
A terminating evaluation-driven variant of G3i

Mauro Ferrari1, Camillo Fiorentini2, Guido Fiorino3

1 DiSTA, Univ. degli Studi dell’Insubria, Via Mazzini, 5, 21100, Varese, Italy
2 DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DISCO, Univ. degli Studi di Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy

Abstract. We present Gbu, a terminating variant of the sequent calcu-
lus G3i for intuitionistic propositional logic. Gbu modifies G3i by anno-
tating the sequents so to distinguish rule applications into two phases: an
unblocked phase where any rule can be backward applied, and a blocked
phase where only right rules can be used. Derivations of Gbu have a triv-
ial translation into G3i. Rules for right implication exploit an evaluation
relation, defined on sequents; this is the key tool to avoid the generation
of branches of infinite length in proof-search. To prove the completeness
of Gbu, we introduce a refutation calculus Rbu for unprovability dual
to Gbu. We provide a proof-search procedure that, given a sequent as
input, returns either a Rbu-derivation or a Gbu-derivation of it.

1 Introduction

It is well-known that G3i [10], the sequent calculus for intuitionistic proposi-
tional logic with weakening and contraction “absorbed” in the rules, is not suited
for proof-search. Indeed, the näıve proof-search strategy, consisting in applying
the rules of the calculus bottom-up until possible, is not terminating. This is
because the rule for left implication retains the main formula A → B in the
left-hand side premise, hence such a formula might be selected for application
more and more times. A possible solution to this problem is to support the proof-
search procedure with a loop-checking mechanism [5–7]: whenever the “same”
sequent occurs twice along a branch of the proof under construction, the search
is cut. An efficient implementation of loop-checking exploits histories [6, 7]. In
the construction of a branch, the formulas decomposed by right rules are stored
in the history; loops are avoided by preventing the application of some right
rules to formulas in the history.

In this paper we propose a different and original approach: we show that
terminating proof-search for G3i can be accomplished only exploiting the infor-
mation contained in the sequent to be proved by means of a suitable evaluation
relation. Our proof-search strategy alternates two phases: an unblocked phase
(u-phase), where all the rules of G3i can be backward applied, and a blocked
phase (b-phase), where only right-rules can be used. To improve the presenta-
tion, we embed the strategy inside the calculus by annotating sequents with
the label u (unblocked) or b (blocked); we call Gbu the resulting calculus (see
Fig. 1). A Gbu-derivation can be straightforwardly mapped to a G3i-derivation

by erasing the labels and, possibly, by padding the left contexts; from this, the
soundness of Gbu immediately follows. Unblocked sequents, characterizing an
u-phase, behave as the ordinary sequents of G3i: any rule of Gbu can be (back-
ward) applied to them. Instead, b-sequents resemble focused-right sequents (see,
e.g., [2]): they only allow backward right-rule applications (thus, the left context
is “blocked”). Proof-search starts from an u-sequent (u-phase); the transition
to a b-phase is determined by the application of one of the rules for left impli-
cation or right disjunction. For instance, let [A → B,Γ u⇒H] be the u-sequent
to be proved and suppose we apply the rule → L with main formula A → B.

The next goals are the b-sequent [A → B,Γ b⇒A] and the u-sequent [B,Γ u⇒H],
corresponding to the two premises of → L. While the latter goal continues the
u-phase, the former one starts a new b-phase, which focuses on A. Similarly, if
we apply the rule ∨Rk (with k ∈ {0, 1}) to [Γ u⇒H0 ∨H1], the phase changes to

b and the next goal is [Γ b⇒Hk], the only premise of ∨Rk.
Rules for right implication have two possible outcomes determined by the

evaluation relation. Indeed, let [Γ l⇒A → B] be the current goal (l ∈ {u,b}) and
let A → B be the selected main formula: if A is evaluated in Γ , then we continue

the search with [Γ l⇒B] and the phase does not change (see rule → R1); note
that the formula A is dropped out. If A is not evaluated in Γ the next goal is
[A,Γ u⇒B]. Moreover, if l = b, we switch from a b-phase to an u-phase and this
is the only case where a b-sequent is “unblocked”. The crucial point is that, due
to the side conditions on the application of rules → R1 and → R2 (which rely on
the evaluation relation), every branch of aGbu-tree has finite length (Section 3);
this implies that our proof-search strategy always terminates. We point out that
we do not bound ourselves to a specific evaluation relation, but we admit any
evaluation relation satisfying properties (E1)–(E6) defined in Section 2.

The proof of completeness ([Γ ⇒ H] provable in G3i implies [Γ u⇒H] prov-
able in Gbu) involves non-trivial aspects. Following [3, 9], we introduce a refuta-
tion calculus Rbu for asserting intuitionistic unprovability (Section 4). From an
Rbu-derivation of an u-sequent σu = [Γ u⇒H] we can extract a Kripke counter-
model for σu, namely a Kripke model such that, at its root, all formulas in Γ are
forced and H is not forced; from this, it follows that σu is not intuitionistically
valid. In Section 5 we introduce the function F which implements the proof-
search strategy outlined above; if the search for a Gbu-derivation of σu fails, an
Rbu-derivation of σu is built. To sum up, F(σu) returns either aGbu-derivation
or an Rbu-derivation of σu; in the former case we get a G3i-derivation of the
sequent σ = [Γ ⇒ H], in the latter case we can build a countermodel for σ.

