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We draw an intuitive picture of the spatio–temporal properties of the entangled state of twin

photons, where they are described as classical wave-packets. This picture predicts a precise

relation between their temporal and transverse spatial separations at the crystal output. The
space-time coupling described by classical arguments turns out to determine in a precise way the

spatio–temporal structure of the quantum entanglement, analyzed by means of the biphotonic

correlation and of the Schmidt dimensionality of the entanglement.
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1. Introduction

The process of parametric down-conversion (PDC) occurring in a nonlinear crystal is

a widely employed source of entangled photons. One of the appealing feature of this

process is the possibility of generating high-dimensional entanglement, both because

various degrees of freedom of the photon pair are entangled (polarization, time-

energy, position-momentum), and because spatial and temporal entanglement is

realized in a high-dimensional Hilbert space, due to the naturally ultra-broad

bandwidths of PDC.

Depending on the application, traditional approaches often focus on a single

degree of freedom at a time, or even when considering them simultaneously, treat

§Corresponding author.

International Journal of Quantum Information
Vol. 12, No. 2 (2014) 1461016 (12 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0219749914610164

1461016-1

http://dx.doi.org/10.1142/S0219749914610164


them as independent. However, as for many nonlinear optical processes, PDC is ruled

by phase matching, which establishes an angular dispersion relation that links the

frequencies and the angles of emission of the generated photons. A non-trivial con-

sequence is that, unless the spectral bandwidths considered are very narrow, it is not

possible in general to speak about a purely temporal or spatial entanglement of the

state, but rather the entanglement involves the spatial and temporal degrees of

freedom of twin photons in a non separable way. Recent theoretical1–5 and experi-

mental6,7 works have indeed demonstrated that the correlation function of twin

photons or twin beams generated in collinear phase matching conditions have a

peculiar X-shape in the spatio-temporal domain, which entails the attracting possi-

bility of controlling the temporal properties of entanglement by acting on the spatial

degrees of freedom of twin photons, or viceversa.

In this work, we shall introduce a somehow intuitive picture of the origin of such

spatio–temporal entanglement, where twin photons are pictured as quasi-classical

wave-packets. We shall demonstrate how the phase matching mechanism, i.e. the

conservation of energy and momentum in the microscopic process, involves a precise

relation between the temporal delays and the transverse spatial separation of the

members of a pair, which turns out into a characteristic geometry of their quantum

correlation in the space–time domain.

From a more formal perspective, the second part of this work will address the issue

of the degree of the entanglement of the state quanti¯ed by the so-called Schmidt

number. A comparison with the results obtained in either a purely spatial or a purely

temporal model shows that the degree of entanglement of the PDC state in the full 3D

spatio–temporal domain cannot in general be trivially reduced to the product of the

Schmidt numbers obtained in models with lower dimensionality, unless the detected

bandwidth is very narrow.5 Interesting di®erences between the case of collinear and

non-collinear phase matching will be analyzed, giving also in this case evidence of the

role of phase matching in determining the geometrical properties of the state.

2. Spatio–Temporal Description of Parametric Down-Conversion

A spatio-temporal model for PDC has been described in detail in Refs. 2 and 8.

Although some of the following results can be generalized to the high gain regime of

PDC, and to type II phase matching, for the sake of simplicity we shall restrict to

type I PDC in the ultra-low gain regime, where very few photon pairs with identical

polarization are generated in each spatio–temporal mode.

We consider an intense laser pump ¯eld of central frequency !p, propagating along

the z-axis into a slab of �ð2Þ nonlinear crystal of length lc, cut for type I phase

matching. The model2 is formulated in terms of a propagation equation along the

crystal slab for the quantum ¯eld operator Âðw; zÞ, associated with the down-con-

verted ¯eld of central frequency !p=2. The variable

w ¼ ðq;�Þ ð1Þ
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is a short-hand notation for the 3D spatio–temporal Fourier coordinate, where q ¼
ðqx; qyÞ is the photonic wave-vector in the direction transverse to the propagation

axis z, and � ¼ !� !p=2 is the frequency shift from the central frequency. In the

following we shall denote the 3D coordinate in the direct domain as

» ¼ ðr; tÞ ð2Þ
where t is time and r ¼ ðx; yÞ is the spatial coordinate spanning the transverse plane

at the crystal exit face (near-¯eld plane), with the convention w � » ¼ q � r� !t.

