
i
i

“jgt” — 2011/12/19 — 20:09 — page 1 — #1 i
i

i
i

i
i

Vol. [VOL], No. [ISS]: 1–5

Cylindrical and toroidal parameterizations
without vertex seams

Marco Tarini
VCG - ISTI - CNR (Pisa, Italy) and Università dell’Insubria (Varese, Italy)

Abstract.

A simple rendering method is presented to avoid vertex seams in cylindrical and
toroidal uv-mappings used for texture mapping (a vertex seam is a vertex dupli-
cation of a polygonal mesh with different texture coordinates assigned to the two
geometrically coinciding copies). As a result, the method leads for simpler, leaner,
replication-free data structures. Is also allows for an higher degree of proceduralism
in generation of texture coordinates.

The method is general, trivial to implement (exhaustive pseudocode is provided),

very cheap on resources (with a virtually null impact on performance) and leverages

only basic mechanisms widely available in most GPU implementations. An open-

source implementation is made available.

1. Motivations

Recall that a “vertex seam”, in a polygonal mesh data structure, is a dupli-
cated vertex with different attribute values assigned to the two (geometrically
coinciding) copies of the vertex: it is used to implement a discontinuity in the
values encoded as vertex attributes occurring in an geometrically C0 contin-
uous surface. Vertex seams recur in UV-mappings used for standard texture
mapping. An UV-mapping not requiring any vertex seam is sometimes termed
“seamless” (not to be confused with seamless textures, a term often used to in-
dicate that the signal encoded in the texture is made continuous across seams,

© A K Peters, Ltd.

1 1086-7651/06 $0.50 per page

i
i

“jgt” — 2011/12/19 — 20:09 — page 2 — #2 i
i

i
i

i
i

2 journal of graphics tools

e.g. by replicating a few texel values).
Seamless UV-mappings offer crucial advantages. Lack of vertex duplication

means simpler data structures, with no xyz-data replicas1, and avoiding the
need to keep the two copies consistent (e.g. in an animation, a shape smooth-
ing operation, etc). Lack of vertex duplication also allows for unconstrained
triangle stripping, re-meshings, mesh simplification, LOD-ding, GPU-based
vertex arrays, etc. Importantly, this kind of mapping is also needed in all
procedural approaches where texture coordinates are produced on the fly (for
example environment map approaches).

The vast majority of the UV-mapping schemas used in practice need vertex
seams. For example, all atlas based UV-mappings do, with the only exception
of [Tarini et al. 04]. The few other examples of vertex-seam free UV-mappings
are: trivial single-chart UV-mappings (usable to texture objects with disk-
topology, e.g. a flag waving in the wind); and, UV-mapping defined on a cube-
map, thanks to hardwired support for per-fragment gnomic projection and
face selection (usable for example to texture a round object, but designed and
more commonly employed for environment map techniques). The presented
method adds the case of Cylindrical and Toroidal UV-mappings to the list.

1.1. Cylindrical and Toroidal UV-mappings

In a cylindrical UV-mapping, a surface S, topologically equivalent to a cylin-
drical side area, is unwrapped into a 2D rectangular texture T , with the
right-end side of T logically connected with its left-end side. This kind of
UV-mappings recur for example in garments, solids of revolution, environ-
ment maps.

All graphic cards offer a basic hardwired mechanism, embedded in texture
fetch operations, which consists in using only the fractional part of the texture
coordinate to index a texel, ignoring the integer part. This implements an
equivalence relationship ' between texture coordinate values:

(k0 + u) ' (k1 + u) ∀k0, k1 ∈ N, u ∈ [0..1) (1)

This mechanism allows to define polygons spanning across the implicit con-
nection between two opposite sides of the texture. However, it is common
knowledge that this does not avoid the need of duplicated vertices (see Fig. 3
for examples of the artifacts arising unless vertex seams are introduced).