2 Preliminaries and evaluations

We consider the propositional language L based on a denumerable set of propo-
sitional variables V, the connectives ∧, ∨, → and the logical constant ⊥. We
denote with V(A) the set of propositional variables occurring in A, with |A| the
size of A, that is the number of symbols occurring in A, and with Sf(A) the set
of subformulas of A (including A itself).

A (finite) Kripke model for L is a structure K = ⟨P,≤, ρ, V ⟩, where ⟨P,≤, ρ⟩
is a finite partially ordered set with minimum ρ and V : P → 2V is a function
such that α ≤ β implies V (α) ⊆ V (β). The forcing relation ⊩⊆ P ×L is defined
as follows:

– K, α ⊮ ⊥ and, for every p ∈ V , K, α ⊩ p iff p ∈ V (α);
– K, α ⊩ A ∧B iff K, α ⊩ A and K, α ⊩ B;
– K, α ⊩ A ∨B iff K, α ⊩ A or K, α ⊩ B;
– K, α ⊩ A → B iff, for every β ∈ P such that α ≤ β, K, β ⊮ A or K, β ⊩ B.

Given a set Γ of formulas, K, α ⊩ Γ iff K, α ⊩ A for every A ∈ Γ . Monotonicity
property holds for arbitrary formulas, i.e.: K, α ⊩ A and α ≤ β imply K, β ⊩ A.
A formula A is valid in K iff K, ρ ⊩ A. Intuitionistic propositional logic coincides
with the set of the formulas valid in all (finite) Kripke models [1].

As motivated in the Introduction, we use (labelled) sequents of the form

σ = [Γ l⇒H] where l ∈ {b, u}, Γ is a finite set of formulas and H is a formula. We

adopt the usual notational conventions; e.g., [A,Γ l⇒H] stands for [{A}∪Γ l⇒H].
The size of σ is |σ| =

∑
A∈Γ |A| + |H|; the set of subformulas of σ is Sf(σ) =∪

A∈Γ∪{H} Sf(A).
The semantics of formulas extends to sequents as follows. Given a Kripke

model K and a world α of K, α refutes σ = [Γ l⇒H] in K, written K, α ▷ σ, iff
K, α ⊩ Γ and K, α ⊮ H; σ is refutable if there exists a Kripke model K with root
ρ such that K, ρ ▷ σ; in this case K is a countermodel for σ. It is easy to check
that σ is refutable iff the formula ∧Γ → H is not intuitionistically valid iff, by
soundness and completeness of G3i [10], [Γ ⇒ H] is not provable in G3i.

Evaluations An evaluation relation ⊢E is a relation between a set Γ of formulas
and a formula A satisfying the following properties:

(E1) Γ ⊢E A iff Γ ∩ Sf(A) ⊢E A.
(E2) A,Γ ⊢E A.
(E3) Γ ⊢E A and Γ ⊢E B implies Γ ⊢E A ∧B.
(E4) Γ ⊢E Ak, with k ∈ {0, 1}, implies Γ ⊢E A0 ∨A1.
(E5) Γ ⊢E B implies Γ ⊢E A → B.
(E6) Let K = ⟨P,≤, ρ, V ⟩ and α ∈ P ; if K, α ⊩ Γ and Γ ⊢E A, then K, α ⊩ A.

Conditions (E1)–(E5) concern syntactical properties; note that, by (E1), the eval-
uation of A w.r.t. Γ only depends on the subformulas in Γ which are subformulas
of A. Intuitively, the role of an evaluation relation is to check if the “information
contained” in A is semantically implied by Γ (see (E6)). In the sequel, we also

write [Γ l⇒H] ⊢E A to mean Γ ⊢E A.
In the examples we use the evaluation relation ⊢Ẽ defined below. Let L⊤ be

the language extending L with the constant ⊤ (K, α ⊩ ⊤, for every K and every
α in K). To define ⊢Ẽ , we introduce the function R which simplifies a formula
A ∈ L⊤ w.r.t. a set Γ of formulas of L (see [4]):

R(A,Γ) =


⊤ A ∈ Γ

A if A ̸∈ Γ and A ∈ V ∪ {⊥,⊤}
B (R(A0, Γ) · R(A1, Γ)) if A ̸∈ Γ and A = A0 ·A1 with · ∈ {∧,∨,→}

B(A) performs the boolean simplification of A [4, 8], consisting in applying the
following reductions inside A:

K ∧ ⊤⇝ K K ∧ ⊥⇝ ⊥ K ∨ ⊤⇝ ⊤ K ∨ ⊥⇝ K K → ⊤⇝ ⊤ K → K ⇝ ⊤
⊤ ∧K ⇝ K ⊥ ∧K ⇝ ⊥ ⊤ ∨K ⇝ ⊤ ⊥ ∨K ⇝ K ⊤ → K ⇝ K ⊥ → K ⇝ ⊤

We set Γ ⊢Ẽ A iff R(A,Γ) = ⊤.

Theorem 1. ⊢Ẽ is an evaluation relation.

Proof. We have to prove that ⊢Ẽ satisfies properties (E1)–(E6) of Section 2.

– (E1) It is easy to prove, by induction on the structure of A, that R(A,Γ) =
R(A,Γ ∩ Sf(A)), thus Γ ⊢Ẽ A iff Γ ∩ Sf(A) ⊢Ẽ A.