In the undepleted pump approximation, where the pump can be considered a

c-number ¯eld, the propagation equation can be formally solved as a perturbative

expansion2 in powers of the dimensionless coupling strength g ¼ �ð2Þ�p lc , where �
ð2Þ

is a parameter proportional to the second-order susceptibility of the medium and �p

is the peak value of the pump amplitude. In the ultra-low gain regime, de¯ned by

g � 1, the ¯rst-order of such expansion provides the following input-output relation

linking the signal ¯eld operator at the output face of the crystal with the one at the

input face2:

Âðw; lcÞ ¼ e ikszðwÞlc Âðw; 0Þ
�

þ g

Z
d3w

ð2�Þ3=2
~Apðwþw 0; 0Þe�i

�ðw;w 0Þ
2 sinc

�ðw;w 0Þ
2

Â
†ðw 0; 0Þ

�
: ð3Þ

In this equation ~Ap is the Fourier transform of the pump beam pro¯le at the

crystal input face: ~ApðwÞ :¼ R
d»

ð2�Þ 3=2 Apð»; 0Þe�i»�w, where normalization is such that

Apð» ¼ 0; z ¼ 0Þ ¼ 1; � is the phase mismatch function, which accounts for the

conservation of longitudinal momentum in the microscopic PDC process

�ðw;w 0Þ ¼ kszðwÞ þ kszðw 0Þ � kpzðwþw 0Þ� �
lc ð4Þ

ksz being the longitudinal component of the signal wave vector, kpz the analogous

quantity for the pump. This quantity determines the e±ciency of each elemen-

tary down-conversion process, in which a pump photon in the mode wþw 0 ¼
ðqþ q 0;�þ � 0Þ, splits into two twin photons in the modes w ¼ ðq;�Þ and

w 0 ¼ ðq 0;� 0Þ, respectively, with conservation of the energy and transverse

momentum.

From the relation (3), assuming that the input signal ¯eld is in the vacuum state,

the probability amplitude of generating a pair of photons in the Fourier spatio-

temporal modes w and w 0, i.e. the biphoton amplitude in the Fourier domain, is

readily calculated

~ ðw;w 0Þ :¼ hÂðw; lcÞÂðw 0; lcÞi; ð5Þ

¼ g

ð2�Þ3=2
~Apðwþw 0; lcÞe i

�ðw;w 0Þ
2 sinc

�ðw;w 0Þ
2

; ð6Þ

Spatio-temporal entanglement of twin photons: An intuitive picture

1461016-3



where the expectation value in (5) is taken over the input vacuum state and ~Apðw;
lcÞ ¼ e ikpzðwÞlc ~Apðw; 0Þ is the pro¯le of the pump ¯eld after it has propagated linearly

to the crystal end face.

So far we used a ¯eld formalism, where the ¯eld operators evolve from the input to

the output face of the crystal, while the state remains in the vacuum state. Alter-

natively, one can introduce an equivalent state formalism, where the state evolves

along the crystal.5 By applying the equivalent of the transformation (3) to the state,

one obtains the well-known form of the state generated by PDC

j�PDCi ¼ j0i þ 1

2

Z
dw1

Z
dw2

~ ðw1;w2ÞÂ†ðw1ÞÂ†ðw2Þj0i ð7Þ

with the biphoton amplitude ~ being given by (6) and j0i being the vacuum state.

3. An Intuitive Picture of the Spatio–Temporal Entanglement

The phase matching mechanism (the conservation of energy and momentum)

imposes a precise relationship between the frequencies of the emitted signal-idler

waves and their tranverse wave vectors, which can be seen as a balance between

group velocity dispersion and di®raction.2,6 In this section, we shall provide an in-

tuitive picture of how this relationship turns into a relationship between the temporal

and spatial separations of twin photons, expressed, in the case of collinear phase

matching, by the X-structure of the spatio–temporal correlation.

Let us consider the limit of a plane-wave and monochromatic pump, where the

only allowed processes are those where twin photons are generated in the symmetric

modes w, �w. Let us focus on phase matched modes, which satisfy the conditiona

�pwðwÞ :¼ �ðw;�wÞ ¼ lc½kszðwÞ þ kszð�wÞ � kp� ¼ 0; ð8Þ
that is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
sð�Þ � q2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2
sð��Þ � q2

q
� kp ¼ 0; ð9Þ

where ksð�Þ is the signal wave-number at frequency !p=2þ �. Equation (9) de¯nes

in the 3D-space ðq;�Þ a surface, identi¯ed by the phase matching curve jqj ¼ qpmð�Þ.
The longitudinal momentum conservation is complemented by the transverse

