
An Empirical Evaluation of Effort Prediction Models
Based on Functional Size Measures

Luigi Lavazza Sandro Morasca
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

e-mail: {luigi.lavazza, sandro.morasca}@uninsubria.it

Gabriela Robiolo
Facultad de Ingeniería
Universidad Austral

Buenos.Aires, Argentina
e-mail: grobiolo@austral.edu.ar

Abstract— Software development effort estimation is among
the most interesting issues for project managers, since reliable
estimates are at the base of good planning and project control.
Several different techniques have been proposed for effort
estimation, and practitioners need evidence, based on which
they can choose accurate estimation methods.
The work reported here aims at evaluating the accuracy of
software development effort estimates that can be obtained via
popular techniques, such as those using regression models and
those based on analogy.
The functional size and the development effort of twenty
software development projects were measured, and the
resulting dataset was used to derive effort estimation models
and evaluate their accuracy.
Our data analysis shows that estimation based on the closest
analogues provides better results for most models, but very
bad estimates in a few cases. To mitigate this behavior, the
correction of regression toward the mean proved effective.
According to the results of our analysis, it is advisable that
regression to the mean correction is used when the estimates
are based on closest analogues. Once corrected, the accuracy of
analogy-based estimation is not substantially different from the
accuracy of regression based models.

Keywords- Functional size measurement; function points;
effort estimation; Regression Toward the Mean; Least Median of
Squares.

I. INTRODUCTION

Several different types of models have been proposed for
estimating the effort required to develop a software system
whose functional size is known.

In this paper, we use a dataset of 20 projects to evaluate
the accuracy of different estimation models. For each project
in the dataset, we assume that the other 19 projects’ sizes and
effort data are known, and that the considered project
development effort is estimated based on this data.

The model types considered are:

Estimated_Effort = a + b  Size (1)

Estimated_Effort = a Sizeb (2)

Estimated_Effort = Size / Productivity (3)

where Productivity is defined as the ratio Size/Effort; Effort
is measured in person hours and Size is measured in
Function Points [1][2].

Models of type (1) are obtained via Ordinary Least
Square (OLS) and Least Median of Squares (LMS) linear
regressions, while models of type (2) are obtained via OLS
regression after log-log transformation. Models of type (3)
are obtained using two different values of productivity:
a) ProductivityCA: the productivity of the projects that are

Closest Analogues (CA) to the project to be estimated.
b) ProductivityRTM: the productivity obtained from

ProductivityCA by correcting Regression Toward the
Mean (RTM).

The goal of the paper is to evaluate the accuracy of
software development effort estimates obtained via popular
techniques, such as regression and analogy. These estimation
techniques are among the most used by practitioners. Maybe
LMS is not so widely used as the other ones, however, since
its introduction [3], LMS has been used in several Empirical
Software Engineering studies (a list appears in [4]). The
great advantage of LMS for practitioners is that it takes the
burden of dealing with outlier identification and exclusion
away from the user. A disadvantage for practitioners is that
LMS excludes half of the datapoints from the model, so that
relatively large datasets are needed to apply it.

More sophisticated techniques were not considered
because they have not yet achieved great popularity among
practitioners. In fact, our paper is mainly directed to
practitioners that have collected –often with some difficulty
and effort– a set of historical data, and wonder what is the
best way to use this data. Accordingly, we show how some
popular estimation methods can be applied to historical
datasets of average size, and what the accuracy of the
resulting estimates is. This may help practitioners choosing
among the many available types of effort estimation models.

The paper is organized as follows: Section 2 describes
the dataset and illustrates the derivation of models for every
project in the dataset, and the application of such models to
get effort estimates. Section 3 evaluates the accuracy of the
obtained estimates. Section 4 discusses the threats to the
validity of this study. Section 5 accounts for related work.
Finally, Section 6 discusses the results found, draws some
conclusions and outlines future work.

II. MODEL BUILDING

The analysed projects are a superset of those described in
[5]. Also, the data is available from the authors on request.

373Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

They were selected because they have the following
characteristics:
a) Requirements specifications were documented in a

homogeneous way, namely via use cases.
b) Use cases were completely implemented, therefore the

effort employed in every project concerns the same
overall activity, consisting in complete implementation.

c) The hours worked in each project were homogeneously
and accurately registered.

