
Article
DOI: 10.1111/j.1468-0394.2012.00648.x

Business goals, user needs, and requirements:
A problem frame-based view
Luigi Lavazza
Università degli Studi dell’Insubria, Dipartimento di Scienze Teoriche e Applicate, Varese, Italy
Email: luigi.Lavazza@uninsubria.it

Abstract: It is well known that the analysis of requirements involves several stakeholders and perspectives. Very often several points
of view at different abstraction levels have to be taken into account: all these features make requirements analysis a complex task. Such
intrinsic complexity makes it difficult to understand several of the basic concepts that underlie requirements engineering. Actually, there is
some confusion – especially in industry – about what really a user requirement is, what are the differences between user requirements and
user needs, and what are their relationships with business processes. The paper aims at clarifying the aforementioned issues, by providing a
systematic and clear method for establishing requirements hierarchies. The problem of describing requirements hierarchies is tackled using
the problem frames concepts and notation. A case study is used throughout the paper to illustrate the proposed approach. The description
of requirements at different levels of abstractions and requirements hierarchies are illustrated. The resulting models are coherent with the
reference model for requirements specifications and the problem frames. An analysis process that is aware of the differences between user
needs and requirements is also provided, to illustrate the process of refining high-level goals into requirements that can be satisfied by
a hardware/software machine. The proposed method appears promising to model, study, and evaluate the relationships between business
processes and the strategies for achieving business goals based on the usage of information technology.

Keywords: user needs, user requirements, problem frames, requirements analysis, knowledge elicitation

1. Introduction

In the analysis and documentation of user requirements
several perspectives are often involved. The multiplicity of
scopes and points of view is reflected in the terminology: it is
quite usual to hear about ‘business goals’, ‘user needs’, ‘user
requirements’, etc. Actually, there is some confusion – espe-
cially in industry – about what a user requirement really is,
what the differences (if any) are between a user requirement
and a user need, and what is their relationship with business
processes. Moreover, how effectively and correctly to model
all these aspects is not always clear.

The result is that user requirements tend to encompass
multiple different aspects of the systems to be developed,
and to be represented in very different manners, often mixing
requirements with other issues.

The confusion of goals, needs, and requirements is
problematic because the same goal can give place to
different – often incompatible – sets of needs, and the
same need can originate different requirements. Therefore,
in proceeding from goals to requirements, evaluations
have to be performed and choices made. Moreover, the
‘distance’ that separates goals from requirements is often
great, thus ‘jumping’ directly from goals to requirements
is generally infeasible in practice: intermediate refinement
steps are required. Examples of these issues are given in
Section 3.

In this paper, the differences between user needs and user
requirements are highlighted; the relation of user needs to
business processes is also described; finally, the usage of prob-
lem frames to model the mentioned issues is illustrated by
means of a case study.

More specifically, the paper aims on the one hand at clar-
ifying the nature of requirements that are conceived and de-
scribed at different levels (from the highest business-related
goals to software requirements specifications), on the other
hand at providing a description of requirements that is ho-
mogeneous through the various levels. This description takes
the form of a hierarchy of requirements and has a set of de-
sirable characteristics:

1. It is coherent with previous work on goal-oriented re-
quirements engineering (RE).

2. It is based on the reference model for requirements and
specifications (Gunter et al., 2000).

3. It uses problem frames, thus enabling the usage of the
concepts and methods described in Jackson (2001).

4. The definition of a homogeneous hierarchy of require-
ments makes clear that the nature of requirements defi-
nition is basically the same at different levels.

5. It connects high-level business-oriented analysis with
Problem-Oriented Software Engineering (POSE) (Hall
et al., 2008; Hall & Rapanotti, 2011), which typically
focuses on software requirements.

A process is defined to provide guidelines to analysts in
applying the proposed concepts, and to make explicit that
the process involves (a) refinements and (b) feasibility and
cost evaluations, since problems often have several possible
solutions, of which some could be very hard or expensive to
achieve.

The paper is organized as follows: the problem of require-
ments modelling is introduced in Section 2. The involved

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 215



Figure 1: The problem and solution spaces.

issues are presented in Section 3 with the help of a case
study. The distinction between needs and requirements is
further discussed in Section 4, and an analysis process aware
of this distinction is sketched in Section 5. Section 6 reports
related work, while Section 7 draws some conclusions and
provides an outline of future work.

Throughout this paper, the concept and notation of prob-
lem frames (Jackson, 2001) are used. The reader is expected
to know them.

2. Requirements modelling

Requirements modelling is of fundamental importance in the
software development process. Among others, Jackson et al.,
have contributed a problem-oriented view of RE (Gunter
et al., 2000; Jackson, 2001; Hall et al., 2008; Hall & Rapan-
otti, 2011). The material reported in this section is mainly
based on such work.

2.1. The nature of requirements

In order to develop a software solution it is necessary to
study and understand the problem. In other words, we need
to understand where the problem is and where the solution
is. Figure 1 schematically represents the world (i.e. the envi-
ronment) where the problem exists, and the machine (i.e. the
hardware/software solution we have to build to solve the
problem). The relationships between the machine and the
world are highlighted. In fact, it is fundamental that the ma-
chine gets the information it needs about the world, and that
is provides outputs (either information or control) to the
surrounding environment.

In order to define precisely the meaning of requirements
modelling it is fundamental to notice that there is an Envi-
ronment in which the problems exist, and where the machine
(i.e. the hardware/software solution to be developed) will op-
erate. The problem domain is the portion of the Environment
that is visible by the machine. Of course, the Environment
interacts with the machine, since a machine that does not get
any input and does not provide any output would be hardly
useful. The relationship between the Environment and the
machine (which is seen as a black box in this phase) is de-
scribed in terms of ‘phenomena’ that are shared between the
Problem Domain and the Machine.

These concepts are properly defined in the ‘Reference
Model for Requirements and Specifications’ (Gunter et al.,
2000). The model is based on five artefacts, some of which
pertain mostly to the system, while others pertain mostly
to the environment (Figure 2 (Gunter et al., 2000)). These
artefacts are:

Figure 2: The elements of the reference model for requirements
and specifications.

1. Domain knowledge that describes environment facts;
this artefact is denoted as W (for the World, which in-
cludes the environment).

2. Requirements that indicate the desired situation that
must be achieved in the environment as an effect of the
introduction of the system in the environment; this arte-
fact is denoted as R.

3. Specifications of the system, which provide enough in-
formation for a programmer to build the system: specifi-
cations do not need to communicate to the developer un-
necessary information about the environment; this arte-
fact is denoted as S.

4. A program that implements the specification using the
programming platform; this artefact is denoted as P.

5. A programming platform that provides the basis for pro-
gramming the system; this artefact is denoted as M (for
Machine, which is the programmable platform).

Of course, we should guarantee that the requirements are
satisfied (i.e. we build the right system) and the program cor-
rectly implements the specification (i.e. we build the system
right).

Concerning P and M, it is useful to note that in case of
embedded software the distinction between P and M on one
side and W and R on the other side is quite clear, as the
interaction between the environment and the system occurs
via sensors and actuators; thus, people belong to the envi-
ronment. On the contrary, when traditional ‘business’ appli-
cations are concerned, the ‘system’ usually includes people
who use the software applications and execute ‘manual’ pro-
cedures. In these cases, the ‘machine’ is actually composed by
both a hardware/software platform and people, and the ‘pro-
grams’ are partly software and partly rules and procedures
that people have to follow. In 2005, Hall and Rapanotti ex-
tend the reference model to explicitly represent the ‘social
component’, that is the people, who can be ‘instructed’ – as
machines are programmed – for the purpose of satisfying the
requirements. The result is that a third ellipse is added to the
model in Figure 2.

Figure 2 (Gunter et al., 2000) shows that W and R belong
to the environment, while M and P belong to the system.
The specifications S, instead, characterize the intersection of
the environment and the system, that is the elements that are
shared by the environment and the system. In the reference
model, designations identify classes of phenomena (states,
events, individuals, etc.) in the system and the environment
and assign names to them. Some phenomena (denoted as e
in Figure 3, Gunter et al., 2000) belong to the environment,

216 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



Figure 3: Environment’s and system’s phenomena: control and
visibility.

which controls them. Phenomena denoted as s belong to the
system. Some of the e phenomena are visible to the system,
while others are not: the former are denoted as ev, while the
latter are denoted as eh (e = eh ∪ ev). The s phenomena are
similarly classified as sv and sh. Phenomena eh, ev, and sv are
visible to the environment and used in W and R. Phenomena
sh, sv, and ev are visible to the system and used in P and M.
Only ev and sv are visible to both the environment and the
system: specifications S are defined only in terms of ev and
sv.