momentum conservation, which requires that twin photons at conjugate frequencies

��, are emitted with opposite transverse wave vectors: qð��Þ ¼ �qð�Þ, with

jqð�Þj ¼ qpmð�Þ.
The total derivative of Eq. (9) with respect to � (i.e. the derivative performed

following the phase matching curve) vanishes identically, and therefore:

d

d�
�pwðq;�Þ ¼ 0 ! @

@�
�pwðq;�Þ ¼ � @

@q
�pwðq;�Þq 0pmð�Þ: ð10Þ

aFor de¯niteness, we consider here type I e-oo phase matching, but several generalization of this

formulation are possible.
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Let us now assume that a pair of photons is created at a point z along the crystal (see

Fig. 1), and let us multiply both sides of Eq. (10) by the longitudinal distance lc � z

travelled until the crystal end face. By performing the simple derivatives involved in

Eq. (10), we obtain the identity

ðlc � zÞ
vgð�Þ cos �ð�Þ

� ðlc � zÞ
vgð��Þ cos �ð��Þ

� �
¼ ðlc � zÞ½tan �ð�Þ þ tan �ð��Þ�q 0pmð�Þ;

ð11Þ

where vgð�Þ ¼ ðdksð�Þ=d�Þ�1 is the group velocity at frequency �, and tan½�ð�Þ� ¼
qpmð�Þ=ksz½qpmð�Þ;��.

So far, we have performed only mathematical manipulations on the phase-

matching relation. Let us now interpret the result (11). We picture twin photons as

two wave-packets centered around the conjugate frequencies ��, and propagating

along directions imposed by the phase matching conditions. That is, if a signal

photon is emitted at frequency �, it will propagate at an angle �ð�Þ with respect to

the z axis given by sin½�ð�Þ� ¼ qpmð�Þ=ksð�Þ, with a velocity vgð�Þ. Its twin photon

will be emitted at frequency �� and will propagate at an angle �ð��Þ with a velocity

vgð��Þ. Therefore ðlc � zÞ=½vgð��Þ cos �ð��Þ� represents the time employed by a

signal (idler) photon to reach the crystal exit face from the point z where it was

created, and we can interpret the left-hand side of Eq. (11) as the temporal delay

�tð�; zÞ acquired during propagation along the crystal by a pair of twin photon

created at point z with frequencies ��.

Similarly, ðlc � zÞ tan �ð��Þ is the radial distance travelled by a signal (idler)

photon from the point where it was created to the crystal exit face. Therefore the

quantity ðlc � zÞ½tan �ð�Þ þ tan �ð��Þ� at the right-hand side is the tranverse sepa-

ration�rð�; zÞ at the exit face of the crystal of a pair of twin photons created at point

z with frequencies �� (we remind that twin photons always travel in transversally

opposite directions, therefore the sum of their radial distances from the generation

point represents their transverse separation, see Fig. 1).

Fig. 1. (Color online) Schematic representation of twin-photon propagation inside the nonlinear crystal.
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We have thus found that the phase matching condition, through Eq. (11), imposes

a relation between the temporal delays and the transverse separations of twin pho-

tons at the crystal exit face

�tð�; zÞ ¼ �rð�; zÞq 0pmð�Þ: ð12Þ

The nature of this relation, i.e. the shape of the spatio–temporal correlation, depends

on the shape of the phase matching curve via its derivative q 0pmð�Þ.
A closer insight can be gained by making a Taylor expansion of the phase mis-

match function (9) around q ¼ 0;� ¼ 0:

�pwðq;�Þ ¼ �0 �
q2lc
ks

þ k 00
s lc�

2 � � � ð13Þ

with �0 ¼ ð2ks � kpÞlc being the collinear phase mismatch at degeneracy, ks ¼
ksð� ¼ 0Þ, and k 00

s ¼ d2ksð�Þ=d�2j�¼0. We can consider the two limiting cases:

(a) Collinear phase matching: �0 ¼ 0. In a large neighborhood of � ¼ 0, the

phase matching curve corresponds to two straight lines with opposite slopes (see also

Fig. 2(a))

qpmð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffi
ksk

00
s

p
�; ð14Þ

(where the þ or � sign has to be taken for � positive or negative, respectively), so

that q 0pmð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffi
ksk

00
s

p
and Eq. (12) becomes

�tð�; zÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
ksk

00
s

p
�rð�; zÞ: ð15Þ

This equation tells us that, whatever was the position along the crystal where twin

photons were generated, whatever is their temporal frequency, they arrive at the end

face of the crystal with a temporal delay proportional to their spatial transverse

separation (with a plus or minus sign). Since we do not know where along the crystal

and with which frequency twin photons were created, there is uncertainty in their

arrival times and transverse separations. However, when they are found separated by

a distance �r, they will be also separated in time by an amount �t ¼ �
ffiffiffiffiffiffiffiffiffiffi
ksk

00
s

p
�r.

