g (3)
o

| Aully=[lfll,=1 =+4oc, if A>dx

Inequality (3) is in the spirit of the Moser improvement [14] of the Pohozaev
[16] and Trudinger [19] embedding in the so-called Sobolev limiting case N =
kp, p > 1, which for k=1 and N = p = 2 reads |

. <Ca), if a<dr
sup fgem‘ dx (4)

uew 2oy =400, if a>4dn
IVulz<1 '

Actually, from the point of view of Soholev regularity, one has that solutions to
{1} belong to W, ?(Q) for all ¢ < 2 (sometimes called the grand Soboley space

W, 2)(9)) see [8, 11], but not to Wy2(£2), see [2, 15]; this explains the gap in
the degree of integrability between (3) and (4).
Besides the above conmder_atlons, in the case of compactly supported functions,
a celebrated result by D.R. Adams {1], which extends Moser’s result to the
higher order space W(f i (Q2), k > 1, entails in particular the following

N { <CPB), if 8<0n

eBlul T=2

sup

o N
wew,” 2 (@)
llAuH% <1

where 8y is explicit. Such results seem uninteresting when N = 2 since, as we
have already recalled, Wi (Q2) < Lo°(0),

However, the discussior carried out so far motivates the introduction of the

following function spaces

WEP(Q) = c.z{u € C() N COTY), ulon =0 : [|Au), < oo}
W22 () elfue () : Au], < col
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which do coincide {with equivalence of norms, see [12]) respectively with WP
WHP(Q) and W2 () if and only if p > 1.

In [7] we addressed the problem of establishing optimal embeddings for the
spaces Wi’l () and Wz’i) {Q?) into the class of exponentially integrable functions
(2): those results, which we summarize in Section 2, improve the Brezis-Merle
result (3) and give a natural extension of the Adams inequality (5) to the case
N=2.

Notice that the integrability condition (2) is exactly the one which fulfills the
definition of Zygmund space Zy(§t). More in general, for & > 0 the Zygmund

space Z&{(Y) consists of all measurable functions u(z) on O C RV such that
fe)‘|“|%dw<oo, VA0 (6)
Q

It is easy to verify (see [3]) that

Zg =< u llmm*(t) :0}

014 10g (12)]°

where u* : [0,00) — [0, 00] denotes the Hardy-Littlewood positive decreasing

rearrangement of u: @ ¢ RY — R, namely
w*(t) ;=sup{s > 0 |[{z € RY : ju(z)| > s}| > t}, t>0

The quantity
u* ()

e = sup e

: te(0,lal) [1+1og( )]
defines a quasinorm on Zg(§2) which turns out to be equivalent to a real norm
(by replacing u" (t) with the Hardy-Littlewood maximal function : fg u*(s) ds).
The space Z& can be viewed as the limiting case of Loventz~Zygmund spaces
IP4(log L) ©, as p,q — oo, see [3] and also [4], as well as the Orlicz space
Lui, see [17], equipped with a different quasinorm.

QOur main purpose here is to revisit the Pohozaev and Trudinger embedding

in the limitine Sobolev case H1(), where @ ¢ R? is a bounded domain.
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Indeed, the strategy used in [7] suggests to investigate the embedding
Hy () < L2 (Q) (7)

from a different point of view than that of Moser, who focuses the attention
more on the optimal uniform bound (4) than on the sharp version of the embed-
ding inequality in (7). At our knowledge, the best constant for the embedding
(7) has not been investigated before; recently, closely related resulis appeared
in [9]. Moreover, it is well known that Moser's inequality is attained [6, 10]; in
contrast, we show that the best constant in the embedding inequality for (7) is
not attained. We borrow some ideas of [7] in order to prove the following main

results:

Theorem 1 Let © be a bounded domain in R2. Then, the following inequality

holds

1
llusliz12 < Jin | Vul|2 (8}

for any v € HI Q). Moreover, the constant appearing in (8) is sharp.
i}

Theorem 2 Lei Q = Bg, the ball in R? centered at the origin and radius R.