How can we define and describe a problem in order to
enable the development of a software-based solution (or just
to evaluate if a software-based solution is at all possible)?
We have to keep in mind that developers have to be given all
the relevant information concerning the desired behaviour
of the system: this information constitutes the requirements
of the software to be developed. Therefore, requirements
are the criteria, conditions, or constraints that a software
artefact has to satisfy in order to be acceptable as a solution of
the given problem. This conception of requirements implies
that:

1. Requirements are usually expressed with reference to
the environment phenomena only. Users know well their
environment, while they often do not have a clear idea
of what computers and software can provide. Therefore
they tend to describe the situation they want to achieve,
independently of the fact that the result is obtained via
a computer-based solution or not.

2. The effects of the system on the environment depend not
only on sv, but also on the reactions that these phenom-
ena generate. It is thus necessary that the rules that de-
termine the behaviour of the environment are described.
These descriptions belong typically to W and are ex-
pressed in terms of eh.

3. The goal of the whole software development effort is
the construction of a machine having specifications S
such that its interaction with the environment causes the
requirements to be satisfied.

The latter issue is typically summarized in the formula:

W, S � R

Figure 4: A problem diagram.

which states that the satisfaction of the requirements follows
from the combination of the world and machine’s behaviour.

The task of software analysts is to define S such that, given
W and R, W, S � R holds.

The task of designers, programmers, testers, etc., is to build
a program P such that, given M and S, M, P � S holds.

If both the analysts and the implementers accomplish such
tasks, then both W, S � R and M, P � S hold, thus we get
that also

W, M, P � R

holds, that is the goal of the development is achieved.
Problems are generally described by means of problem di-

agrams (Jackson, 2001), like the one in Figure 4. Problem
diagrams show the domains involved in the problem (i.e.
the domains belonging to the environment), the machine
that is expected to solve the problem, possible designed do-
mains (i.e. domains whose structure and content can be –
to some extent – designed, as opposed to environment do-
mains, that are given and cannot be modified). Domains are
shown as boxes in the diagrams. Interfaces between domains
are represented as lines connecting the domain boxes. In-
terfaces indicate that some ‘phenomena’ (e.g. values, states,
signals, etc.) are shared between the connected domains.
Sets of shared phenomena are labelled with letters, whose
meaning is explained separately: for instance, in Figure 10
c: SP!{store_operation} indicates that the domain whose ini-
tials are SP (storage processor) controls a phenomenon ‘store
operation’ that is shared with domain Repository. Problem
diagrams also show the requirements in terms of properties
that are not given, but have to be achieved by means of a
proper machine. Requirements are given in terms of rela-
tionships between problem domains.

2.2. The role of analysts

As mentioned above, the user tends to talk about what the
problem is in the real world, not about the role of the machine
in solving it. In fact, the user knows the problem well at a
quite high, business-related level. This level of understanding
of the business problem provides a starting point for business
analysis, which leads to a better understanding of the user’s
problem and to a more complete and detailed description of
the problem, especially concerning the problem environment.
Usually the user does not have a clear idea of the role of the
machine in solving his/her problem. In fact, the user often

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 217



has not the slightest clue of how to solve the problem, or,
even worse, has completely wrong ideas of how to solve the
problem, because he/she does not know what is easy or hard
to achieve by means of a computer system.

In general, even business analysis does not yield a final
indication about the role of software in providing a solution
to the given problem. This is due to the fact that business
problems allow for several possible solutions, characterized
by different costs and effectiveness. Therefore, requirements
have to be proactively defined on the basis of the description
– provided by business analysis – of the problem and the
environment where the machine will have to operate.

RE is thus the creative activity that leads to defining the
effects that the hardware/software machine will have on the
problem domain so that the problem is solved. To this end,
it is necessary to remember that it is the behaviour of the
system encompassing the domain and the machine that has
to solve (or at least to reduce) the problems that induced the
user to ask for a computer-based solution. Accordingly, the
analyst has a double role in describing requirements:

1. He/she must understand the needs of the user and the
nature and behaviour of the environment.

2. He/she must (pro)actively cooperate with the user in
defining requirements that are effective (i.e. the machine
actually contributes to solve the problem), technically
feasible, and reasonable with respect to economic con-
straints.

The final product of the analyst is the requirement specifi-
cations. The goals of the requirement specifications are:

1. to describe what are the responsibilities of the system in
satisfying the user’s needs.

2. To define what are the responsibilities of the environment
in supporting and using the hardware/software system.
For instance, the environment has to provide input data
and to understand the machine outputs.

Therefore, the analyst cannot be a passive recorder of the
user’s wishes. Instead, he/she has to be active, make propos-
als, and explore alternatives. In fact, as described in Section 3,
the responsibilities of the system and the interaction between
the machine and environment are not always determined uni-
vocally by the user needs.

These observations partly contradict what was written in
Section 2.1, since R are not just given, but are defined by
the user and the analyst together. However, this conclusion
leads to a new question, since the user surely has some needs
or goals that are not negotiable (e.g. because they are funda-
mental for achieving a competitive advantage), as opposed
to the concrete formulation of requirements, which is actu-
ally established with the analyst. In fact, we said that users
have ‘computer-independent’ needs that are typically related
to their business and that cannot (or at least should not)
be changed by the introduction of computer-based systems.
Therefore, we would like to be able to answer questions like
the following:

1. What are the relationships between non-negotiable user
needs and goals on one side and requirements on the
other?

Figure 5: Problem diagram representing requirements at the
business goal level.

2. Is the knowledge about the world that appears in
W, S � R the same that leads to the formulation of non-
negotiable user needs and goals?

3. How should we deal with the part of the world whose
behaviour is not fixed once and for all, but can be to
some extent adapted to the user needs?

3. Case study

In the rest of the paper, the proposed concepts are illustrated
by means of an example, described in this section.

Let us start with the high-level needs of the ‘user’. In our
case study, a company needs that its agencies act in a coordi-
nated way, in order to maximize efficiency, avoid work dupli-
cations, avoid inconsistencies, etc. The case study reported
here is a simplification of a real-world problem, where a lo-
gistic company had to keep track of container movements
managed by local agencies in order to optimize freight plan-
ning.

We can classify these needs as part of the ‘business goals’
(BG) of the company (throughout the paper the term ‘busi-
ness goal’ is used as a shorthand for ‘business-originated user
goals’).

Figure 5 represents the business goal by means of a prob-
lem diagram. Since the goal of the company is clearly in-
dependent of the existence of a computer-based system, a
machineless problem diagram illustrates the goal. The ‘re-
quirement’ Coherent activity is actually the BG statement
that agencies have to act in a coordinated way, that is a and
b must be coherent: for instance, the action performed at
agency 1 – denoted by phenomenon a – must be coherent
with the actions – denoted by phenomenon b – performed
at agency 2. Of course, the domain must be capable of the
expected coherent behaviour among all others possible be-
haviours; the solution is thus to make sure that the expected
behaviour actually occurs. Phenomena a and b denote the in-
formation needed to specify the coherency of activities. What
does actually mean that a and b must be coherent depends
on the detailed specification of the properties of a and b, and
on the definition of ‘behaviour coherency’: these details are
not relevant for our purposes.

Now we have to understand how the business goal can be
actually achieved. To this end, we rewrite the diagram intro-
ducing a machine (there must be a machine, otherwise the
goals could only be achieved by a ‘spontaneous’ behaviour of
the environment, but if such spontaneous behaviour existed,
no needs and goals would arise . . . ).

218 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



The “machine”The “machine”

Figure 6: Problem diagram representing business goal-level requirements.

Figure 6 describes the same problem as Figure 5, except
that we have introduced the part of the system that is re-
sponsible for the achievement of the business goals. Since at
the moment it is not yet known whether the solution will be
based on a computer, the solution is represented in a cloud,
which possibly contains some sort of machine (no reference
to cloud computing here!). In fact, the stakeholder(s) – typ-
ically belonging to top management – who expressed the
business goal may have no clue about this part of the system.

In order to make clear that the part of the system in the
cloud is actually part of the solution, we can write the usual
formula:

WBP, NB � BG (1)

where BG is the business goal, WBP describes the business
process environment, rules, etc., and NB specifies the be-
haviour of the part of the system (possibly including a ma-
chine) that will cause the BG to be satisfied. Formula (1)
above states that the business goal BG (agencies have to act
in a coordinated way) is satisfied, in the environment de-
scribed by WBP, by some ‘machine’ described by NB. Note
that at this level, the ‘machine’ is not necessarily a hardware
machine equipped with suitable software. Rather, it can be a
sort of mechanism – typically involving people – which ‘en-
acts’ the business processes. In our case study, WBP specifies
that the agencies store a set of business-relevant information,
upon which they take decisions and operate. Moreover, WBP
guarantees that agencies act in a coordinated way if they
operate according to the same information concerning the

business. It is easy to conclude that the business need (NB) is
that information concerning the business has to be shared.
In other words: if we perform some actions in the business
environment that guarantees that the business information
is shared, the coordination goal is achieved. Of course, this
brings to a new problem: now we have to decide how the in-
formation sharing need can be actually achieved. To this end,
we redraw the diagram of Figure 6 as reported in Figure 7.