Some projects were developed at Universidad Austral, in
a software engineering undergraduate context, as an
assignment, consisting in the development of a business
application. The hours worked on programming were
verified and measured by the team leader and by a professor,
as this was one of the academic requirements. The other
projects were developed in two different contexts: the
System and Technology (S&T) Department at Universidad
Austral and a CMM level 4 Company. The S&T Department
develops software for the university and other parties, with a
contractual relationship with the students, similar to that one
they would have in a company. The hours worked on
programming were obtained from the company registration
files. The information about such hours was used in each
company to do quality control or for future project
estimation. The involved human resources in both
environments shared a similar profile: advanced
undergraduate students –who had been similarly trained–
worked in academy, at the S&T Department and at the CMM
level 4 Company.

Table I reports the values of ProductivityM (the mean
productivity), ProductivityCA, and ProductivityRTM. These
productivity values were computed for each project by
taking into account the rest of the project data. So, for
instance, ProductivityM for project 1 is given by the mean of
the productivity values of projects 2 to 20.

ProductivityCA was computed as the mean productivity of
the two projects having minimum size distance with respect
to the considered project. In case three or more projects had
the same distance, they were all considered. Let us consider
project 5, which has size of 110 UFP: the closest analogue is
project 14 (distant just 1 UFP), while projects 4 and 13 are at
a distance of 3 UFP. In this case, ProductivityCA is given by
the average of the productivities of projects 4, 13 and 14, i.e.,
Productivity values (113/285 + 107/348 + 111/242.5)/3 =
0.386 UFP/PersonHour.

Having computed ProductivityCA, it was then possible to
check for the conditions under which the regression to the
mean phenomenon is bound to occur. In our case, the RTM
is expected to occur in ProductivityCA with respect to the
actual productivity, which is given by the ratio size/effort.

The conditions for RTM are: a) the distributions of the
actual productivity and ProductivityCA are normal, b) they
have similar variance, and c) they are not perfectly
correlated. In our case, all these conditions are satisfied
since:

TABLE I. PRODUCTIVITY VALUES

ProjID Actual Mean CA RTM corrected

1 0.451 0.397 0.543 0.515

2 0.568 0.391 0.450 0.438

3 0.447 0.397 0.240 0.270

4 0.396 0.400 0.515 0.493

5 0.335 0.403 0.386 0.389

6 0.434 0.398 0.269 0.294

7 0.170 0.412 0.266 0.294

8 0.296 0.405 0.072 0.136

9 0.867 0.375 0.786 0.707

10 0.658 0.386 0.525 0.498

11 0.878 0.375 0.553 0.519

12 0.161 0.412 0.236 0.270

13 0.307 0.405 0.317 0.333

14 0.458 0.397 0.389 0.391

15 0.133 0.414 0.179 0.224

16 0.401 0.400 0.373 0.378

17 0.361 0.402 0.386 0.389

18 0.595 0.389 0.256 0.281

19 0.037 0.419 0.072 0.139

20 0.039 0.419 0.068 0.135

a) the Shapiro-Wilk test applied to ProductivityCA and the
actual productivity rejects the hypothesis of non-
normality (p-value > 0.4 for both distributions);

b) the standard deviations of the two distributions are
similar (being 0.24 and 0.19);

c) the Pearson correlation factor r is 0.808 (p-value < 10-3).
Accordingly, the percent of regression effects –computed
via the formula (1 – r)  100– is 19.2%.
Even though the effect of regression toward the mean is

not extremely relevant, we wanted to check whether RTM
could still provide good results (as in [6]) or even better
ones, when compared to other techniques. Moreover, some
values of ProductivityCA are quite far from the actual
productivity: it is thus worthwhile trying RTM correction to
see if such deviations can be eliminated. To this end, we
applied a correction formula suggested by Campbell and
Kenny [7]:

ProductivityRTM = ProductivityCA + (1-r) 
(ProductivityM - ProductivityCA) (4)

The resulting values of ProductivityRTM are given in the
rightmost column of Table I: it is easy to see that the RTM
correction decreases high values of productivity and
increases the small ones. This is exactly what RTM
correction is expected to do. We shall evaluate if such
correction actually improves the accuracy of estimates.

374Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

We also computed Effort vs. Size models using OLS
regression, both with and without log-log transformation,
and using LMS regression. As for productivity, each
project’s model was derived by excluding the project’s data
from the dataset.