– (E2) It immediately follows by the definition of ⊢Ẽ and R.
– (E3) Let Γ ⊢Ẽ A and Γ ⊢Ẽ B. By definition of ⊢Ẽ , R(A,Γ) = R(B,Γ) = ⊤.

To prove Γ ⊢Ẽ A∧B, we must show that R(A∧B,Γ) = ⊤. If A∧B ∈ Γ , this
immediately follows. Otherwise: R(A ∧ B,Γ) = B(R(A,Γ) ∧ R(B,Γ)) =
B(⊤ ∧⊤) = ⊤. The proof of properties (E4) and (E5) is similar.

– (E6) Let K = ⟨P,≤, ρ, V ⟩ and α ∈ P such that K, α ⊩ Γ . It is easy to prove, by
induction on A, that K, α ⊩ A ↔ R(A,Γ). Now, if Γ ⊢Ẽ A then R(A,Γ) = ⊤;
hence by the above property K, α ⊩ A ↔ ⊤ and this implies K, α ⊩ A. ⊓⊔

3 The sequent calculus Gbu

We present the G3-style [10] calculus Gbu for intuitionistic propositional logic.
The calculus consists of the axiom rules (rules with zero premises) ⊥L and Id,
and the left and right introduction rules in Fig. 1. The main formula of a rule is
the one put in evidence in the conclusion of the rule. In the conclusion of a rule,
when we write C, Γ we assume that C ̸∈ Γ ; e.g., in the rule ∧L it is assumed
that A ∧ B ̸∈ Γ , hence the formula A ∧ B is not retained in the premise. The
choice between →R1 and →R2 depends on the relation ⊢E . In the application
of →L to σ = [A → B,Γ u⇒H], contraction of A → B is explicitly introduced in
the leftmost premise σA; as a consequence we might have |σA| ≥ |σ|. In all the
other cases, passing from the conclusion to a premise of a rule, the size of the
sequents strictly decreases. The rule →R2 is the only rule that, when applied
backward, can turn a b-sequent into an u-sequent.

AGbu-tree π is a tree of sequents such that: if σ is a node of π with σ1, . . . , σn

as children, then there exists a rule of Gbu having premises σ1, . . . , σn and
conclusion σ. The root rule of π is the one having as conclusion the root sequent

[⊥, Γ l⇒H]
⊥L

[H,Γ l⇒H]
Id

[A,B, Γ u⇒H]

[A ∧B,Γ u⇒H]
∧L

[Γ l⇒A] [Γ l⇒B]

[Γ l⇒A ∧B]
∧R

[A,Γ u⇒H] [B,Γ u⇒H]

[A ∨B,Γ u⇒H]
∨L

[Γ b⇒Hk]

[Γ l⇒H0 ∨H1]
∨Rk

k ∈ {0, 1}

[A → B,Γ b⇒A] [B,Γ u⇒H]

[A → B,Γ u⇒H]
→L

[Γ l⇒B]

[Γ l⇒A → B]
→R1

if Γ ⊢E A

[A,Γ u⇒B]

[Γ l⇒A → B]
→R2

if Γ ̸⊢E A

Fig. 1. The calculus Gbu.

of π. A Gbu-derivation of σ is a Gbu-tree π with root σ and having conclusions
of an axiom rule as leaves. A sequent σ is provable in Gbu iff there exists a Gbu-
derivation of σ; H is provable in Gbu iff [u⇒H] is provable in Gbu. Note that
Gbu has the subformula property : given a Gbu-tree π with root σ, for every
sequent σ′ occurring in π it holds that Sf(σ′) ⊆ Sf(σ).

A Gbu-derivation π can be translated into a G3i-derivation π̃ applying the
following steps: erase the labels from the sequents in π; when rule → R1 is
applied, add the formula A to the left context; rename all occurrences of →R1

and →R2 to →R. From this translation and the soundness of G3i [10] we get
the soundness of Gbu. Semantically, this means that, if σ is provable in Gbu,
then σ is not refutable.

Here we provide an example of a Gbu-derivation, then we prove that Gbu
is terminating. The completeness of Gbu (Theorem 4) is proved in Section 5 as
a consequence of the correctness of the proof-search procedure.

Example 1. Let W = ((((p → q) → p) → p) → q) → q be an instance of the
Weak Pierce Law [1]. In Fig. 2 we give a Gbu-derivation1 π1 of σ1 = [u⇒W],
using the evaluation ⊢Ẽ of Section 2. Sequents are indexed by integers; by πi

we denote the subderivation of π1 with root σi. When ambiguities can arise,
we underline the main formula of a rule application. Building the derivation
bottom-up, the only choice points are in the (backward) application of rule →L
to σ4 and σ7, since we can select both A and B as main formula. If at sequent
σ6 we choose B instead of A, we
get the Gbu-tree with root σ6

sketched on the right. We have
σ7′ ⊢Ẽ p (indeed, p occurs on the
left in σ7′), hence the rule →R1

must be applied to σ7′ , which

[p,B,Ab⇒ q]8′

[p,B,Ab⇒ p→ q]7′
→ R1

.

..

.
[p,Au⇒ q]9′

[p, (p→ q)→ p︸ ︷︷ ︸
B

, Au⇒ q]6
→ L

1 The derivations and their LATEX rendering are generated with g3ibu, an implemen-
tation of Gbu and Rbu available at http://www.dista.uninsubria.it/~ferram/.