The diagram in Figure 7 still features the cloud, since the
nature of the solution is still not known. The requirements NB
state that globally interesting information available at agency
1 (a) is available also at agency 2 (b), and vice versa. For the
sake of simplicity, in the rest of the paper we always consider
agency 1 as the originator of the relevant information and
agency 2 as the place where the relevant information must be
reproduced. Of course, dealing with the case when agency 2
originates the relevant information, or when multiple agen-
cies are involved does not pose conceptual difficulties.

The problem described in Figure 7 can be formalized as
follows (note that NB, which was the ‘solution’ in (1) is the
goal in (2)):

W ′, R � NB

W ′ = W ∪ WBP
(2)

where R describes the role of the solution, while W′ is an
extension of WBP, since it is likely that in dealing with this
new problem we need additional information concerning the
environment than was provided for the original problem (1).

Figure 7: Problem diagram representing business needs.

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 219



Figure 8: Problem diagram representing business needs according to (2).

It is clear that in order to have the globally interesting
information available at all agencies, it is necessary to com-
municate the information. Thus, W specifies that the agencies
are connected via a communication infrastructure. Accord-
ingly, a possible specification of R states that the information
generated at agency 1 is communicated – via the communi-
cation infrastructure – to agency 2, and that the received
information is stored locally. The fact that W′ includes a
communication infrastructure can be taken into account as
in Figure 8.

In order to tackle the new problem described in Figure 8
(W ′, R � NB) we need to define W′ and R. To this end, we
need to say what is in the cloud, that is what communica-
tion infrastructure is available. Of course, several possibilities
exist:

1. The agencies are already connected, maybe using rela-
tively old technology (e.g. plain email) and we are con-
strained to achieve the goal using the available connec-
tion. In this case, the communication infrastructure is
part of the given environment.

2. The agencies are not connected, or the management de-
cided that a new connection can be built anyway. In this
case, the infrastructure is part of the solution.

At this stage of the analysis process, the analyst should:

1. Evaluate the environment, in order to highlight its rele-
vant characteristics. In our case, the communication in-
frastructure is the relevant characteristic to be identified
and described.

2. Sketch possible solutions, some of which will be based
on the environment as is, while others will involve chang-
ing the environment, possibly introducing new elements.
For instance, if the environment does not contain com-
munication infrastructures, the analyst can think of in-
troducing one (maybe sketching different new scenarios,
each characterized by a different communication infras-
tructure).

3. Evaluate which ones of the identified solutions (and re-
lated environment) are viable.

In our case study we assume that the analyst has performed
the tasks mentioned above, and has found that the agencies
are connected via plain email. This situation is described in
Figure 9 (from now on, the domains are no longer labelled
as R, W, N, etc., to avoid overloading the pictures).

We also suppose that the analysis of the possible solu-
tions has led to the decision that the business goal should
be achieved using the available connections. In this case, the
communication infrastructure is part of the given environ-
ment.

Having chosen the email-based infrastructure, W′ specifies
the usual functions of the email system (server and clients),
while R states that:

1. Any interesting information stored at an agency is sent to
the other agencies (W′ assures that the communication
is carried out properly).

2. Any received information is stored in the repository.

Figure 9: Problem diagram representing business needs and details of the environment.

220 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



Figure 10: Problem diagram representing the work done at
agency 1.

These specifications of W′ and R assure that the business
need NB involving information sharing is satisfied. Therefore,
the problem is now how to satisfy R. As is often the case,
there are several ways for satisfying R. In the next sections
three possible ways of satisfying R are illustrated. Before
proceeding to see how R can be satisfied, it is useful to note
that the nature of the problem and the availability of the
communication infrastructure suggest that the problem is
split into two sub-problems:

1. The sub-problem at agency 1 requires that the locally
generated (and locally stored) information is sent to
agency 2.

2. The sub-problem at agency 2 requires that the informa-
tion received from agency 1 is stored locally.

In principle, both sub-problems can be solved in different
ways. However, for the sake of simplicity, here we explore
only the alternatives for agency 2.

3.1. Email-based case: sub-problem 1 (information
generation)

The main work done at agency 1 (as far as we are concerned)
consists of generating and storing information. This activity
is described by the problem diagram in Figure 10. The data
storage requirements simply state that the stored information
(d) is coherent with the data provided by the operator (b).

Figure 12: Problem diagram representing the problem at
agency 2.

The information stored locally has to be transmitted to
agency 2. This requirement is modelled in the problem dia-
gram reported in Figure 11.

The data transmission requirements state that whenever
a new piece of information (c) appears in the repository, an
email message (a) containing the same information is sent to
agency 2. As already mentioned, there are several machines
(the communication processor in Figure 11) that can satisfy
these requirements. For instance:

1. The operator sends manually an email whenever he/she
inputs new data in the repository;

2. the data input processor, upon receiving data from the
operator, both stores it in the repository and sends an
email to agency 2 containing the same information;

3. a specific program periodically checks the repository,
detects new information and emails such information to
agency 2.

We do not explore in detail the solutions for agency 1. In-
stead, we concentrate on the problem at agency 2, described
in Figure 12. This problem diagram finally introduces the
machine (the update processor) that is responsible for satis-
fying the data transmission requirements. The satisfaction of
these requirements, together with the satisfaction of the re-
quirements for the problem at agency 1, guarantee that needs
NB in equation (2) are satisfied.

Figure 11: Problem diagram representing the communication requirements for agency 1.

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 221



Here we have to take into account that the environment
is not perfect. The description of the environment (W) states
that:

1. Email messages (b) contain the communicated informa-
tion (a).

2. However, it is possible that – because of some error – the
message (b) does not contain comprehensible informa-
tion.

The requirements data update requirements (R) state
that:

1. The communicated information (a) is stored in the repos-
itory; that is d = a.

2. Exception: if the content of the received email mes-
sage (EC!{received_email_message}) is unclear, a clar-
ification request (DIO!{request_message}) is sent to the
originating agency.

The different possible ways of specifying the update pro-
cessor machine are described in Sections 3.2–3.4. In fact, for
the problem in Figure 12 we have to assure that W, S � R
is true. There are several possible machines whose specifica-
tions make W, S � R true. In the following sections we shall
see three machine specifications that cause R to be satisfied.

3.2. Email-based case: scenario 1

In this scenario, the update processor is made of the same
data input processor available at agency 1 (i.e. the machine
that is used to store useful information in the local reposi-
tory) and a data input operator. The latter actually behaves
as the ‘program’ of the update processor, that is he/she de-
termines the behaviour of the ‘machine’ that guarantees the
satisfaction of the data input requirements.

In practice, this means that no specific software has to be
written; instead, a manual procedure has to be established.

R: the requirements data input requirements state that:

1. The communicated information (a) is stored in the repos-
itory, i.e. f = a.

2. Exception: if the content of the received email mes-
sage (EC!{received_email_message}) is unclear, a clar-
ification request (DIO!{request_message}) is sent to the
originating agency.

W: the environment description states that:

1. Email message (EC!{received_email_message}) contains
the communicated information (a). However, it is possi-
ble that – because of some error – the message does not
contain comprehensible information.

2. The data input processor and Repository guarantee that
the stored information (f) is coherent with the input in-
formation (d).

S: specifications

1. Email messages (EC!{received_email_message}) are
read by the operator, who feeds manually the informa-
tion (c) to the system via suitable forms (d).

2. Exception: if the content of the received email mes-
sage is unclear, the operator sends a clarification request
(DIO!{request_message}) to the originating agency.

It is easy to see that a ‘machine’ implementing specifica-
tions S satisfies requirements R. The data input operator is
essential: he/she is part of the ‘machine’.

This solution is clearly suitable if the information to be
shared is generated rather infrequently. In this case, the
work of the operator avoids the need of building an ad-hoc
computer-based system.

However, if the frequency of incoming email messages be-
comes sufficiently high, the operator could have to perform
a large amount of work, thus making this solution exces-
sively expensive. Moreover, being the solution completely
demanded to the operator, it is error prone. These consider-
ations suggest that other solutions are explored.

3.3. Email-based case: scenario 2

In this scenario we consider the automation of the work that
in scenario 1 was done manually by the operator. Accord-
ingly, in Figure 14, the machine (still named data input pro-
cessor) is connected directly to the email server, from which
it retrieves the incoming email messages. In case the content
of the message is not clear, the data input processor issues a
warning on the console of the data input operator, who can
either provide the correct interpretation of the received data
to the processor, or send a clarification request to agency 1.

The specification S of the update processor is as follows
(note that the ‘machine’ involves also a manual procedure,
as in scenario 1, although in this case it is just for solving
unclear messages):

1. Email messages (b2) are read by the data input processor,
which automatically stores the communicated informa-
tion (a) to the repository.