When deriving the models via OLS regression, we
excluded outliers according to Cook’s distance [8]. Cook’s
distance is commonly used to identify projects that jointly
exhibit a large influence and large residual. Projects with
Cook’s distance greater than 4/n, where n represents the total
number of projects, are considered to have a high influence
on the results [9].

This explains why some projects are associated with the
same model. Consider for instance project 7: during the
computation, Cook’s distance of project 8 suggests that
project 8 be excluded from the dataset. Similarly, project 7 is
an outlier for project 8, according to Cook’s distance.
Therefore, the models for projects 7 and 8 are computed over
the same dataset, which excludes the data from projects 7
and 8.

LMS linear regressions compute the model using only
half the available data, thus it is quite expected that several
projects share the same model.

We applied the models found to get effort estimates. The
resulting estimates are given in Table II.

TABLE II. EFFORT ESTIMATES

ID
Actual
Effort

Estimates

Lin.
OLS

LogLog
OLS

Linear
LMS

CA
RTM
corr.

1 – 322 351 341 341 360

2 – 433 494 405 598 614

3 – 321 332 331 712 633

4 285 279 285 287 220 229

5 328 237 232 216 285 283

6 198 208 196 270 320 293

7 442 190 175 235 282 255

8 723 408 405 451 2972 1574

9 392 605 586 647 433 481

10 – 369 369 397 341 359

11 131 263 271 297 208 222

12 1042 336 334 380 712 623

13 348 230 225 211 338 321

14 243 279 283 285 285 284

15 300 107 106 181 223 178

16 147 169 144 250 158 156

17 169 168 136 251 158 157

18 121 196 182 230 282 256

19 16809 1049 951 1087 8600 4484

20 5221 387 385 431 2972 1488

A 0.05 statistical significance threshold was used
throughout the paper, as is customary in Empirical Software
Engineering studies. All the results reported in the paper are

characterized by p-value < 0.05. All validity requirements
for the proposed models (e.g., the normal distribution of
residuals of OLS regressions) were rigorously verified.

III. EVALUATION OF MODELS

After having obtained the estimates for all projects using
the different models (Table II), we computed the estimation
errors as the differences between the actual and estimated
efforts.

With effort estimation, the size of an error is possibly not
as relevant as its relative size. For instance, a 10
PersonMonth error is generally more easily accepted for a
200 PersonMonth project than a 4 PersonMonth error is
considered acceptable for a 12 PersonMonth project. In fact,
even though the former error is two and a half times the
latter, it is just 5% of the entire effort, while in the second
case it is 33%.

Accordingly, we computed the relative errors of the
estimates, and reported them in Table III. Table III shows
that the biggest errors occur with the estimation based on
analogy. It is noticeable that the four biggest (in absolute
terms) errors with ProductivityCA (concerning projects 8, 18,
3 and 6) are effectively reduced by the RTM correction.
However, RTM correction has also the effect of increasing
the estimation error for some projects (see, for instance,
projects 11 and 15).

TABLE III. ESTIMATION RELATIVE ERRORS

ID
Linear
OLS

Loglog
OLS

Linear
LMS

CA
RTM
corr.

1 – -14% -17% -17% -12%

2 – 4% -14% 26% 30%

3 – -13% -13% 86% 65%

4 -2% 0% 1% -23% -20%

5 -28% -29% -34% -13% -14%

6 5% -1% 36% 62% 48%

7 -57% -60% -47% -36% -42%

8 -44% -44% -38% 311% 118%

9 54% 50% 65% 10% 23%

10 – 35% 46% 25% 32%

11 101% 107% 127% 59% 69%

12 -68% -68% -64% -32% -40%

13 -34% -35% -39% -3% -8%

14 15% 17% 18% 18% 17%

15 -64% -65% -40% -25% -40%

16 15% -2% 70% 7% 6%

17 -1% -20% 49% -7% -7%

18 62% 50% 90% 133% 111%

19 -94% -94% -94% -49% -73%

20 -93% -93% -92% -43% -71%

The distribution of errors is represented via boxplots in
Figure 1, where the errors concerning projects 19 and 20 are
omitted. As shown in Table II, all models estimate these

375Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

projects with large errors. Including them in the boxplot
would have resulted in squeezing the plots, thus making
them hardly readable.

The distribution of relative errors is represented via
boxplots in Figure 2. The mean value of errors is represented
as a diamond on each boxplot. It is easy to see that the
estimation based on the closest analogues provides good
accuracy with respect to other models, except for a single
project (project 8). It is also quite evident that the RTM
correction eliminates such anomaly, though negative errors
worsen slightly.