W = A→ q A = (B → p)→ q B = (p→ q)→ p

[p,B,Ab⇒ p]8
Id

[p,B,Ab⇒B → p]7
→ R1

[q, p, Bu⇒ q]9
Id

[p,B,Au⇒ q]6
→ L

[B,Ab⇒ p→ q]5
→ R2

[p,Au⇒ p]10
Id

[B,Au⇒ p]4
→ L

[Ab⇒ ((p→ q)→ p)︸ ︷︷ ︸
B

→ p]3
→ R2

[qu⇒ q]11
Id

[Au⇒ q]2
→ L

[u⇒ ((((p→ q)→ p)→ p)→ q)︸ ︷︷ ︸
A

→ q]1
→ R2

Fig. 2. Gbu-derivation of Weak Pierce Law

yields the b-sequent σ8′ . Since σ8′ is blocked, we cannot decompose again left
implications; thus the proof-search fails without entering an infinite loop. ♢

Termination of Gbu We show that every Gbu-tree has finite depth. A Gbu-
branch is a sequence of sequents B = (σ1, σ2, . . .) such that, for every i ≥ 1, there
exists a rule R of Gbu having σi as conclusion and σi+1 among its premises.
The length of B is the number of sequents in it. Let γ = (σi, σi+1) be a pair
of successive sequents in B with labels li and li+1 respectively; γ is a bu-pair if
li = b and li+1 = u; γ is an ub-pair if li = u and li+1 = b. By BU(B) and UB(B)
we denote the number of bu-pairs and ub-pairs occurring in B respectively. Note
that the only rule generating bu-pairs is → R2. Moreover, |σi+1| ≥ |σi| can
happen only if (σi, σi+1) is an ub-pair generated by → L: σi+1 is the leftmost
premise of an application of → L with conclusion σi. As a consequence, every
subbranch of B not containing ub-pairs is finite. Hence, if we show that UB(B)
is finite, we get that B has finite length.

We prove a kind of persistence of ⊢E , namely: if A occurs in the left-hand
side of a sequent σ occurring in B, then σ′ ⊢E A for every σ′ following σ in B.

Lemma 1. Let B = (σ1, σ2, . . .) be a Gbu-branch where, for every i ≥ 1, σi =

[Γi
li⇒Hi]. Let n ≥ 1 and A ∈

∪
1≤i≤n Γi. Then, Γn ⊢E A.

Proof. By induction on |A|. If A ∈ Γn, by (E2) we immediately get Γn ⊢E A. If
A ̸∈ Γn, there exists i : 1 ≤ i < n such that A ∈ Γi and A ̸∈ Γi+1. This implies
A = B · C with · ∈ {∧,∨,→}. Let · = ∧; then σi+1 is obtained from σi by an
application of ∧L with main formula B ∧ C, hence B ∈ Γi+1 and C ∈ Γi+1. By
induction hypothesis, Γn ⊢E B and Γn ⊢E C; by (E3), Γn ⊢E B ∧ C. The cases
· ∈ {∨,→} are similar and require properties (E4) and (E5). ⊓⊔

Now, we provide a bound on BU(B).

[Γ→, ΓAt l⇒H]
Irr

if [Γ→, ΓAt l⇒H] is irreducible

{
H = ⊥ or H ∈ V \ ΓAt

l = b or Γ→ = ∅

[A,B, Γ u⇒H]

[A ∧B,Γ u⇒H]
∧L

[Γ l⇒Hk]

[Γ l⇒H0 ∧H1]
∧Rk

k ∈ {0, 1}

[Ak, Γ
u⇒H]

[A0 ∨A1, Γ
u⇒H]

∨Lk

k ∈ {0, 1}

[Γ b⇒H0] [Γ b⇒H1]

[Γ b⇒H0 ∨H1]
∨R

[B,Γ u⇒H]

[A → B,Γ u⇒H]
→L

[Γ l⇒B]

[Γ l⇒A → B]
→R1

if Γ ⊢E A

[A,Γ u⇒B]

[Γ l⇒A → B]
→R2

if Γ ̸⊢E A

{ [Γ→, ΓAt b⇒A] }A→B∈Γ→

[Γ→, ΓAt u⇒H]
SAt
u

where Γ→ ̸= ∅ and (H = ⊥ or H ∈ V \ ΓAt)

{ [Γ→, ΓAt b⇒A] }A→B∈Γ→ [Γ→, ΓAt b⇒H0] [Γ→, ΓAt b⇒H1]

[Γ→, ΓAt u⇒H0 ∨H1]
S∨
u

Fig. 3. The refutation calculus Rbu.

Lemma 2. Let B = (σ1, σ2, . . .) be a Gbu-branch. Then, BU(B) ≤ |σ1|.

Proof. Let (σb
i , σ

u
i+1) be a bu-pair in B. Since bu-pairs are generated by applica-

tions of →R2, we have: σb
i = [Γ b⇒A → B], σu

i+1 = [A,Γ u⇒B] and Γ ̸⊢E A. By
Lemma 1, for every j ≥ i+1 it holds that Γj ⊢E A. Thus, any bu-pair following
(σb

i , σ
u
i+1) must treat an implication C → D with C ̸= A. Since Gbu has the

subformula property, the main formulas of →R2 applications belong to Sf(σ1).
Thus, BU(B) is bounded by the number #Sf(σ1) of subformulas of σ1. Since
#Sf(σ1) ≤ |σ1|, we get BU(B) ≤ |σ1|. ⊓⊔

Since between two ub-pairs of B a bu-pair must occur, UB(B) ≤ BU(B) + 1; by
Lemma 2, UB(B) is finite. We can conclude:

Proposition 1. Every Gbu-branch has finite length. ⊓⊔

As a consequence, every Gbu-tree has finite depth and Gbu is terminating.