2. Diagnostics (d) are issued when the informative content
of email messages is unclear.

3. The operator reads diagnostics (d) and, if able to inter-
pret the message, provides to the data input processor
the information (d) to be stored, otherwise it sends an
email message (b1) requiring a correct input.

The machine specified in this scenario is clearly more suit-
able for dealing with big volumes of email messages. How-
ever, the solution is effective if only a few messages cannot
be understood correctly by the machine; otherwise, most of
the work would still have to be done manually.

3.4. Email-based case: scenario 3

In this scenario we consider the full automation of the pro-
cedure; that is also the handling of unclear messages is per-
formed automatically.

Accordingly, in Figure 15 the machine update processor is
connected directly to the email server, from which it retrieves
the incoming email messages. In case the content of the mes-
sage is not clear, the update processor sends a clarification
request to agency 1 via email.

The specification S of the update processor is as follows
(note that the ‘machine’ no longer involves a manual proce-
dure):

222 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



Figure 13: Problem diagram for agency 2: scenario 1.

Figure 14: Problem diagram for agency 2: scenario 2.

Figure 15: Problem diagram for agency 2: scenario 3.

1. Email messages (EC!{received_email_message}) are
read by the processor, which automatically stores the
communicated information (a) into the repository.

2. If unable to interpret the message the processor sends
an email message (UP!{request_message}) requiring a
correct input.

The machine specified in this scenario is clearly suitable
for dealing with big volumes of email messages, both correct
and incorrect.

4. The relationship between needs and requirements

As already mentioned, according to the reference model
(Gunter et al., 2000) the relationship that involves the ma-
chine, the environment, and the requirements is:

W, S � R

where W indicates the problem world properties; R indicates
the requirements (what the customer needs from the system,
described in terms of its effect on the environment); S are
the specifications that provide enough information for a pro-
grammer to build a machine that satisfies the requirements.
This description allows for several machine specifications
that satisfy the requirements.

With this description, it is not immediate to distinguish
the user needs, which lay completely in the environment,
and the requirements, which involve, to some extent, the
responsibility of the machine (in fact, the very satisfaction of
requirements depends upon the machine).

4.1. Needs versus requirements

In order to make the difference between needs and require-
ments explicit, we suggest the following model:

W, R � N

W, S � R

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 223



where N indicates the user needs. This new description
stresses that the user requirements concerning a (usually)
computer-based solution are functional to the satisfaction
of the user needs. Highlighting the user needs is also useful
to stress that in general there are several formulations of the
requirements that satisfy the user needs, in the same way as
there are several different machines specifications that sat-
isfy the requirements. In fact, separating the notions of user
needs and requirements makes it clear that writing require-
ments is a design activity, since one has to choose how to
define proper requirements that satisfy the user needs.

Now, we can reason about the origins of user needs. It
is easy to observe that user needs are generally conceived
in some sort of business process; more specifically, the user
needs are functional to achieving some goal in the context
of a business process. For instance, in our case study the re-
quirement of having the email messages stored in the email
repository was determined by the need of sharing informa-
tion, which in its turn was determined by the goal of letting
the agencies act in a coordinated way. In conclusion, we may
say that

W, N � BG

where W is the knowledge of the business process and BG
represents some business goal.

It is interesting to note that also the relationship between
business goals and needs is one-to-many; in fact, the goal
of making agencies act in a coordinated manner could be
achieved in different ways: for instance, a coordination board
could collect action proposals from agencies and control that
no conflicts exist.

Similarly, information sharing could be translated into dif-
ferent requirements, according to the available communica-
tion infrastructure.

In practice, we are reproducing the hierarchical nature of
requirements: the business process has some goals, which de-
termine some needs, which can be achieved if some require-
ments are satisfied. On their turn, requirements are satisfied
if a suitable interaction between a machine and the envi-
ronment is achieved. This hierarchy corresponds to different
abstraction levels in the knowledge of the environment:

1. At the topmost level, the formulation of the goal depends
only on the knowledge of the business process, and needs
are functional to the business.

2. At the intermediate level, the mechanisms supporting the
process are known: an email system is used; therefore, we
need to save emails in repositories at the agencies.

3. At the lowest level, we finally take into consideration the
local organization of the process (i.e. the fragment of the
environment that is involved) and the responsibilities of
the machine. Therefore, knowledge of the availability and
cost of the personnel, as well as the cost of the machine
development is required.

Quite interestingly, while the knowledge of the world that
is needed increases in extent and detail while we proceed from
goals to requirements, it is also true that at the lower levels
several details of the business knowledge can be safely ig-
nored: for instance, when dealing with email message storing
we could ignore that this is due for work coordination.

The hierarchical organization described above could be
beneficial to properly define monitoring and measurement
activities. For instance, at the topmost level one is interested
in knowing how long it takes to a piece of information to
reach an agency; at the intermediate level one is interested
in knowing the speed and throughput of the email system;
at the lowest level several different measures can be defined
depending on the chosen requirements: for example if the sit-
uation described in Section 3.3 (scenario 2) holds, interesting
measures could be the percentage of messages considered in-
correct by the machine and the percentage corrected locally
by the operator.

4.2. Requirements as transformations of needs and goals

The proposed approach can be regarded as an application
of software problem transformations (Hall et al., 2008; Hall
& Rapanotti, 2011). In these transformations, problem P2 is
related to problem P1 in that, in it, there is a detailed descrip-
tion of the solution for P1. This relationship is also justified
by an argument of the formal correctness of the solution, so
that we can say that a solution of P2 is actually a solution
of P1. A software problem transformation transforms a sin-
gle problem – the conclusion – to a set of problems – the
premises – and records an argument – the adequacy argu-
ment step – that justifies the relationship of the premises to
the conclusion.

So, for instance, we could write equation (3) to formalize
that problem W ′, R � NB (the information sharing problem)
is solved if problems Wa1, Sa1 � Ra1 (information communi-
cation at agency 1) and Wa2, Sa2 � Ra2 (information updat-
ing at agency 2) are solved. The adequacy argument J (not
detailed here) exploits the properties of the environment,
namely of the agencies’ environments and the email connec-
tion that guarantees that messages sent from agency 1 are
received at agency 2.

Wa1, Sa1 � Ra1Wa2, Sa2 � Ra2

W ′, R � NB
� J(W ′ ∪ Wa1 ∪ Wa2) �

(3)

Another example of the use of transformations in our
approach is given by the application of domain interpre-
tation, ‘the problem transformation schemata by which a
non-solution domain description is interpreted, that is re-
expressed in some way to make it more suitable for prob-
lem solving’ (Hall et al., 2008; Hall & Rapanotti, 2011):
in our case study, the introduction of the description of
the email system connecting agencies into the business do-
main description can be seen as a domain interpretation
transformation.

Another construct proposed in Hall et al. (2008) and
Hall and Rapanotti (2011) that can be effectively used
in our approach is context expansion (the combina-
tion of a number of problem domains in a problem’s
context).

In general, it seems possible to say that the construction
of a hierarchy of requirements can be built and manipulated
according to the principles of Problem Oriented Software
Engineering illustrated in Hall and Rapanotti (2011) and
Hall et al. (2008).

224 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



4.3. Generalization of the approach

Although in the case study we had requirements on three lev-
els (the business goals, the user needs, and the requirements)
we can easily generalize the proposed approach to deal with
requirements hierarchies encompassing any number of lev-
els. In such case, the description is given by a set of formulae
like the following:

W0, R1 � R0
. . .

Wi, Ri+1 � Ri
. . .

Wn, S � Rn

(4)

In practice, we start with a high-level requirement R0 in
an environment described by W0 and – through a sequence
of refinement steps (or transformations, if you like better the
terminology of POSE (Hall et al., 2008; Hall & Rapanotti,
2011) – we reach the usual formulation of a problem (Wn, S �
Rn) as in the reference model (Gunter et al., 2000).

The number of refinement steps needed to reach an imple-
mentable machine specification depends on several factors,
including how abstract was the specification of R0 and how
complex is the environment.

A constraint that has to be satisfied for the validity of
(4) is that Wi+1 must be compatible with Wi, that is all the
statements that were true inWi are still true inWi+1. However,
it is possible that Wi+1 provides a more extended and/or
detailed description of the environment than Wi, thus there
can be statements that are true in Wi+1 and were simply not
present in Wi.

Note that the descriptions in (4) are expected to be con-
sistent with the properties expressed in the reference model
(Gunter et al., 2000). So, for instance, relative consistency
should be assured, that is ‘any choice of values for the envi-
ronment Wi variables visible to the system should be consis-
tent with Ri+1 if it is consistent with assumptions about the
environment’ (Gunter et al., 2000).