To fully appreciate the differences in accuracy, it is
useful to look also at absolute relative errors, which are
illustrated by the boxplots in Figure 3. It is also quite
apparent in Figure 3 that the RTM correction eliminates the
problem of huge relative estimation errors, at the expense of
a higher median absolute relative error.

However, the effects of RTM correction should be
evaluated by taking into consideration the effects on the
projects (19 and 20) that required the biggest effort. By
looking at Table II, it is easy to see that the effort of such
projects is estimated much better by analogy without
correction than with RTM correction. The fact that the
corrections concerning these projects are relatively smaller
than others (e.g. the one concerning project 8) does not imply
that they are acceptable. Actually, all the models based on
regression consider projects 19 and 20 outliers, thus
excluding them from the models. Estimation based on closest
analogues is the only way of taking into account these
projects, but ,unfortunately, RTM corrections in these cases
operate in the wrong direction, decreasing estimates that are
already underestimated. In conclusion, we must be aware
that projects (like 19 and 20) that feature quite unusual
productivity values, can reduce the effectiveness of RTM
correction.

Concerning RTM correction, our results are similar to
those reported in the literature. In particular, the MMRE and
MdMRE [10] for our set of projects (see Table IV), are close
to those reported in [6] and [11].

Table V summarizes the results of some representative
papers. It can be seen that our results (given in Table IV),
are in line with these studies.

TABLE IV. MMRE AND MDMRE OF ANALOGY BASED ESTIMATES

CA RTM
MMRE 49.3% 42.3%

MdMRE 25.5% 36.0%

TABLE V. ACCURACY OF ESTIMATES REPORTED IN THE LITERATURE

Ref.
Results

MMRE MdMRE

[12] [23.2 -51.1] [14.8 – 48.0]

[13] [36.15 – 73.85] [14.23 – 44.95]

[14] [11.3 – 32.8] [7. 2– 24.3]

[15] [32.82 – 82.20] [20.44 – 50.54]

[16] N.A. [26 – 85]

Figure 1. Boxplot of errors.

Figure 2. Boxplot of relative errors.

Figure 3. Boxplot of absolute relative errors.

376Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

IV. THREATS TO VALIDITY

Some of the projects that originated the dataset were
carried out in industry, while some others were carried out in
academia. So, treating all these projects as a single class of
projects could be inaccurate, in principle. To make data as
homogeneous as possible, academic developments were
organized and conducted as industrial ones.

During the construction of models, we tested alternate
ways of searching for analogue projects; one included the
usage of projects carried out in the same environment. In
such case, we also used different ProductivityM to correct
RTM. So, for instance, the productivity of academic projects
was estimated on the basis of the academic projects of
similar size. Then RTM was corrected using in equation (4)
the mean productivity of academic projects only. However,
taking into account the development environment did not
change much the results presented in Section III.

Another issue that deserves attention is the size of the
considered projects: only three projects are substantially
bigger than 200 FP. Accordingly, practitioners have to be
cautious when applying the results reported in this paper to
larger projects.

V. RELATED WORK

The phenomenon of “regression towards the mean”
(RTM) is thoroughly described in [7]. RTM occurs where
the estimation model is inaccurate and extreme observations
appear, i.e., the values of the attribute of interest are much
higher or lower than the expected value. The presence of
these “extreme” values calls for the correction of regression
models. Several adjustment approaches were proposed by
Campebell and Kenny [7]. Jørgensen et al. were the first
authors who described the occurrence of RTM in the context
of software effort estimation and used one of the adjustment
approaches by Campebell and Kenny [7] to evaluate five
data sets [6]. They showed that analogy based effort
estimates can be significantly improved through RTM-
adjustments. Jørgensen et al. also hypothesized that, in cases
with less extreme analogues and more accurate estimation
models, there would be an expected improvement, if the
underlying assumptions of the RTM-adjustment are met.
However, they did not prove this hypothesis in [6].

Shepperd and Cartwright [11] performed an independent
replication of the study by Jorgensen et al.: they used two
further industrial data sets in which they compared accuracy
levels with and without the RTM adjustment. Their results
were consistent with those reported in [6], as using the RTM
resulted in a small increase in predictive accuracy. However,
for one data set it was necessary to first partition it into more
homogeneous subsets. Their results added further support for
the RTM approach, in that there is a small, but positive,
effect upon prediction accuracy.