4 The refutation calculus Rbu

In this section, following the ideas of [3, 9], we introduce the refutation calculus
Rbu for deriving intuitionistic unprovability. Intuitively, an Rbu-derivation π
of a sequent σu is a sort of “constructive proof” of refutability of σu in the sense
that from π we can extract a countermodel Mod(π) for σu.

We denote with ΓAt a finite set of propositional variables and with Γ→ a

finite set of implicative formulas. A sequent σ is irreducible iff σ = [Γ→, ΓAt l⇒H]

with H ∈ {⊥} ∪ (V \ ΓAt) and (l = b or Γ→ = ∅). The rules of Rbu are given
in Fig. 3. As in Gbu, writing C, Γ in the conclusion of a rule, we assume that
C ̸∈ Γ . The notions of Rbu-tree, Rbu-derivation and Rbu-branch are defined
analogously to those for Gbu.

The rule SAt
u has a premise [Γ→, ΓAt b⇒A] for every A such that A → B ∈

Γ→; since Γ→ ̸= ∅, there exists at least one premise. The rule S∨u is similar and
has at least two premises. All the premises of SAt

u and S∨u are b-sequents.
It is easy to check that an Rbu-branch is also a Gbu-branch2. Accordingly,

Proposition 1 implies that the calculus Rbu is terminating. In the following we
prove that Rbu is sound in the following sense:

Theorem 2 (Soundness of Rbu). If an u-sequent σu is provable in Rbu,
then σu is refutable. ⊓⊔

Example 2. Let S = ((¬¬p → p) → (¬p ∨ p)) → (¬¬p ∨ ¬p) be an instance of the
Scott principle [1], where ¬Z = Z → ⊥. We show the Rbu-derivation π1 of [u⇒S].

S = A → (¬¬p ∨ ¬p) A = (¬¬p → p) → (¬p ∨ p)

[p,¬¬pb⇒⊥]10

Irr

[p,¬¬pb⇒¬p]9

→ R1

[p,¬¬pu⇒⊥]8
SAt
u

[¬p ∨ p, p,¬¬pu⇒⊥]7
∨L1

[p,¬¬p,Au⇒⊥]6
→ L

[¬¬p,Ab⇒¬p]5

→ R2

[¬¬p,Ab⇒ p]12

Irr

[¬¬p,Ab⇒¬¬p → p]11

→ R1

[¬¬p,Au⇒ p]4
SAt
u

[Ab⇒¬¬p → p]3

→ R2

[¬pb⇒ p]17

Irr

[¬pu⇒⊥]16
SAt
u

[¬p ∨ p,¬pu⇒⊥]15
∨L0

[¬p,Au⇒⊥]14
→ L

[Ab⇒¬¬p]13

→ R2

[pu⇒⊥]21
Irr

[¬p ∨ p, pu⇒⊥]20
∨L1

[p,Au⇒⊥]19
→ L

[Ab⇒¬p]18

→ R2

[Au⇒¬¬p ∨ ¬p]2
S∨
u

[u⇒ ((¬¬p → p) → (¬p ∨ p))︸ ︷︷ ︸
A

→ (¬¬p ∨ ¬p)]1
→R2

♢

Soundness of Rbu Let π be anRbu-derivation with root σb = [Γ→, ΓAt b⇒H].
By Π(π, σb) we denote the maximal subtree of π having root σb and only con-
taining b-sequents (that is, any subtree of π with root σb extending Π(π, σb)
contains at least one u-sequent). Since only the rules ∧Rk, ∨R and →R1 can

be applied in Π(π, σb), every leaf σ′ of Π(π, σb) has the form [Γ→, ΓAt b⇒H ′],
where H ′ ∈ Sf(H); moreover, σ′ is either an irreducible sequent (hence a leaf
of π) or the conclusion of an application of →R2 (the only rule of Rbu which,
read bottom-up, “unblocks” a b-sequent). Thus, π can be displayed as in Fig. 4.
The sequents σu

1 , . . . , σ
u
n (n ≥ 0) are called the u-successors of σb in π, while the

sequents τb1 , . . . , τ
b
m (m ≥ 0) are the i-successors (irreducible successors) of σb

in π. Let d(π) be the depth of π; if d(π) = 0, then σb coincides with τb1 , hence
σb has no u-successors and has itself as only i-successor.

2 The converse in general does not hold since the rule ∨R of Rbu requires a b-sequent
as conclusion.

. . .

..

.. πi

σu
i = [Γ→, ΓAt, Ai

u⇒Bi]

σb
i = [Γ→, ΓAt b⇒Ai → Bi]

→R2
. . . τbj = [Γ→, ΓAt b⇒Hj]

Irr
. . .

..

.. Π(π, σb)

σb = [Γ→, ΓAt b⇒H]

where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, n ≥ 0, m ≥ 0, n+m ≥ 1 and:

– the Rbu-tree Π(π, σb) only contains b-sequents;
– πi is an Rbu-derivation of σu

i .

Fig. 4. Structure of an Rbu-derivation π of σb = [Γ→, ΓAt b⇒ H].