The requirements hierarchy described by (4) can also be
useful to classify requirements analysis activities. For in-
stance, system-level analysis and component-level analysis
are easily distinguished as it is possible to note that Wi con-
tains a description of the system with little or no details about
the system’s components, while Wi+1 contains more details
about the components. As an example, in the description
of an intensive care unit (such as the one widely discussed
in Jackson (2001) at a given level the specification of the
problem might not mention sensors at all, while the refined
description could introduce them.

The relationship between Wi and Wi+1 can also deal with
the unspecified parts that may appear in problem descrip-
tions (such parts are represented as grey clouds in Figures
6–8). In general, the lack of details is justified by the fact that
the description is at a high level in the hierarchy. Sometimes,
however, it may be that we have some degrees of freedom
in shaping (and then describing) the environment: hence we
can introduce in Wi+1 elements not present in Wi. Consider
again the case of the intensive care unit: if the original de-
scription of the environment does not specify the presence
of any alarm device, we can introduce a device of our choice
in the next level description. These considerations provide
an answer to the last question reported in chapter 2: when it

is clear that a description of the environment does not sup-
port the requirements (e.g. it is not feasible that the patients
themselves introduce their data into the intensive care unit
system) then you can explore the possibility of extending
or modifying the environment, for example by introducing
sensors that connect patients with the machine.

As far as terminology is concerned, the hierarchy of refine-
ments described by (4) suggests some possible definitions:

1. Business goals are the highest Ri: for instance ∀ i, 0 ≤
i ≤ k → Ri is a BG. However, the hierarchy could start
with a R0 that is not a BG, but some lower level require-
ment; therefore, we need more stringent conditions for
defining a BG: a possibility is to say that Ri is a BG if
the corresponding environment description Wi does not
include a computer machine as a necessary element.

2. Similarly, ∀ i, k < i ≤ m → Ri is a need. Needs are
characterized by the fact that they do not include any
reference to the final goal that led to their definition.
In other words, given a need, it is usually not evident
why that need arose. The description of the environment
can involve a computer system, but the latter is usually
described in an abstract way, that leaves several degrees
of freedom to the analyst for outlining a solution.

3. Finally, ∀ i, m < i ≤ n → Ri is a requirement. This is the
case most often described in literature: requirements are
about the responsibility of the machine, whose detailed
description is explicitly given (of course, only in terms of
shared phenomena, the definition of the machine inter-
nals being left to designers).

According to this terminology the higher steps dealing
with BG can be classified as ‘business analysis’, while lower
steps are ‘requirements analysis’.

Finally, it is necessary to stress that (4) actually describes
a hierarchy, rather than a sequence. In fact, at each step there
are generally multiple definitions of Ri+1 that satisfy Ri.

4.4. Validation and limitations

This paper is meant to clarify the nature of concepts (such
as user requirement, user needs, and business goals) and
activities (business analysis, requirements analysis) of the
‘higher phases’ of the software development process. An-
other objective of the paper is to put the concepts and ac-
tivities mentioned above in the context of well-established
approaches (the reference model for requirements and spec-
ifications (Gunter et al., 2000), problem frames (Jackson,
2001), POSE (Hall et al., 2008; Hall & Rapanotti, 2011)).

These clarifications can be used in several ways. At the
two extremes of the range of options are the following pos-
sibilities:

1. Analysts can use the suggested approach implicitly, as a
discipline to keep order in their ideas while they proceed
through the different phases of the analysis.

2. Analysts shape the analysis activities according to a pro-
cess that explicitly takes into account the proposed con-
cepts. So, for instance, artefacts classified as business
goals, user needs and requirements are produced, and
refinement/transformation steps are also planned and
performed.

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 225



In both cases, Section 5 provides guidelines about the or-
ganization of the analysis process.

Of the two possible ways of using the proposed approach,
only the former was actually used by the author. Up to now,
the argumentation of the validity of the proposed approach
rests on the fact that it is coherent with the techniques in-
volved (the reference model for requirements and specifica-
tions (Gunter et al., 2000), problem frames (Jackson, 2001),
POSE (Hall et al., 2008; Hall & Rapanotti, 2011)), and the
previous research on goal-based RE.

Concerning the possible limitations of the approach, it is
expected that it is applicable as long as the underlying tech-
niques – mainly problem frames – are applicable. A possible
hindrance to the full-fledged application could be that the
need to produce several classes of documents (business goals,
user needs, and requirements) may be excessively expensive
for small developments. On the contrary, in bigger develop-
ment efforts, the possibility of exploring and assessing the
cost of alternatives (see Section 5.3) could be a decisive ad-
vantage.

5. An analysis process driven by user needs

The observations reported above can also affect the analysis
process: being able to tell the difference between user needs
and user requirements can help structuring the development
process more conveniently and effectively. In fact, when the
user needs are known, we face two possibilities:

1. Devising a machine and a domain behaviour such that
needs are satisfied, or

2. devising user requirements that satisfy the needs, and
then specifying a machine that satisfies the requirements
(and, hence, the needs).

Option (1) corresponds to defining the machine specifi-
cations S and W such that W, S � N. Although possible,
this operation may be difficult, especially if the needs are
expressed at a high abstraction level. In fact, in such cases
the ‘distance’ between needs and machine is so large that
the figuring out the features of the machine that satisfy the
requirements involves building a quite complex argument.
Moreover, the degrees of freedom in choosing the machine
features are many, and call for criteria to make choices that
are often not at the ‘machine level’.

Option (2) is expected to be simpler, because it allows
splitting the analysis phase into two steps:

1. Defining R such that R,W � N.
2. Defining the machine specification so that W, S � R.

In this way, one does not have to ‘jump’ from needs di-
rectly to the machine specifications: the distance between
needs and machine is covered in two shorter steps: from
needs to requirements and from requirements to machine
specifications. However, it must be noted that during the first
step one should take into account the cost of implementing
the requirements, that is one should estimate the effectiveness
and cost of the machine(s) that can satisfy the requirements.

We can thus conclude that the analysis process needs to
be organized into several activities. In a first step the various
possible R that – together with W – satisfy N should be ex-

plored; in this phase we consider the possibility of modifying
the environment as needed to define more easily achievable
requirements. The possibility of modifying the environment
is justified by the fact that the higher is the level of needs, the
more suitable are hybrid solutions, composed of both hard-
ware/software machines and people. Of course, the costs
involved in modifying the environment (e.g. for hiring or
training people) have to be taken into account when evalu-
ating the most convenient definition of R.

The second step consists in choosing one of the require-
ments definitions produced in step 1 and defining the specifi-
cations of a machine that satisfies such requirements. Also in
this case the cost of implementing the machine and possibly
modifying the environment to correctly operate the machine
should be evaluated, in order to assess the viability of the
solution. If the costs are too high, it may be the case of going
back to step 1 and look for further alternative requirements
definitions.

5.1. A process model

The considerations reported in Sections 3 and 4 may provide
something of interest to analysts. However, it may not be
obvious how effectively to use in practice the concepts em-
bedded in the proposed hierarchical requirements model. In
order to enable analysts to take advantage of such model, we
propose a specific problem analysis process. The main merit
of the proposed process model is that it highlights that anal-
ysis has to proceed through a sequence of refinements, and
that feasibility and cost evaluation activities are necessary,
since some solutions could be hardly feasible or excessively
expensive.

Figure 16 shows a UML activity diagram representing the
process of dealing with a business-level problem. The first ac-
tivity (Define problem) involves describing the environment
and the business goal, thus resulting in providing the defini-
tions of W and BG. The rest of the process is devoted – as
expected – to defining a ‘machine’ N such that W, N � BG.
This is clearly the most difficult part of the process, which
requires both creativity and a systematic and rigorous ap-
proach. Activity Specify N involves defining a specification
N that not only lets achieving the business goal BG, but al-
lows for feasible and reasonably expensive solutions. Activity
Specify N can fail altogether, thus leading to a failure of the
whole analysis. If a specification is produced, the following
activity (Feasibility and cost evaluation) involves estimating
the cost of the specification N. Three types of results are
envisaged:

1. The specification is feasible and the estimated cost for
implementing it is acceptable;

2. the specification is unfeasible or too expensive;
3. the specification is too complex to get reliable evaluations

about its feasibility or the implementation cost.

In the first case, we can either consider the analysis com-
plete, or we can explore different definitions of N, searching
for cheaper specifications.

In the second case, we go back to activity Specify N, in
order to look for different – more feasible – definitions of N.

In the last case, we need to tackle the complexity of the
specifications by refining the business goal. This is done by

226 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



Figure 16: The process of defining how to achieve a business goal.

means of the activity Refine business problem, which – if
successful – produces a specification R that is feasible and
reasonably expensive. Such R makes R,W � N true, so that
also W, N � BG becomes true. Therefore, the cost of achiev-
ing BG is the cost of implementing R. If the activity Refine
business problem fails, either we are able to devise an alterna-
tive definition of N, or we must give up, and declare BG not
achievable, at least at reasonable costs.