Then, the best constant in (8), namely

1

—=== sup ||z

v weHL(BR)
[Vul2=1

is not achieved.

2 On borderline cases in second order Moser
inequalities

Next we summarize the results obtained in [7] in the case N = 2, and for
the sake of simplicity we set Z(2) = Z(Q). It is worth to point out that

the notation Lg.,(€2) sometimes refers in Hterature to the Zygmund space of

BEST CONSTANTS FOR MOSER TYPE INEQUALITIES IN 83

functions which enjoy the integrability condition (2} just for some A > 0; this
is a strictly larger spacé than Z(Q) in which L*{f} is not dense, while the
closure of L) in Legp(€2) is precisely Z(Q); see {3, Theorem D.

Theorem 3 Let N=2 and Q@ C R? be a bounded domain. Then, the following

inequalities hold:

lulz < 4 I8ul,  VueWEHO) ©

A

1
lulz < - lAuls,  VueWRh(@), w20 (10)
Moreover, the constants in (9)-(10) are the best possible for any domain.

The next result deals with maximal summability properties for solutions to (1).
From one side, it is an improvement of the Brezis-Merle result (3), on the other
side, in the case of compactly supported functions, it yields a natural extension

of Adams’ result (5), to the case p = 1.

Corollary 1 Let Q be a bounded domain in R%. Let & : Rt — R be a
continuous function such that e ®(), « > 0, is increasing s t — +-oc. Then
there ezists a constant C = C{a, @) > 0 such that
fo<dr, YucWat(R)
sup /eo‘l“'@(\ude <]
I1auli=1/e2 ifo <8r, VYuc Wi’;(Q), u >0
(i1)

if and only if ®(t) is integrable near infinity.

Actually the validity of (10) and (11} in the case of compactly supported func-
tions, extends, in the sharp form, also to the whole subspace of Wi’,lo (€} con-
sisting of radially symmetric functions. Let us sketch the proof of (9)-(10) in

the case of radially symmetric functions:

s Assume first v € C?(Bg) N C°(Bg) and vanishing at the boundary 8Bg.
Let us define

w(t) ;= dmv(Re~?) , » = Re™¥/? € (0, R]
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Then w € C*{0, 00}, w(0) = 0 and we have

w'(t) = —2mu(Re ¥/2)Re~/2,
w'(co) = 0,
w'(t) = mo(Re™Y?)R%e™ 4 ru,. (Re~t/2)Ret/2
_ 2_—t —t/2 UT(RE_HZ)
TRe [UW(Re )+w_

= WRQB_tA?) !|$|=Re“¢/2
so that

lau]; < 27r/OR

o
= ﬂ/ ‘Rze*tvw(Re_tﬂ)+Re*t/2vT(Re‘t/2). di
0
= [Tl
0

Next notice that

w(t) = fot w'(s)ds = /Dt (— f:o w”(z)dz)ds < tj|Av]y

Therefore

v
(Uﬂ» + —r) \ rdr
T

v(r} = %w (2log (£)) < | log (£) (12)

Since the decreasing rearrangement is monotone and positively homoge-

neous (see [4]), we obtain from (12)

which implies {9).

® In the case of compactly supported functions w e Wﬁ’%(Q), notice that

thanks to the homogeneous boundary conditions we have

w'(t) = — jf—m w’(z)dz = .At w'(2)dz

w
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since w’'(0) = w'{co) = 0. Therefore,

oo i
2lw’(E)] = ‘—f w”(z)dz+f w"(2)dz
£ 0
o0 t
/ " (2)dz + / " (2)|dz = [ Aol
t 1]

1A

and we proceed like in the previous case and obtain half the constant.