This entirely classical reasoning thus predicts a strong coupling between spatial and

temporal degrees of freedom of twin photons. In particular Eq. (15), when seen in the

full 3D space �x;�y;�t, describes a biconical surface, thus predicting that the

spatio–temporal correlation has a non-factorable biconical geometry, which appears

as an X in any plane containing one spatial coordinate and time.

(b) Non-collinear phase matching: �0 � k 00
s lc�

2. In this conditions, in the

neighbourhood of � ¼ 0 the phase matching curve basically becomes a horizontal

straight line (see also Fig. 2(c)):

qpmð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks�0=lc þ ksk

00
s�

2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks�0=lc

p
for �0 � k 00

s lc�
2 ð16Þ
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so that q 0pmð�Þ � 0 and Eq. (12) predicts that

�tð�; zÞ � 0; ð17Þ
independently from the radial separation �r. This result tells us that twin photons

are most likely to be found together in time at the exit face of the crystal, irrespec-

tively from their position in their transverse cross-section, and suggests that for

increasing values of the parameter �0 the spatial and temporal degree of freedom of

twin photon should become progressively independent. This feature is indeed

re°ected by the structure of the quantum spatio–temporal correlation that will be

described in the next section.

Fig. 2. (Color online) The spatio–temporal correlation of twin photons calculated from Eq. (21), for a

4-mm BBO crystal pumped at 527.5 nm. The ¯rst and second row are plotted for collinear �0 ¼ 0 and

non-collinear�0 ¼ 419 phase matching, respectively (the angles between the crystal axis and the z-axis are

22:9� and 28�, respectively). Panels (a) and (c) show the function sinc2½�pwð~q!;�Þ=2�, centered around

the phase matching curve in the plane ðqx;�Þ, while panels (b) and (d) are the corresponding biphoton

correlations as a function of the temporal and spatial separation �t, �x. Coupling parameter g ¼ 10�3.
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4. Formal Calculation of the Spatio–Temporal Correlation

Besides the classical-looking picture developed in the previous section, a full quantum

calculation of the spatio–temporal correlation function can be performed, as done in

Refs. 1 and 2.

In the low-gain regime the spatio–temporal correlation properties of twin photons

are entirely described by the biphoton amplitude in the direct domain:

 ð»; » 0Þ :¼ hÂð»ÞÂð» 0Þi ¼ 1

ð2�Þ3
Z

dw

Z
dw 0 ~ ðw;w 0Þe i»�wþi» 0�w 0

; ð18Þ

where ~ is given by Eq. (6), and we remind that » ¼ ðr; tÞ, where r is the transverse

coordinate in the cross-section at the exit face of the crystal slab. Thus the function

(18) gives the probability amplitude of ¯nding a pair of photons at times t; t 0 and
positions r; r 0, respectively, at the end face of the crystal.

A rather simple expression can be written in the nearly plane-wave pump ap-

proximation (see Ref. 2 for details), where the pump spectral pro¯le is assumed to be

narrow enough (the pump pulse has a wide enough cross-section and long enough

duration), so that the following approximation holds:

~ ðw;w 0Þ � g

ð2�Þ3=2
~Apðwþw 0; lcÞeþi

�ðw;�wÞ
2 sinc

�ðw;�wÞ
2

: ð19Þ

The limit (19) is not di±cult to reach, and very often corresponds to the actual

experimental implementations of PDC (see e.g. the experiment in Refs. 6 and 7). As

explained in Ref. 2, it requires that the pump pulse is longer than the temporal delay

between the pump and the signal wave due to group velocity mismatch (for a 4-mm

BBO-Beta Barium Borate-crystal � 350 fs), and that its cross-section is larger than

their spatial walk-o® (for a 4-mm BBO crystal � 220�m).