The RTM adjustment was improved by using the Model
Tree adaptation strategy. Model Tree based attribute distance
was proposed by Azzeh to adjust estimation by analogy and
derive new estimates [17]. This is advantageous because it
deals with categorical attributes, minimizes user interaction
and improves the efficiency of model learning through

classification. The experimental results showed that the
proposed approach produced better results when compared
to those obtained by using analogy based linear size
adaptation, linear similarity adaptation, 'regression towards
the mean' and null adaptation. However, this approach may
only be applied to complex data sets with large number of
categorical attributes.

The interest of finding analogies arises when historical
data sets are available, thus making it possible to look for
projects that are “similar” to the one for which an estimate
is required. Similarity is defined as Euclidean distance in n-
dimensional space where n is the number of considered
project features. Each dimension is usually standardized, so
that all dimensions have equal weight. The known effort
values of the nearest neighbors to the new project are then
used as the basis for the prediction. Shepperd and Schofield
argued that estimation by analogy is a viable technique that
can be used by project managers to complement current
estimation techniques [18].

Several papers propose improvements of estimation
based on closest analogues method. Chiu and Huan [19]
investigated the effects on estimates obtained when a genetic
algorithm method is adopted to adjust historical effort based
on the similarity of distances between pairs of projects. The
empirical results obtained using two data sets of 23 and 21
projects each showed that applying a suitable linear model to
adjust the analogy-based estimations is a feasible approach to
improve the accuracy of software effort estimates. A project
selection technique for analogy-based estimations (PSABE),
was then added to reduce the whole project base into a small
subset that consists only of representative projects. The
experimental results showed that applying the genetic
algorithm to determine suitable weighted similarity measures
of software effort drivers is a feasible approach to improve
the accuracy of software effort estimates analogy-based.
They also demonstrated that the nonlinearly weighted
analogy method has better estimate accuracy than those
obtained by using other methods [20].

Li and Ruhe [21] pointed out that a careful selection and
weighting of attributes may improve the performance of the
estimation methods. They considered the impact of
weighting (and selecting) attributes as extensions of their
estimation by analogy method AQUA+. With AQUA+ a
qualitative analysis pre-step using rough set analysis –a
machine learning technique for classification of objects– is
performed to weight attribute. They reported that AQUA+
can improve the estimation accuracy, according to the
empirical studies performed with six data sets.

Mittas, Athanasiades and Angelis [22] exploited the
relationship between the estimation by analogy method and
the nearest neighbor non-parametric regression technique in
order to suggest a resampling procedure, known as iterated
bagging, to reduce the prediction error. The positive effect of
iterated bagging on estimation by analogy was validated
using both artificial and real datasets from the literature.

Azzeh, Neagu, and Cowling [13] proposed a new formal
estimation by analogy model based on the integration of the
Fuzzy set theory with the Grey Relational Analysis (GRA) to
overcome the inherent uncertainty in software attribute

377Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

measurement. The Fuzzy set theory provides a representation
scheme and mathematical operations to deal with uncertain,
imprecise and vague concepts. GRA is a problem solving
method that is used to assess the similarity between two
tuples with M features, which is mainly used to reduce the
uncertainty in the distance measurement between two
software projects, for both continuous and categorical
features. Both techniques are suitable when the relationship
between effort and other effort drivers is complex.
Experimental results showed that using integration of GRA
with Fuzzy logic produced credible estimates, when
compared to the results obtained using Case-Based
Reasoning, Multiple Linear Regression and Artificial Neural
Networks methods. In another paper [12], the same authors
proposed a new approach to deal with each attribute, which
has different influence on the project retrieval, based upon
the idea of Kendall's coefficient of concordance between the
similarity matrix of project attributes and the similarity
matrix of known effort values of the dataset. The results
showed improved prediction accuracy when multiple project
attributes are used with certain weights. Moreover, they
integrated analogy-based estimation with Fuzzy numbers in
order to improve the performance of software project effort
estimation during the early stages of a software development
lifecycle, using all the available early data [14]. Particularly,
this paper proposes a new software project similarity
measurement and a new adaptation technique based on
Fuzzy numbers. The results have also shown that the
proposed method outperforms some well known estimation
techniques, such as case-based reasoning and stepwise
regression.