Now, let us consider an Rbu-derivation π of an u-sequent σu having root rule
R = SAt

u or R = S∨u . Every premise σ′ of R is a b-sequent and the subderivation
of π with root σ′ has the structure shown in Fig. 4. The set of the u-successors
of σu in π is the union of the sets of u-successors in π of the premises of R; the
set of the i-successors of σu in π is defined analogously. To display a proof π of
this kind we use the concise notation of Fig. 5.

Example 3. Let us consider the Rbu-derivation π1 in Ex. 2. The u-successors
and i-successors are defined as follows:

u-sequent u-successors i-successors

σ2 σ4 , σ14 , σ19

σ4 σ6 σ12

σ8 σ10

σ16 σ17 ♢

Now we describe how to extract from an Rbu-derivation of an u-sequent σu a
Kripke countermodel Mod(π) for σu. Mod(π) is defined by induction on d(π).
By K1(ρ, ΓAt) we denote the Kripke model K = ⟨{ρ}, {(ρ, ρ)}, ρ, V ⟩ consisting
of only one world ρ such that V (ρ) = ΓAt. Let R be the root rule of π.

(K1) If R = Irr, then d(π) = 0 and σu = [ΓAt u⇒H] (being σu irreducible,
Γ→ = ∅). We set Mod(π) = K1(ρ, ΓAt), with ρ any element.

(K2) Let R be different from Irr, SAt
u , S∨u and let π′ be the only immediate

subderivation of π. Then, Mod(π) = Mod(π′).
(K3) Let R be SAt

u or S∨u and let π be displayed as in Fig. 5.
If n = 0, then K is the model K1(ρ, ΓAt), with ρ any element.
Let n > 0 and, for every i ∈ {1, . . . , n}, let Mod(πi) = ⟨Pi,≤i, ρi, Vi⟩.
Without loss of generality, we can assume that the Pi’s are pairwise dis-
joint. Let ρ be an element not in

∪
i∈{1,...,n} Pi and let K = ⟨P,≤, ρ, V ⟩ be

the model such that:

– P = {ρ} ∪
∪

i∈{1,...,n} Pi;

π =

.... π1

σu
1 . . .

.... πn

σu
n τb

1 . . . τb
m

σu = [Γ→, ΓAt u⇒H]
R

– R ∈ {SAt
u , S∨

u}, n ≥ 0, m ≥ 0, n + m ≥ 1.
– σu

1 , . . . , σ
u
n are all the u-successors of σu in π.

– πi is an Rbu-derivation of σu
i (1 ≤ i ≤ n).

– τb
1 , . . . , τb

m are all the i-successors of σu in π.

..
ρ

.

Mod(π1)

.

ρ1

.

....

.

Mod(πn)

.

ρn

Fig. 5. An Rbu-derivation π with root rule SAt
u or S∨

u and the model Mod(π).

– ≤ = { (ρ, α) | α ∈ P } ∪
∪

i∈{1,...,n} ≤i;

– V (ρ) = ΓAt and, for every i ∈ {1, . . . , n} and α ∈ Pi, V (α) = Vi(α).
Then Mod(π) = K. The model Mod(π) is represented in Fig. 5.

Example 4. We show the Kripke model Mod(π1) extracted from theRbu-derivation

π1 of Ex. 2. The model is displayed as a tree
with the convention that w < w′ if the world
w is drawn below w′. For each wi, we list the
propositional variables in V (wi). We induc-
tively define the models Mod(πi) for every

..w2:.

w4:

.

w8: p

.

w16:

.

w21: p

i such that σi = [Γi
u⇒Hi] is an u-sequent. At each step one can check that

Mod(πi), ρi ▷ σi, where ρi is the root of Mod(πi). Hence, Mod(π1), w2 ⊮ S
(Mod(π1) is a countermodel for S).

– By Point (K3), since σ8 has no u-successors (see Ex. 3), Mod(π8) = K1(w8, {p}).
Similarly, Mod(π16) = K1(w16, ∅).

– Since σ21 is irreducible, by Point (K1) Mod(π21) = K1(w21, {p}).
– By Point (K2), Mod(π6) = Mod(π7) = Mod(π8). Similarly,

Mod(π14) = Mod(π15) = Mod(π16) and Mod(π19) = Mod(π20) = Mod(π21).
– By Point (K3), Mod(π4) is obtained by extending with w4 the model Mod(π6)

(indeed, σ6 is the only u-successor of σ4) and V (w4) = Γ4 ∩ V = ∅. Similarly,
Mod(π2) is obtained by gluing on w2 the models generated by the u-successors
σ4, σ14 and σ19 of σ2 and V (w2) = Γ2 ∩ V = ∅.

– Finally, Mod(π1) = Mod(π2) by Point (K2). ♢

We prove the soundness of Rbu. Given an Rbu-tree π with root [Γ→, ΓAt b⇒H]

and only containing b-sequents, every leaf of π has the form [Γ→, ΓAt b⇒H ′].

Lemma 3. Let π be an Rbu-tree with root σb = [Γ→, ΓAt b⇒H] and only con-

taining b-sequents, let σb
1 = [Γ→, ΓAt b⇒H1],. . . , σ

b
n = [Γ→, ΓAt b⇒Hn] be the

leaves of π. Let K = ⟨P,≤, ρ, V ⟩ be a Kripke model and α ∈ P such that:

(H1) K, α ⊮ Hi, for every i ∈ {1, . . . , n};
(H2) K, α ⊩ Z, for every Z ∈ Γ→ ∩ Sf(H);

(H3) V (α) = ΓAt.