By applying the process in Figure 16 to our case study, we
would get as a problem definition the specification described
in Figure 6. Activity Specify N would bring to the definition
of NB as described in Figure 7 (i.e. NB specifies the need
for information sharing as a solution of the coordination
problem). The cost evaluation of NB would reveal the need
for refining the problem; in fact – as discussed in Section 3
– information sharing can be achieved in different ways and
at different costs, depending on the available communication
infrastructure and how it is used.

Activity Specify N includes the construction of a ‘correct-
ness argument’. This means that the resulting definition of
N is not just stated, but it is shown (convincingly, if not
formally) to be true (Jackson, 2001).

Activity Refine business problem – whose goal is to de-
fine R such that R,W � N and R is feasible and reasonably
expensive – is described in Figure 17. It is easy to see that
the activity is organized very like the process of dealing with
business-level problems. A noticeable difference is that before
proceeding to devise any definition of R, the given descrip-
tion of the environment (W) is properly extended, in order
to include details that are not relevant at the business level,

but become essential when dealing with the processes that
support the business. It could also be possible to consider
the extensions of the environment description as strictly con-
nected with the specification of R, thus activity Refine prob-
lem definition could be made part of the loop that involves
defining alternative specifications of R and evaluating them.

In our case study, Refine problem definition would bring
to the extended representation of the environment as in Fig-
ure 9. Finally, Specify R produces the specifications of R
for the two sub-problems (information creation and trans-
mission at agency 1 and information receipt and storage at
agency 2). More precisely, the first execution of Specify R
would produce the specifications reported in Figures 11 and
13. If this set of requirements is considered feasible and rea-
sonably expensive the process proceeds to the identification
of a machine that satisfies the requirements. Otherwise, a new
iteration of Specify R is performed, which produces the spec-
ifications reported in Figure 14. This new set of requirements
is evaluated with respect to feasibility and cost, and so on,
until either a satisfactory set of requirements is found, or the
process fails, having explored all the possible requirements
that lead to satisfying NB.

Of course, we may recognize the need for refining the spec-
ifications of R (as is often the case, as discussed in Section
3) in order to test with several specification S of the actual
machine. In such cases, activity Refine needs is executed. Its
definition (not reported here) could be very similar to that of
activity Refine business problem.

As a final note, even though three levels of requirements
were often mentioned (i.e. goals, needs, and requirements),

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 227



Figure 17: The process of refining a business problem.

the requirements hierarchy can be further expanded towards
higher and lower levels, for example considering that several
machines can implement the same specification, etc.

5.2. Dealing with failures

The process described in the section above acknowledges the
possibility that refinements fail. When a failure occurs, it
is often possible to ‘backtrack’ and look for an alternative
refinement. However, when no refinement appears possible
you have to modify the problem, for example by negotiating
the needs to be satisfied. In this section, the possibilities of
failures and how to deal with them are discussed.

The most critical case is probably when different business
goals are somehow contradictory. In the formula W, N �
BG, we have a set of new goals BG and an environment W
that already satisfies the ‘older’ business goals. In fact, W
is generally suited to support the current business: typically,
W describes an organization (and its environment) as it is
at the moment, and BG represents the improvements in the
business the organization wants to achieve. Now, it is possible
that BG contain some goals that may lead to contradictory
requirements: in this case by considering the business goals
together, either we find a set of requirements that satisfies all
the goals, or we come to the conclusion that some goal has
to be changed or dropped.

It is also possible that some goal in BG is in contrast with
W, that is it cannot be achieved as long as W is maintained
as it is. This is the case when a new goal is in contrast with

some decision that has been previously taken to satisfy older
goals. In this case we are confronted with the choice between
a conservative behaviour – that is keep W and drop part of
BG – or a more innovative behaviour: critically analyse W to
understand if the older goals are still valid and if they can be
achieved differently; in such case drop the features or W that
contrast with the achievement of BG, and rebuild it so that
it can support both the new and the older goals.

Schematically, the procedure to deal with this issue is as
follows:

The initial situation is Wold , Nold � BGold .

The new problem is Wold , Nold , NtoBeDefined � BGnew.

If NtoBeDefined cannot be defined:

If BGold is no longer important, then restate the problem
as Wold , NtoBeDefined � BGnew

Else, consider restating the problem as
Wold , NtoBeDefined � BGnew, BGold (this involves dropping
the implementation of Nold , which may be quite
expensive).

5.3. Estimating the cost of implementing specifications

In the discussions reported above it has been stressed that
being able to evaluate specifications is very important. The
cost of achieving a business goal is made of two components:
the cost of building (or buying) a machine that implements
the specifications, and the cost of running it. In order to

228 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



Figure 18: Activity diagram specifying the behaviour of the data input operator in scenario 1.

evaluate such costs it is necessary to remember that the ma-
chine is usually made of both a computer-based application
and people who execute procedures that are part of the spec-
ifications (as in scenario 1 in Section 3.2, where an operator
reads emails and fills database forms with the received infor-
mation).

Therefore, in order to fully evaluate the cost of a specifi-
cation, it is necessary to consider and estimate the following
factors:

1. The cost of implementing the hardware/software ma-
chine;

2. The cost of setting up a human-based “machine” (i.e.
defining “manual” procedures, hiring people that are
able to carry out such procedures, training people, etc.);

3. The cost of execution of the software applications;
4. The cost of running the manual procedures, which in-

cludes the cost of the involved people and of the devices
and resources that people have to use in order to carry
out the specified procedures.

Costs (1) and (2) can be estimated by means of widely
available techniques. Concerning cost (1) we should be able
to apply the techniques that have been proposed for the cost
estimation of software development. These techniques usu-
ally require that the size of the software to be developed
is measured (or estimated). In particular, modern techniques
and tools (like for instance COCOMO II (Boehm et al., 2009)
and SEER-SEM (Galorath & Evans, 2006)) accept that the
size is given in function points (FP) (Albrecht, 1979) or –
sometimes – in COSMIC FP (CFP) (COSMIC, 2007). Both
these functional size measures are applied to user require-
ments and define the size measure as a function of a set of
‘base functional components’: it is thus necessary to identify
base functional components by examining the requirements
specifications. Such issue has been addressed in Lavazza and
del Bianco (2008) and del Bianco and Lavazza (2009), where
mappings between problem frame modelling elements (like

shared phenomena, for instance) and both FP and CFP are
defined: the methods proposed in Lavazza and del Bianco
(2008) and del Bianco and Lavazza (2009) allow for measur-
ing the functional size of machine specifications, and then to
use consolidated techniques and tools to get estimates of the
cost of building the specified machines.

As far as costs (4) are concerned, it is possible – as in the
case of costs (1) – to exploit the information contained in
problem frames. As an example, let us consider the specifica-
tion of the data input operator, which is an essential part of
the update processor in scenario 1. These specifications can
be represented by means of a UML activity diagram, as in
Figure 18.

By examining the diagram, it is easy to express the cost of
executing the specifications as follows:

CDIO = KNRM(TRem + PumTScr + (1 − Pum)TF i f ) (5)

Equation (5) expresses CDIO the operating cost of the data
input operator with respect to:

NRM: the number of received email messages;

TRem: the average time taken to read and interpret a message;

TScr: the average time taken to write and send a clarification
request message;

TFif: the average time taken to fill the input form with the
information from the email message (the time taken to
store the data is assumed to be practically nil);

Pum: the probability that a received email message cannot be
reliably interpreted;

K: a constant that transforms the time employed into a cost.

6. Related work

The RE community has produced a large amount of work
on the role of user goals in RE.

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 229



Ross and Schoman stated that requirements must specify
‘why a system is needed, based on current or foreseen condi-
tions, which may be internal operations or an external mar-
ket’, ‘what system features will serve and satisfy this context’,
and ‘how the system is to be constructed’ (Ross & Schoman,
1977). Goals were identified as the originators of require-
ments (Lee, 1991). Conversely, requirements emerge because
of some underlying goal (Ross, Schoman, 1977; Dardenne
et al., 1991; Sommerville & Sawyer, 1997).

Mylopulos suggested the transition from more traditional
forms of analysis to goal-oriented analysis, which involves
the description and evaluation of alternatives (Mylopoulos
et al., 1999). He also pointed out that goals and the way
they are tackled are related to ‘the organisztional objectives
behind a software development project’ (which correspond
quite closely to the ‘business goals’ mentioned above).

Goal refinement leads from high-level goals to low-level
technical requirements, according to business-related con-
siderations (Yu, 1993).

Goal refinement involves choosing among different alter-
natives; actually it is fundamental for detecting the existence
of alternatives (Lamsweerde, 2000).

The identification of requirements from goals has been ex-
tensively studied (Dardenne et al., 1991; Rubin & Goldberg,
1992; Anton & Potts, 1998; Dubois et al., 1998; Kaindl, 2000;
Lamsweerde, 2000).