To overcome the inherent uncertainties of the estimation
process, Li, Xie, and Goh focused on the generation of
interval based estimates with a certain probability [15]. They
proposed a novel method named Analogy Based Sampling
(ABS) and compared it to the well established Bootstrapped
Analogy Based Estimation method (BABE), which is the
only existing variant of the analogy based method which has
the capability to generate interval predictions. The results
and comparisons showed that ABS could improve the
performance of BABE with much higher efficiency and
more accurate interval predictions. In another paper [23] they
proposed a genetic algorithm to simultaneously optimize the
K parameter and the feature weights for. Experiment results
showed that their methods could significantly improve the
prediction accuracy of conventional ABE.

Walkerden and Jeffery [24] stated that Analogy-based
estimation is potentially easier to understand and apply than
algorithmic methods. They compared several methods of
analogy-based software effort estimation with each other
and also with a simple linear regression model. The results
showed that people are better than tools at selecting
analogues. In particular, estimates based on selections made
by people, with a linear size adjustment to the analogue’s
effort value, proved more accurate than estimates based on
analogues selected by tools, and also more accurate than
estimates based on the simple regression model.

However, controversial results were reported on this
subject. Briand, Langley and Wieczorek [16] agree with

Stensrud and Myrtveit [25] that estimation by analogy does
not outperform regression models. Myrtveit and Stensrud
[26] suggested that the results are sensitive to the
experimental design, including dataset characteristics,
criteria for removing outliers, test metrics, significance
levels, the involvement of people, etc. Also, they pointed
out that neither their results nor previous ones were robust
enough to claim general validity.

Similarly, Mair and Shepperd found that there is
approximately equal evidence in favour of and against
analogy-based methods [27].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have tested a few estimation models,
using an experimental dataset. To the best of our knowledge,
this is the first time that an effort prediction accuracy
comparison is performed for a set of methods including OLS
models, LMS models, and analogy-based methods both with
and without RTM correction.

By looking at the results given in the tables and boxplot
in Section III, it is possible to conclude that all the
considered models yield similar performances, as far as
estimation accuracy is concerned. Actually, the model based
exclusively on analogy is slightly less precise then the others,
but RTM correction makes the precision of analogy based
estimation very close to that of regression models. It is also
possible to consider RTM corrected models preferable over
those based on regression because the median is closer to
zero (Figure 2).

In conclusion, we can say that our results are of interest
for practitioners, especially considering that a small dataset –
i.e., a dataset very similar to the datasets that can be collected
in most development environment– and popular techniques
were used.

In the future, we aim at gaining a deeper theoretical
understanding of, and generalizing the results presented here
by studying larger projects, possibly involving additional
effort-related factors, like product complexity and factors
depending on the development environment.

ACKNOWLEDGEMENT

The research presented here was partially funded by the
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software”
funded by Università degli Studi dell’Insubria, and by the
Research Fund of Austral University School of Engineering.

REFERENCES

[1] A. Albrecht, Measuring application development productivity, IBM
Application Development Symp. I.B.M. Press, 1979.

[2] ISO. 2003. ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting Practices
Manual.

[3] P. J. Rousseeuw and A. M Leroy, Robust regression and outlier
detection, John Wiley & Sons, Inc., New York, 1987.

[4] L. Lavazza and S. Morasca, “Using a Generalized Robust Linear
Regression Technique to Predict Effort in Software Engineering
Projects”, 16th Int. Conf. on Evaluation and Assessment in Software
Engineering (May 2012).

378Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

[5] L. Lavazza and G.Robiolo, “The Role of the Measure of Functional
Complexity in Effort Estimation”, 6th Int. Conf. on Predictive Models
in Software Engineering, ACM, New York, NY, USA, Article 6, 10
pages, 2010.

[6] M. Jørgensen, D. I. K. Sjøberg and U. Indahl, “Software effort
estimation by analogy and regression toward the mean”, Journal of
Systems and Software 68, 3 (Dec. 2003), pp. 37-46

[7] D. Campbell and D. Kenny, A primer on regression artifacts. The
Guilford Press, 2002.

[8] R. D. Cook and S. Weisberg, Residuals and Influence in Regression.
Chapman and Hall, London, 1982.

[9] E. Mendes, Cost Estimation Techniques for Web Projects. IGI
Publishing, Hershey, New York, 2008.