Then, K, α ⊮ H.

Proof. By induction on d(π). If d(π) = 0, then σb = σb
1 and the assertion

immediately follows by (H1). Let us assume that d(π) > 0 and let R be the root
rule of π. Since both the conclusion and the premises of R are b-sequents, R is
one of the rules ∧Rk, ∨R and → R1. The proof proceeds by cases on R. The
cases R ∈ {∧Rk,∨R} immediately follow by the induction hypothesis.

If R is → R1, then σb = [Γ→, ΓAt b⇒A → B], the premise of R is σ′ =

[Γ→, ΓAt b⇒B] and, by the side condition, Γ→, ΓAt ⊢E A. By induction hypoth-
esis on the subderivation of π having root σ′, we get K, α ⊮ B. We show that
K, α ⊩ A. Let ΓA = (Γ→∩Sf(A))∪ΓAt. Since ΓA∩Sf(A) = (Γ→∪ΓAt)∩Sf(A)
and Γ→, ΓAt ⊢E A, by (E1) we get ΓA ⊢E A. By the hypothesis (H2) and (H3)
of the lemma, it holds that K, α ⊩ ΓA; by (E6), we deduce K, α ⊩ A. Thus
K, α ⊩ A and K, α ⊮ B, which implies K, α ⊮ A → B. ⊓⊔

Now, we show that the model Mod(π) is a countermodel for σu.

Theorem 3. Let π be an Rbu-derivation of an u-sequent σu and let ρ be the
root of Mod(π). Then Mod(π), ρ ▷ σu.

Proof. By induction on d(π). If d(π) = 0, then Mod(π) is defined as in (K1) and
the assertion immediately follows.

Let d(π) > 0 and let R be the root rule of π. If R ̸∈ {SAt
u , S∨u}, the assertion

immediately follows by induction hypothesis (the case R =→R1 requires (E6)).
Let R = S∨u (the case R = SAt

u is similar). Let σu = [Γ→, ΓAt u⇒H0∨H1] and
let K = ⟨P,≤, ρ, V ⟩ be the model Mod(π). By a secondary induction hypothesis
on the structure of formulas, we prove that:

(B1) K, ρ ⊮ A, for every A → B ∈ Γ→;
(B2) K, ρ ⊩ A → B, for every A → B ∈ Γ→;
(B3) K, ρ ⊮ H0 and K, ρ ⊮ H1.

To prove Point (B1), let A → B ∈ Γ→. By definition of S∨u , π has an immediate

subderivation πA of σb
A = [Γ→, ΓAt b⇒A] of the form (see Fig. 4):

. . .

.

.

.

.
πi

σu
i = [Γ→, ΓAt, Ai

u⇒Bi]

σb
i = [Γ→, ΓAt b⇒Ai → Bi]

→R2

. . . τb
j = [Γ→, ΓAt b⇒Hj]

Irr
. . .

.

.

.

.
Π(πA, σb

A)

σb
A = [Γ→, ΓAt b⇒A]

We show that Π(πA, σ
b
A) meets the hypothesis (H1)–(H3) of Lemma 3 w.r.t. the

root ρ of K, so that we can apply the lemma to infer K, ρ ⊮ A. We prove (H1).
Let us assume n ≥ 1 and let i ∈ {1, . . . , n}; we must show that K, ρ ⊮ Ai → Bi.

Since σu
i is an u-successor of σu, the root ρi of Mod(πi) is an immediate successor

of ρ in K. By the main induction hypothesis Mod(πi), ρi ▷ σ
u
i ; this implies that

Mod(πi), ρi ⊩ Ai and Mod(πi), ρi ⊮ Bi. Since Mod(πi) is a submodel of K, we
get K, ρi ⊩ Ai and K, ρi ⊮ Bi, which implies K, ρ ⊮ Ai → Bi. Let m ≥ 1 and
j ∈ {1, . . . ,m}. By definition of τbj , either Hj = ⊥ or Hj ∈ V \ ΓAt; in both
cases K, ρ ⊮ Hj . This proves that hypothesis (H1) of Lemma 3 holds. To prove
hypothesis (H2), let Z ∈ Γ→ ∩ Sf(A). Since |Z| < |A → B|, by the secondary
induction hypothesis on Point (B2) we get K, ρ ⊩ Z. The hypothesis (H3) follows
by the definition of V in K. We can apply Lemma 3 to deduce K, ρ ⊮ A, and
this proves Point (B1).

We prove Point (B2). Let π and Mod(π) be as in Fig. 5 (with H = H0∨H1).
Let A → B ∈ Γ→ and let α be a world of K such that K, α ⊩ A; we show
that K, α ⊩ B. By Point (B1), α is different from ρ. Thus, n ≥ 1 and, for some
i ∈ {1, . . . , n}, α belongs to Mod(πi). Let ρi be the root of Mod(πi). By the main
induction hypothesis, Mod(πi), ρi▷σ

u
i ; since A → B belongs to the left-hand side

of σu
i , we get Mod(πi), ρi ⊩ A → B, which implies K, ρi ⊩ A → B. Since ρi ≤ α

and K, α ⊩ A, we get K, α ⊩ B; thus K, ρ ⊩ A → B and Point (B2) holds.
The proof of Point (B3) is similar to the proof of Point (B1), consider-

ing the immediate subderivations of π with root sequents [Γ→, ΓAt b⇒H0] and

[Γ→, ΓAt b⇒H1]. By Points (B2) and (B3) we conclude K, ρ ▷ σu. ⊓⊔

By Theorem 3, we get the soundness of Rbu stated in Theorem 2.