A fundamental step in goal-based RE was the definition
of goals as properties to be achieved, described via optative
statements as opposed to indicative ones (Jackson, 1995;
Zave & Jackson, 1997). A quite comprehensive review of the
research carried out in goal-oriented RE can be found in
Lamsweerde (2001).

Several authors have published requirements acquisition
strategies that start from an analysis of goals (e.g. Dar-
denne et al., 1993; Yu & Mylopoulos, 1994; Moffett &
McDermid, 1995). In 1995, Potts proposes a schema sim-
ilar to story schemata to help analysts develop a limited
set of representative scenarios. In 1996, Darimont and van
Lamsweerde presented an approach to goal refinement that
provides formal constructive support while hiding the under-
lying mathematics.

Kujala et al. propose an approach to representing user
needs and translating them into user requirements in indus-
trial product development cases (Kujala et al., 2001). They
used users’ task sequence diagrams and use cases to model
the user requirements. Although Kujala et al., do not provide
a precise set of definitions or a methodology, they highlight
the importance of documenting requirements in a simple and
representative way.

None of the papers mentioned above used problem frames
for the representation of requirements. Cañete-Valdeón et al.
(2008) propose a characterization of the concept of ‘value’ of
use cases based on the catalogue of frames for real software
problems proposed by Jackson (2001). For each frame they
discuss which results from the system could be regarded as
valuable for the user. The proposed approach is possibly
helpful in integrating the usage of problem frames with use
case based RE, but does not help in the identification and
management of user needs, or even higher level goals.

Some work aimed at transforming requirements into spec-
ifications in the context of problem frames appears in the
literature (Rapanotti et al., 2006; Seater & Jackson, 2006; Li,

2007; Seater et al., 2007). With respect to the work reported
here, all the mentioned papers focus on the lower section of
the hierarchy described by (4); that is they tend to disregard
the connection of requirements with higher level business
goals. On the contrary, they focus on the process of deriving
specifications from requirements.

The idea of progressing from the problem to the solution
via transformations is at the base of POSE: see, for instance,
Hall et al. (2008) and Hall and Rapanotti (2011). Here a sim-
ilar approach is suggested, but mainly focused on the very
high-level descriptions of problems, when the users’ goals
and needs are described entirely in the problem world, and
the machine specification can be seen as the target of the pro-
cess. In other words, while POSE aims – using very similar
principles – at finding solutions to given problems, our ap-
proach is more concerned on defining problems themselves,
given the high-level user goals.

In 2009, Hall and Rapanotti propose assurance-driven de-
sign in the context of POSE. They also propose a process
model that addresses the issues of assurance and trade-offs.
Such process stresses the importance of problem and solu-
tion validations. An important aspect of development that is
made explicit in Hall and Rapanotti (2009) is that of back-
tracking: design steps that come to a dead end because they
cannot be validated cause to backtrack to a point where a dif-
ferent approach can be taken. This also applies in the process
proposed here: for instance, in Figure 17 when a refinement
fails we go back to specifying requirements in a different
manner (but always in a way that satisfies W ′, R � N).

In Section 1, it was stated that it would be useful to clarify
what are the differences between a user requirement and a
user need, and what are the relations with business processes.
The growingly strong interconnection between IT and busi-
ness processes has made clear the need to link higher level (i.e.
business related) and lower level (i.e. at the software develop-
ment level) goals. This need appears especially often when it
comes to evaluating IT-supported business strategies (Becker
& Bostelman, 1999; Buglione & Abran, 2000; Bianchi, 2001;
Card, 2003). The relation of higher with lower level goals has
been recently described – in connection with the problem of
evaluating the effectiveness of business strategies and IT so-
lutions – by Basili et al. (2010). In IT solutions are viewed
as (part of) the strategies that in a given context and un-
der given assumptions lead to achieving given business goals
(Basili et al., 2010). However – also because they focus on the
evaluation problem – Basili et al. do not propose a clear and
systematic way of modelling the requirements hierarchy. The
proposal contained herein of systematic refinement of busi-
ness goals in a given environment into needs to be achieved
could help clarify the concepts of ‘strategy’ and ‘context’
proposed in Basili et al. (2010).

7. Conclusion

This paper proposes the definitions of a few concepts that
are needed to properly identify and describe user needs and
requirements.

User needs lie entirely in the user’s problem domain space.
No machine responsibility needs to be specified. This appears
quite evident when a problem diagram is used to model the

230 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd



user needs: in fact, the part of the diagram that includes the
machine can be left unspecified, as in Figures 5–7.

There are several requirements definitions that can satisfy
the users’ needs. The analysis process has to take this issue
into account: RE is a design activity, since it must lead to
choosing one of the several possible requirements definitions
that satisfy the user needs, and one of the several possible ma-
chine specifications that satisfy the requirements. Moreover,
problem domains are deeply involved in the analysis: it is
often possible, as in our case study, that part of the solution
depends on the behaviour of the domains (often humans)
that interact with the machine.

User needs are themselves determined by the goals of a
business process. This observation suggests that there are not
just two levels (the needs and requirements levels); rather, we
may have a hierarchy of requirements, where each level of the
hierarchy corresponds to an abstraction level in the descrip-
tion of the problems and solutions. Dealing with this hier-
archy calls for an articulated analysis process, in which the
problem frames and related methodology play an important
role. In Section 5, a process for dealing with requirements
hierarchies has been outlined, using UML activity diagrams.
Since it has been shown that the methodology of problem
frames can be successfully used in combination with UML
(Lavazza & Bianco, 2004, 2006; Bianco & Lavazza, 2008),
it will be useful to define UML-based representations of the
needs and requirements, and a UML-compliant analysis pro-
cess. Future work includes the definition of a methodology
for building UML-based descriptions of goals, needs, and re-
quirements and using problem frames methodology to carry
out in the most seamless and integrated way refinements,
correctness argument constructions, cost analysis, and any
other useful activity.

As briefly discussed at the end of Section 4, the transi-
tion from goals to needs and from needs to requirements can
be considered similar to the transformations at the base of
POSE (Hall et al., 2008; Hall & Rapanotti, 2011): formal-
izing the proposed concepts in the context of POSE is thus
another goal of future activities. Actually, the proposed hi-
erarchy of requirements can be seen as the base for defining
methodological guidelines for using POSE transformations
in dealing with high-level user goals and needs.

Finally, we can note that even though in industry there is
still some confusion about the nature or requirements and
their relationships with business goals, the situation is im-
proving: for instance, some companies are starting to follow
consistent guidelines, such as the Business Analysis Body
of Knowledge (International Institute of Business Analysis),
a collection of guidelines that reflects current generally ac-
cepted practices of business analysis.

Acknowledgements

The research presented in this paper has been partially
funded by the project ‘Metodi e tecniche per l’analisi,
l’implementazione e la valutazione di sistemi software’
funded by Università degli Studi dell’Insubria.

References

ALBRECHT, A. (1979) Measuring application development productiv-
ity. IBM Application Development Symposium, IBM Press, 83–92.

ANTON, A.I. and C. POTTS (1998) The use of goals to surface re-
quirements for evolving systems, 20th International Conference on
Software Engineering, 19–25 April 1998, Kyoto.

BASILI, V.R., M. LINDVALL, M. REGARDIE, C. SEAMAN, J. HEIDRICH,
J. MUNCH, D. ROMBACH and A. TRENDOWICZ (2010) Linking soft-
ware development and business strategy through measurement,
IEEE Computer, 43, 57–65.

BECKER, S.A. and M.L. BOSTELMAN (1999) Aligning strategic
and project measurement systems, IEEE Software, 16, 46–
51.

BIANCHI, A.J. (2001) Management indicators model to evaluate per-
formance of IT organisations, International Conference on Man-
agement of Engineering and Technology, Vol. 2, IEEE Press, 217–
229.

BOEHM, B.W., C. ABTS, A.W. BROWN, S. CHULANI, B.K. CLARK, E.
HOROWITZ, R. MADACHY, D.J. REIFER and B. STEECE (2009) Soft-
ware Cost Estimation with COCOMO II. Upper Saddle River, NJ,
USA: Prentice Hall Press.

BUGLIONE, L. and A. ABRAN (2000) Balanced scorecards and GQM:
what are the differences? 3rd European Software Measurement Con-
ference, Federation of European Software Measurement Associa-
tion, 18–20 October 2000, Madrid, Spain.

CAÑETE-VALDEÓN, J.M., F. ENRÍQUEZ, J. ORTEGA and E. VELÁQUEZ

(2008) Clarifying the semantics of value in use cases through Jack-
son’s Problem Frames, Information Processing Letters, 107, 221–
229.

CARD, D. (2003) Integrating practical software measurement and the
balanced scorecard, 27th Annual International Computer Software
and Applications Conference, IEEE CS Press.