In this limit, the biphoton spatio-temporal correlation takes the factorized form:

 ð»; » 0Þ ¼ Ap

»þ » 0

2
; lc

� �
 pwð» 0 � »Þ; ð20Þ

 pwð» 0 � »Þ ¼ g

Z
dw

ð2�Þ3 e
ið» 0�»Þ�wsinc

�pwðwÞ
2

e i
�pwðwÞ

2 : ð21Þ

Thus, when plotted as a function of the mean spatio–temporal coordinate of twin

photons, the biphotonic correlation follows the slow variation of the pump spatio–

temporal pro¯le. On the other hand, as a function of the temporal and spatial sep-

aration of twin photons, it has a fast variation represented by the Fourier transform

of the sinc function, strongly peaked around the phase matching curve �pw ¼ 0.

Figure 2 plots examples of such a spatio–temporal correlation, calculated in the two

limiting cases of exactly collinear and extremely non-collinear phase matching dis-

cussed in the former section.

This ¯gure shows a clear agreement between the fully quantum mechanical cal-

culation and the qualitative prediction based on the classical argument of the former
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section. In fact, for collinear phase matching the quantum correlation of Fig. 2(b)

exhibits a X-shaped geometry, which would appear as a bicone in the 3D space,

implying a proportionality between the temporal delays of twin photons and their

spatial separation. As discussed in detail in Refs. 1 and 2 and demonstrated exper-

imentally in Ref. 7 the asymptotes of the X-structure lie exactly on the lines �t ¼
� ffiffiffiffiffiffiffiffiffi

ksk
00
s

p
�r as predicted by the classical argument of Eq. (15). Conversely, for non-

collinear phase matching, the spatio–temporal quantum correlation progressively

shrinks and tends to assume the sigar-like shape of Fig. 2(d), where the temporal and

spatial separation of twin photon are basically independent.

5. Schmidt Number of the Spatio–Temporal Entanglement

In the framework of the high-dimensional entanglement realized by spontaneous

PDC, an important question concerns the number of entangled modes generated by

the process or in other words of the degree of entanglementof the state. This can by

quanti¯ed by the Schmidt number.9,10 Traditional evaluation of the Schmidt di-

mensionality of PDC typically have concentrated on either the purely temporal en-

tanglement11–14 or on the purely transverse spatial entanglement.15–18 In a recent

work,5 some of us studied the Schmidt dimensionality of the two-photon state gen-

erated by PDC in the framework of a fully 3D spatio–temporal model, and showed

that in conditions of collinear phase matching this cannot be reduced to the product

of Schmidt number calculated in models restricted to the purely temporal and purely

spatial domain.

This is basically the result shown in Fig. 3(a), where the Schmidt number cal-

culated in the 3D spatio–temporal model for PDC (K3D) in collinear conditions is

(a) (b)

Fig. 3. (Color online) Comparison between the Schmidt number calculated in the full 3D spatio–temporal

model (K3D), and the product of Schmidt numbers calculated in a purely spatial (K2D) and temporal model

(K1D) for PDC, as a function of the detected temporal bandwidth. (a) Collinear �0 ¼ 0, (b) non-collinear

�0 ¼ 419 phase matching. Evident is the transition from a state non-factorable in space and time towards

a more factorable state. qmax ¼ 1:2�m�1, pump waist 600�m, pump duration 1 ps. Other parameters as in

Fig. 2

Spatio-temporal entanglement of twin photons: An intuitive picture
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compared with the product of the temporal (K1D) Schmidt number times the spatial

(K2D) Schmidt number, as a function of the collected temporal bandwidth �max. In

this plot we see that, as soon as the collected bandwidth exceeds � 1014Hz, the degree

of the spatio–temporal entanglement does not factorizes into its purely temporal and

spatial counterparts, which is again an evidence of the space–time coupling occurring

in conditions of collinear phase matching, predicted in Sec. 3 with qualitative argu-

ments and evidenced in Sec. 4 by the non-factorable X-correlation of Fig. 2(b).

On the other side, the panel (b) of Fig. 3 shows the same comparison in conditions

of non-collinear phase matching. In this case K3D � K1D 	K2D over a much larger

range of collected spectral bandwidths, Thus the analysis of the Schmidt number of

the entanglement gives again evidence, from a completely di®erent perspective, of the

transition from a state where the spatial and temporal degrees of freedom are

strongly coupled to a state whose spatial and temporal properties can be considered

almost independent. In this transition, the classical phase matching conditions play a

major role.