[10] S. Conte, H. Dunsmore, and V. Shen, Software Engineering, Metrics
and Models. Benjamin/Cummings, 1986.

[11] M. Shepperd, and M. Cartwright, “A replication of the use of
regression towards the mean (R2M) as an adjustment to effort
estimation models”, 11th IEEE Int. Symp. on Software Metrics
(Como, Italy, Sept. 19-22 2005), METRICS 2005, pp. 38-47.

[12] M. Azzeh, D. Neagu, and P. Cowling, “Software effort estimation
based on weighted fuzzy grey relational analysis”, 5th Int. Conf. on
Predictor Models in Software Engineering (PROMISE '09). ACM,
New York, NY, USA, 2009.

[13] M. Azzeh, D. Neagu, and P. Cowling, “Fuzzy grey relational analysis
for software effort estimation”, Empirical Software Engineering, 15,
1. Springer, 2010.

[14] M. Azzeh, D. Neagu and P. Cowling,“Analogy-based software effort
estimation using Fuzzy numbers”, Journal of Systems and Software,
84, 2, Elsevier, 2011, pp. 270-284.

[15] Y.F. Li, M. Xie, and T.N. Goh, “A Study of Analogy Based Sampling
for interval based cost estimation for software project management”,
4th IEEE Int.Con. on Management of Innovation and Technology
(Bangkok, 2008). ICMIT 2008, pp. 281 – 286.

[16] L.C. Briand, T. Langley and I. Wieczorek., “A replicated assessment
and comparison of common software cost modeling techniques”, in
Proceedings of the 22nd international conference on Software
engineering (ICSE '00), ACM, New York, NY, USA, pp. 377-386,
2000, doi: 10.1145/337180.337223.

[17] M. Azzeh, “Model Tree Based Adaption Strategy for Software Effort
Estimation by Analogy”, 2011 IEEE 11th International Conference on
Computer and Information Technology (CIT), Pafos, Sept. 2 2011,
pp. 328 – 335.

[18] M. Shepperd, C. Schofield, "Estimating Software Project Effort
Using Analogies," IEEE Trans. on Software Eng., vol. 23, no. 11, pp.
736-743, Nov. 1997.

[19] N.H Chiu and S.J. Huang, “The adjusted analogy-based software
effort estimation based on similarity distances”, Journal of Systems
and Software, 80, 4 (April 2007), pp. 628-640.

[20] Y.F. Li, and M. Xie, and TN. Goh, “A study of project selection and
feature weighting for analogy based software cost estimation”,
Journal of Systems and Software, 82, 2, Elsevier, pp. 241-252.

[21] J. Li, and G. Ruhe, “Analysis of attribute weighting heuristics for
analogy-based software effort estimation method AQUA+”,
Empirical Software Engineering, 13, 1, Springer, 2008.

[22] N.Mittas, M. Athanasiades, and L. Angelis. “Improving analogy-
based software cost estimation by a resampling method”, Information
and Software Technology, 50, 3, Elsevier, 2008.

[23] Y.F Li., M. Xie, and T.N. Goh, “Optimization of feature weights and
number of neighbors for Analogy based cost Estimation in software
project management”, IEEE Int. Con. on Industrial Engineering and
Engineering Management (Singapore, 2008) IEEM 2008, pp. 1542 –
1546.

[24] F. Walkerden and R. Jeffery, “An Empirical Study of Analogy-based
Software Effort Estimation”, Empirical Softw. Engg. 4, 2 (June
1999), pp. 135-158, doi:10.1023/A:1009872202035.

[25] E. Stensrud and I. Myrtveit, “Human Performance Estimating with
Analogy and Regression Models: An Empirical Validation”, in
Proceedings of the 5th International Symposium on Software Metrics
(METRICS '98), IEEE Computer Society, Washington, DC, USA,
1998, pp. 205-.

[26] I. Myrtveit, E. Stensrud, "A Controlled Experiment to Assess the
Benefits of Estimating with Analogy and Regression Models", IEEE
Trans. on Software Eng., vol. 25, no. 4, pp. 510-525, 1999.

[27] C. Mair, M. J. Shepperd, “ The consistency of empirical comparisons
of regression and analogy-based software project cost prediction”, in
2005 International Symposium on Empirical Software Engineering
(ISESE 2005), 17-18 November 2005, Noosa Heads, Australia, pp.
509-518, IEEE, 2005.

379Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