The reason is that the attribute interpolation of texture coordinates in the
rasterizer is unaware of equivalence (1): for example, interpolation between

1Data structures for meshes can be designed to deal with jumps in texture coordinates in
ways other than vertex duplication: texture-coordinates can be indexed per face separately
from vertex-position data, or, they can be embedded as per-wedge attribute (thus replicating
UV positions). Non of these alternatives bypasses the problems discussed here.

i
i

“jgt” — 2011/12/19 — 20:09 — page 3 — #3 i
i

i
i

i
i

Tarini: cylindrical and toroidal parameterizations without vertex seams 3

ua = 0.9 and ub = 0.1 produces values 0.8, 0.7 · · · 0.2, thus taking the “long
route” which span most of the texture, instead of the “shorter route” across
the cut (Fig. 1). To get the expected result, u′

b = 1.1 must be used in place
of ub for that primitive: the vertex must be duplicated and u′

b assigned to the
second copy. This cannot be avoided by any assignment of texture coordinates
to vertices, not even disallowing triangles spanning across the cut.

When both pairs of opposite texture sides are logically connected to one
another, we have a toroidal map, which presents the same problem in both U
and V texture directions.

2. Method description

The presented method can address one or both texture coordinates, resulting
in cylindrical or toroidal maps respectively, or actually any other set of per-
vertex attributes over which equivalence (1) must be enforced.

In the following example, the method is applied on the horizontal coordinate
uA of a cylindrical map. In a toroidal map, all steps (except the final texture
access) are performed separately on both texture coordinates uA and vA.

The method takes place in the vertex and fragment processor:

In the vertex processor:

Input attribute: uA

Output varyings: u1 and u2

1. u1 ← frac(uA)
2. u2 ← frac(uA + 0.5)− 0.5

In the fragment processor:

Input varyings: ui
1 and ui

2

Temp values: uT

1. if d(ui
1) 6 d(ui

2) then uT ← ui
1

else uT ← ui
2

2. use uT as coordinate
to perform texture access

where frac(u) = u − buc, d(u) = |dx(u)| + |dy(u)|, and dx(u),dy(u) are the
horizontal and vertical screen-space derivatives of u. Recall that fragment
shader languages (e.g. OpenGL GLSL and DirectX HLSL) give access to these
derivatives for any given quantity available per fragment2.

In case that k repetitions of the the texture around the cylinder are needed,
it suffices to use k · uT in place of uT in the final texture access.

Bilinear texel interpolation is applied correctly even on the seam line by
taking advantage of built-in support for repeating textures on texture fetch.

MIP-map level is also determined correctly, as long as the inequality in line
1 of fragment program is resolved consistently for equalities. To ensure this
robustly despite numerical errors, in the implementation one inequality side
is safely biased by a small positive value.

2In GLSL function d is directly available as fwidth

i
i

“jgt” — 2011/12/19 — 20:09 — page 4 — #4 i
i

i
i

i
i

4 journal of graphics tools

2.1. Why it works (sketch)

Refer to Fig. 2. At vertices (before interpolation), u1 ∈ [0, 1) and u2 ∈
[−0.5, 0.5), but u1 ' u2. For most primitives, this also holds for interpolated
values: ui

1 ' ui
2. In these cases (A and C in Fig. 2) either value can be

safely used as uT (and their derivatives are virtually equal). However, if
hypothetically ui

1 was always used, the problem would arise for primitives
interpolating between values ε (' 1+ε) and 1−ε (' −ε) (case D); conversely,
if ui

2 was always used, the problem would arise when interpolating between
values −0.5 + ε (' 0.5 + ε) and 0.5 − ε (' −0.5 − ε) (case B). By picking
either ui

1 or ui
2 , the problem can be avoided for all primitives (as long as

they are smaller than half the texture size). The one to pick is always the one
presenting the smaller screen-space derivative. This corresponds to favoring
the alternative resulting in the span of the smaller distance in U direction.