The calculation of the Schmidt numbers reported in Fig. 3 proceeds along the

following steps (see Ref. 5 for more details):

First of all, a simple bipartition of the system is introduced, by considering the

action of a 50:50 beam splitter on the downconverted light at the output of the

crystal slab. Second, the two-photon state conditioned to the joint detection of a pair

of photons in the output modes Â1; Â2 of the beam-splitter is considered:

j�i ¼
Z
dw1

Z
dw2

~ ðw1;w2ÞÂ
†

1ðw1ÞÂ†
2ðw2Þj0i1j0i2: ð22Þ

Finally the Schmidt number is introduced as

K ¼ 1

Trf�2
1g
; ð23Þ

where �1 is the reduced density matrix of the subsystem 1

�1 ¼ Tr2
j�ih�j
h�j�i

� 	
: ð24Þ

As reported in detail in Ref. 5 starting from the espression (22) of the conditional

two-photon state, an integral formula for the Schmidt number can be derived, which

reads:

K ¼ N 2

B
; ð25aÞ

where

N ¼
Z
dw1h�PDCjÂ†ðw1ÞÂðw1Þj�PDCi ¼

Z
dw1

Z
dw2

~ ðw1;w2Þ


 

2; ð25bÞ

B ¼
Z
dw1

Z
dw2

Z
dw3

Z
dw4

~ ðw1;w2Þ ~ ðw3;w4Þ ~ 
ðw1;w4Þ ~ 
ðw3;w2Þ: ð25cÞ
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Notice that by using simple mathematical properties of the Fourier transform,

relations (25) can be turned into identical relations involving the biphoton amplitude

 ð»; » 0Þ in the direct domain in place of the amplitude ~ ðw;w 0Þ in the Fourier

domain (the two amplitudes are in fact linked by a Fourier transform, see Eq. (18)):

the degree of entanglement is independent whether one looks at photons generated in

the Fourier space or in the conjugate one.

Reference 5 described various approximations for formula (25), which lead to

interesting analytical or semianalytical results for the Schmidt number. For sim-

plicity, our Fig. 3 presents only the numerical results for K , where the integrals in

Eqs. (25b) and (25c) are evaluated with a Montecarlo method, and ~ is given by

Eq. (6). In the 3D case, each of the integrals in the above formulas is evaluated in the

3D space wi ¼ ðqi;�iÞ, with jqij and �i ranging from zero up to some maximum

values qmax and �max, which simulates the presence of spatial or temporal ¯lters (in

Fig. 3, qmax is ¯xed to a value large enough to include all the phase matching curve).

In the 2D model, the integration variable becomes the 2D spatial coordinatewi ! qi,

ranging up to qmax, while the temporal frequency is ¯xed at � ¼ 0. In the 1D model,

the integration variable is only the temporal frequency wi ! �i�ð0;�maxÞ, while the
spatial coordinate is ¯xed to jqj ¼ qpmð� ¼ 0Þ. Precisely in panel (a) jqj ¼ 0, while in

panel (b) jqj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksk

00
s=lc

p
.

6. Conclusions

In this work, we have developed an intuitive picture of the spatial and temporal

properties of the entangled state generated by PDC, where twin photons are de-

scribed as classical wave-packets. In this way, we have shown that the phase

matching mechanism, which links the angle and frequency of emission of light, can be

translated into a precise relation between the temporal and transverse spatial

separation of twin photons when they emerge from the nonlinear crystal. Although

our reasoning is tailored to describe type I PDC, we believe that it is quite general,

and could be easily adapted to describe other nonlinear processes governed by phase

matching.

This coupling between spatial and temporal degrees of freedom, described by

classical arguments, turns out to determine in a precise way the spatio–temporal

structure of the quantum entanglement. In particular, the quantum biphotonic

correlation is shown to be skewed in space and time along the same trajectories

predicted by the classical argument. The space–time coupling in the parametric

process manifests itself also in the properties of the Schmidt number, which, in this

case, gives an estimate of the number of modes e®ectively involved in the entangle-

ment: in general it turns out that the number of spatio–temporal modes does not

equal to the product of purely spatial and purely temporal modes.

Finally, we have shown that by properly manipulating the phase matching con-

ditions it is possible to modify the relation between temporal and spatial separation

Spatio-temporal entanglement of twin photons: An intuitive picture
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of twin photons, thereby modifying the structure of the entangled state. In particular

by changing the crystal tuning angle so as to achieve strongly non-collinear phase

matching, we see a transition from a non-separable X-geometry to an almost sepa-

rable geometry in space and time. This latter situation could be indeed very inter-

esting for applications because twin photons can be relatively localized in time within

few femtoseconds without the need of resolving their positions, i.e. an extremely

broad temporal frequency bandwidth can be achieved independently from the spatial

measurement.
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