COSMIC – Common Software Measurement International Con-
sortium (2007) The COSMIC Functional Size Measurement
Method – version 3.0 Measurement Manual (The COSMIC
Implementation Guide for ISO/IEC 19761: 2003). Available
at http://www.cosmicon.com/dl_manager4.asp?id=73 (accessed
August 22, 2012).

DARDENNE, A., A. VAN LAMSWEERDE and S. FICKAS (1993) Goal-
oriented requirements acquisition, Science of Computer Program-
ming, 20, 3–50.

DARDENNE, A., S. FICKAS and A. VAN LAMSWEERDE (1991) Goal-
directed concept acquisition in requirements elicitation, 6th Inter-
national Workshop on Software Specification and Design, Como,
14–21.

DARIMONT, R. and A. VAN LAMSWEERDE (1996) Formal refinement
patterns for goal-driven requirements elaboration, 4th ACM Sym-
posium on the Foundations of Software Engineering, October 1996,
San Francisco, 179–190.

DEL BIANCO, V. and L. LAVAZZA (2008) Enhancing problem frames
with scenarios and histories in UML-based software development,
Expert Systems – The Journal of Knowledge Engineering, Vol. 25,
no. 1, Blackwell Publishing.

DEL BIANCO, V. and L. LAVAZZA (2009) Applying the COSMIC func-
tional size measurement to problem frames, 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems
– ICECCS ’09, 2–4 June 2009, Potsdam (Germany): IEEE Com-
puter Society.

DUBOIS, E., E. YU and M. PETIT (1998) From early to late formal re-
quirements: a process-control case study, 9th International Work-
shop on Software Specification and Design, 16–18 April 1998, Mie,
Japan: IEEE CS Press, 34–42.

GALORATH, D.D. and M.W. EVANS (2006) Software Sizing, Estimation,
and Risk Management, Auerbach Publications.

GUNTER, C., E. GUNTER, M. JACKSON and P. ZAVE (2000) A reference
model for requirements and specifications. IEEE Software, 3, 37–
43.

HALL, J.G. and L. RAPANOTTI (2005) Problem frames for socio-
technical systems, In Requirements Engineering for Socio-Technical
Systems, A. Silva and J.L. Mate (eds), chapter 19, Idea Publishing
Group, 318–339.

HALL, J.G. and L. RAPANOTTI (2009) Assurance-driven design in prob-
lem oriented engineering, International Journal on Advances in Sys-
tems and Measurements, 2, 119–130.

HALL, J.G. and L. RAPANOTTI (2011) Software engineering as the
design theoretic transformation of software problems. Innovations
in Systems and Software Engineering, London: Springer.

C© 2012 Wiley Publishing Ltd Expert Systems, July 2013, Vol. 30, No. 3 231



HALL, J.G., L. RAPANOTTI and M. JACKSON (2008) Problem Oriented
Software Engineering: solving the package router control problem,
IEEE Transactions on Software Engineering, 34, 226–241.

INTERNATIONAL INSTITUTE OF BUSINESS ANALYSIS, The Guide to the
Business Analysis Book of Knowledge, version 2. http://www. thei-
iba.org.

JACKSON, M. (1995) Software Requirements & Specifications – A Lex-
icon of Practice, Principles and Prejudices. ACM Press, Addison-
Wesley.

JACKSON, M. (2001) Problem Frames – Analysing and Structuring Soft-
ware Development Problems, Addison-Wesley, ACM Press.

KAINDL, H. (2000) A design process based on a model combining
scenarios with goals and functions, IEEE Transactions on Systems,
Man and Cybernetic, 30, 537–551.

KUJALA, S., M. KAUPPINEN and S. REKOLA (2001) Bridging the gap
between user needs and user requirements, in Advances in Human-
Computer Interaction I, N. Avouris and N. Fakotakis (eds), Rio
Patras, Greece: Typorama publications, 45–50.

LAVAZZA, L. (2010) User needs vs. user requirements: a problem
frame-based view, International Workshop on Advances and Appli-
cations of Problem Orientation (IWAAPO’10), 8 May 2010, Cape
Town, South Africa.

LAVAZZA, L. and V. DEL BIANCO (2004) A UML-based approach
for representing problem frames, 1st International Workshop on
Advances and Applications of Problem Frames (IWAAPF), 24 May
2004, Edinburgh: IEE.

LAVAZZA, L. and V. DEL BIANCO (2006) Combining problem frames
and UML in the description of software requirements, Fundamen-
tal Approaches to Software Engineering (FASE06), 25 March–2
April 2006, Vienna: Springer.

LAVAZZA, L., V. DEL BIANCO (2008) Functional size measurement
based on problem frames: a case study, 3rd International Workshop
on Advances and Applications of Problem Frames (IWAAPF), 10
May 2008, Leipzig: ACM press.

LEE, J. (1991) Extending the Potts and Bruns Model for recording de-
sign rationale, 13th International Conference on Software Engineer-
ing, 13–17 May 1991, Austin, Texas, USA: IEEE-ACM, 114–125.

LI, Z. (2007) Progressing problems from requirements to specifica-
tions in problem frames, PhD Thesis, Department of Computing,
The Open University, Walton Hall, Milton Keynes, UK.

MOFFETT, J.D. and J.A. MCDERMID (1995) Goals as a focus for con-
flict management in requirements engineering. RE ’95: Second In-
ternational Symposium on Requirement Engineering, 28–30 March
1995, York, UK: IEEE Computer Society.

MYLOPOULOS, J., L. CHUNG and E. YU (1999) From object-oriented to
goal-oriented requirements analysis, Communications of the ACM,
42, 31–37.

POTTS, C. (1995) Using schematic scenarios to understand user needs,
1st Conference on Designing Interactive Systems: Processes, Prac-
tices, Methods, & Techniques, 23–25 August 1995, Ann Arbor,
Michigan: ACM.

RAPANOTTI, L., J.G. HALL and Z. LI (2006) Deriving specifications
from requirements through problem reduction, IEE Proceedings:
Software, 153, 183–198.

ROSS, D.T. and K.E. SCHOMAN (1977) Structured analysis for require-
ments definition, IEEE Transactions on Software Engineering, 3,
6–15.

RUBIN, K.S. and A. GOLDBERG (1992) Object behavior analysis, Com-
munications of the ACM, 35, 48–62.

SEATER, R. and D. JACKSON (2006) Problem frame transformations:
deriving specifications from requirements, 2nd International Work-
shop on Advances and Applications of Problem Frames, 23 May
2006, Shanghai, China.

SEATER, R., D. JACKSON and R. GHEYI (2007) Requirement progres-
sion in problem frames: deriving specifications from requirements,
Requirements Engineering Journal (REJ’07), 12, 77–102.

SOMMERVILLE, I. and P. SAWYER (1997) Requirements Engineering: A
Good Practice Guide. Chichester: Wiley.

VAN LAMSWEERDE, A. (2000) Requirements engineering in the year
00: a research perspective, keynote, 22nd International Conference
on Software Engineering, 4–11 June 2000, Limerick, Ireland: ACM
Press, 5–19.

VAN LAMSWEERDE, A. (2001) Goal-oriented requirements engineer-
ing: a guided tour, 5th IEEE International Symposium on Require-
ments Engineering, 27–31 August 2001, Toronto, Canada: IEEE
Computer Society, 249–263.

YU, E.S.K. (1993) Modelling organisations for information systems
requirements engineering, 1st International Symposium on Require-
ments Engineering, January 1993, San Diego, CA, USA: IEEE,
34–41.

YU, E.S.K. and J. MYLOPOULOS (1994) From E-R to ‘A-R’: modelling
strategic actor relationships for business process reengineering,
13th International Conference on the Entity-Relationship Approach,
Manchester, UK.

ZAVE, P. and M. JACKSON (1997) Four dark corners of require-
ments engineering, ACM Transactions on Software Engineering
and Methodology, 6, 1–30.

The author

Luigi Lavazza

Luigi Lavazza is associate professor at the University of In-
subria at Varese. He also cooperates with CEFRIEL (ICT
Center of Excellence For Research, Innovation, Education
& Industrial Labs partnership). His research interests in-
clude: software process modelling, measurement, and im-
provement; the measurement of software products, especially
concerning quality and the functional size; model-based de-
velopment, especially concerning real-time and embedded
software; requirements engineering and software develop-
ment environments and tools. He participated in several
research projects co-funded by the European Union or by
the Italian government, often guiding the research unit of
CEFRIEL or of the researchers of the University of Insub-
ria at Varese. He is co-author of over 100 scientific articles,
published in international journals, or in the proceedings
of international conferences or in books. He serves on the
program committees of a several international conferences.
Luigi Lavazza is an IARIA fellow and member of the IEEE
computer society.

232 Expert Systems, July 2013, Vol. 30, No. 3 C© 2012 Wiley Publishing Ltd