2.2. Application side

During rendering, an application simply needs to send (or to procedurally cre-
ate) univoche texture coordinates as vertex attributes. The intended semantic
is that, inside each triangle, the interpolated coordinate will span the texture
space either forward or backward, depending of which direction is shorter in
parametric space, keeping equivalence (1) in account. This assumes that no
triangle spans more than half of the cylindrical/toroidal texture space (this is
reasonable in most applicative contexts).

The method directly applies to coordinates for textures of any dimension-
ality and to rendering of any primitive (n-gons, triangles, lines, strips, etc).

From a mesh data structure point of view, this allows storage of texture
coordinates as vertex attributes and still avoid vertex duplications (a caveat
here is that the pre-computation of tangent vectors, if needed, must take
equivalence (1) in account, selecting the shortest route in each face).

3. Discussion

Thanks to the simple method presented, cylindrical and toroidal UV-mappings
become schemas which do not require vertex seams, thus unlocking all practi-
cal advantages discussed in Sec. 1. A most important advantage is the higher
degree of proceduralism in generation of texture coordinates. The method re-
quires to customize solely the behavior vertex and the fragment shaders, and
its implementation is straightforward using any common shading language
(e.g. OpenGL, OpenGL ES or DirectX). It has a negligible impact on ren-
dering performances, respect to using plain texture mapping; the main cost

i
i

“jgt” — 2011/12/19 — 20:09 — page 5 — #5 i
i

i
i

i
i

Tarini: cylindrical and toroidal parameterizations without vertex seams 5

is that an extra interpolant is used in the rasterizer.
A few examples of the application of this technique are shown in Fig. 3,

and a full working implementation is available at the linked web site.

3.1. Available alternatives

In principle, the problem solved here could be dealt on a per-primitive basis,
rather than with per-fragment tests: just before rasterization, the “shorter
route” would have to be selected for the purpose of computing interpolated
texture coordinates for that primitive only. This could be implemented for
example in the geometry shader, which has usually an impact on performance
if activated. Else, the operation could be performed directly by the rasterizer:
Direct3D offers this as one ad-hoc mechanism, termed “Texture Wrapping”
[MSDN 11] (with limitations: e.g. results are undefined for coordinates outside
[0::1) and it cannot be employed with the tessellation engine). However,
OpenGL has no equivalent. In general, it can be argued that the opportunity
to use cylindrical/toroidal mappings is not common enough to justify a hard-
wired adaptation of the rasterizer (which is the core part of the graphic engine
and should be kept as simple and generic as possible), given that the same
functionality can be fully reproduced, as shown here, by relying solely on the
present customizability of fragment and vertex shaders.

References

[MSDN 11] MSDN. “Texture Wrapping (Direct3D 9).”, 2011. Available online
(http://msdn.microsoft.com/en-us/library/bb206256).

[Tarini et al. 04] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio
Montani. “PolyCube-Maps.” ACM Trans. Graph. 23:3 (2004), 853–860.

Web Information:

http://vcg.isti.cnr.it/˜tarini/no-seams

Marco Tarini, Isti CNR (Pisa, Italy), (marco.tarini@isti.cnr.it)

Received [DATE]; accepted [DATE].

i
i

“jgt” — 2011/12/19 — 20:09 — page 6 — #6 i
i

i
i

i
i

6 journal of graphics tools

Figure 1. In a cylindircal map, coordinates are interpolated differently (dotted ar-
row, middle) than it is intended (bold arrows). Texture repetitions can be employed
to fix this (right), but only if the two equivalent but different coordinates ub and u′

b

are assigned to the same vertex b, causing the seam (refer to Sec. 1.1).

Figure 2. Visual explanation of the method in a cylindrical UV-mapping (refer
to Sec. 2.1). Four examples of a triangle primitive are labeled A to D. Circles: u1

positions; diamonds: u2 positions (sometimes they coincide); green triangles: area
covered by interpolated coordinates–the dotted ones are discarded.

Figure 3. Examples. Top a cylindrical UV-mapping; bottom, a toroidal one. If no
vertex seams are introduced, artifacts are bound to arise (middle), but the presented
method fixes the problem (right). Round and squared insets: close-ups.