We mention that to cover the general case we use the Talenti Comparison
Principle [18] and then we exhibit explicit sequences to test the sharpness. For

the proof of Corollary 1 we refer to [7].
3 A new version of the Trudinger—Moser in-
equality

Inspired by the results of the previous section, we now go back to prove our main

results concérning the sharp version of the Pohozaev and Trudinger embedding.

3.1 Proof of Theorem 1

Let uw € H3(), and let u¥(z) denote the spherically symmetric rearrangement
of w. Asin [14], set ‘
w(t) = Viru{Re 1?) (13)

where 7R? = |)|. Then w is monotone increasing on {0, 0o} and, by the Polya—

Szego inequality, we get

_ / (w2dt = f\Vu”lgdscnguFdx
0 O : Q

By a density argument, we may suppose that w(t) is C', so that
¢
wlt) = / W' (8)ds < | VullpvE
a

and hence
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Then

u* (mlzf*) = uh(z) < “3—%@ log (ER:) = Vlla g (Lﬂ—i)

t ) Vix t
so that
s = sup —8___ < [Vels

=010 14 1og (1) - Vi
t

The inequality (8) is sharp, and this can be achieved by using the Moser trun-

cated functions [14]:
t<n

i1
_[ v ts

by which one has [|[Vuy|s = 1 and

W - {t
\/4_7?”71'71”21/2 = dr  sup _i{g@(_j
reo.la) s
1+]og { 5
= e 2B Ve @)
t&(0,00) +t -+ 1

3.2 Proof of Theorem 2

Let {u,,} be a normalized maximizing sequence namely,

1
IVuplla =1 and [tn]| 12 = —=, asn— oo

Vvar !

We may assume that u, — u weakly in H}(2) and |Vu,|? — p weakly in the
sense of measures. By the concentration-compactness result of P.L. Lions [13],

the sequence {u,} enjoys one of the following alternatives:

e there exists ¢ > 47 such that the family v, = ¥ is uniformly bounded
in L(), and thus Ja edrun fo ¥’ a5 400, In particular, this

is the case when w is different from zero.
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or

® =6y, for some zg € 0, and uw = 0.

We will show that we are in the latter situation i.e. the non compact case.
Thanks to the Polya-Szego inequality, we may restrict our attention to radial

and nondecreasing normalized maximizing sequences: indeed,
lunllzsre = bl 212 and || Vug|la > | Vub

so that, if {u,} is a maximizing sequence, then || Vuy, ||z = |Vauf |[J=1 and {ut}
is a normalized maximizing sequence. Note that {uf} is concentrating at the
origin if and only if {u,} is concentrating at some point zg € .
Let {wy} be the sequence associated to {u,} via the change of variable (13).
Then

+00

we(0) =0, w,(t)>0 and / (w (1)) dt =1
o

By (14) we have

t)
VAT lun| z12 = sup @n(
H ”Z te(0,00) 1412
80 that
p wn(t) 17, asn
su — 17, — 00
te(0,00) V1 +1 :

In particular, for any £ > 0 there exist n. € N and ¢, € (0, +00) such that
e {te) > (L—e)v1+¢,

On the other hand, for any 4 € (0,1) and for any ¢ > 0

w(t) —w(A) = f; w'(s)ds < ft(w’)z dsvt— A

A

so that, for any ¢ > 0 and for any 4 € (0,¢,.)

(I1—2)v/1+1 < 1 [_te(w.{%s)%/ta — Atwn, (A) <y fte(w;ls)wte —A++V4 (15)
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Choosing A = 0 in (15}, we have
te —+r o0 age —0

Furthermore, for any 4 > 0 we also have
A
: f (w),)?ds — 0
0

indeed, if not fr (w}, ) <1 -4 for some & > 0, contradicting (15).
Therefore, up to extracting a subsequence, {wn} is concentrating at +o0 and

in-turn, {u,} is a normalized maximizing sequence concentrating at 0: this

completes the proof of Theorem 2. -
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