5 The proof-search procedure

We show that, given an u-sequent σu, either a Gbu-derivation or an Rbu-
derivation of σu can be built; from this, the completeness of Gbu follows. To this

aim, we introduce the function F of Fig. 6. A sequent [Γ l⇒H] is in normal form
if l = b implies Γ = Γ→, ΓAt; given a sequent σ in normal form, F(σ) returns
either a Gbu-derivation or an Rbu-derivation of σ. To construct a derivation,
we use the auxiliary function B: given a calculus C ∈ {Gbu,Rbu}, a sequent
σ, a set P of C-trees and a rule R of C, B(C, σ,P,R) is the C-tree having root
sequent σ, root rule R, and all the C-trees in P as immediate subtrees.

Proof-search is performed by applying backward the rules of Gbu. For in-
stance, the recursive call F([A,B, Γ ′ u⇒H]) at line 3 corresponds to the backward
application of the rule ∧L to σ = [A∧B,Γ ′ u⇒H]; according to the outcome, at
lines 4–5 a Gbu-derivation or an Rbu-derivation of σ with root rule ∧L is built.
We remark that the input sequent of F must be in normal form; to guarantee
that the recursive invocations are sound, the rules ∨Rk and → L, generating
b-sequents, can be backward applied to [Γ u⇒H] only if Γ has the form Γ→, ΓAt.

To save space, some instructions are written in a high-level compact form
(see, e.g., line 8); the rules used in lines 1 and 32 are defined as follows:

Rax([Γ
l⇒H]) =

{
⊥L if ⊥ ∈ Γ

Id otherwise
Rs([Γ

l⇒H]) =


∨R if l = b

SAt
u if l = u and H ∈ V

S∨u otherwise

Precondition : σ is in normal form (l = b implies Γ = Γ→, ΓAt)
1 if ⊥ ∈ Γ or H ∈ Γ then return B(Gbu, σ, ∅, Rax(σ)) // Rax(σ) is ⊥L or Id

2 else if σ = [A ∧B,Γ ′u⇒H] where Γ ′ = Γ \ {A ∧B} then
3 π′ ← F([A,B, Γ ′u⇒H])
4 if π′ is a Gbu-tree then return B(Gbu, σ, {π′}, ∧L)
5 else return B(Rbu, σ, {π′}, ∧L)
6 else if σ = [A0 ∨A1, Γ ′u⇒H] where Γ ′ = Γ \ {A0 ∨A1} then
7 π0 ← F([A0, Γ ′u⇒H]) , π1 ← F([A1, Γ ′u⇒H])
8 if ∃k ∈ {0, 1} s.t. πk is an Rbu-tree then return B(Rbu, σ, {πk}, ∨Lk)
9 else return B(Gbu, σ, {π0, π1}, ∨L)

10 else if σ = [Γ l⇒A→ B] then

11 if Γ ⊢E A then π′ ← F([Γ l⇒B]) , k ← 1

12 else π′ ← F([A,Γ u⇒B]) , k ← 2
13 if π′ is a Gbu-tree then return B(Gbu, σ, {π′}, → Rk)
14 else return B(Rbu, σ, {π′}, → Rk)

15 else if σ = [Γ l⇒H0 ∧H1] then

16 π0 ← F([Γ l⇒H0]) , π1 ← F([Γ l⇒H1])
17 if ∃k ∈ {0, 1} s.t. πk is an Rbu-tree then return B(Rbu, σ, {πk}, ∧Rk)
18 else return B(Gbu, σ,{π0, π1}, ∧R)

19 // Here σ = [Γ→, ΓAt l⇒H], where H = ⊥ or H ∈ V \ ΓAt or H = H0 ∨H1

20 else if (l = u and Γ→ ̸= ∅) or H = H0 ∨H1 then
21 Refs ← ∅ // set of Rbu-trees
22 if H = H0 ∨H1 then

23 π0 ← F([Γ b⇒H0]) , π1 ← F([Γ b⇒H1])
24 if ∃k ∈ {0, 1} s.t. πk is a Gbu-tree then return B(Gbu, σ, {πk}, ∨Rk)
25 else Refs ← Refs ∪ {π0, π1 }
26 if l = u then
27 foreach A→ B ∈ Γ→ do

28 πA ← F([Γ→, ΓAtb⇒A]), πB ← F([B, Γ→ \ {A→ B}, ΓAtu⇒H])
29 if πB is an Rbu-tree then return B(Rbu, σ, {πB}, → L)
30 else if πA is a Gbu-tree then return B(Gbu, σ, {πA, πB}, → L)
31 else Refs ← Refs ∪ {πA }
32 return B(Rbu, σ, Refs, Rs(σ)) // Rs(σ) is ∨R or SAt

u or S∨u
33 // Here (H = ⊥ or H ∈ V \ ΓAt) and (l = b or Γ→ = ∅)
34 else return B(Rbu,σ, ∅, Irr)

Fig. 6. F(σ = [Γ
l⇒ H])

By ∥σ∥ we denote the maximal length of a Gbu-branch starting from σ (by
Prop. 1, ∥σ∥ is finite). Note that, whenever a recursive call F(σ′) occurs along
the computation of F(σ), it holds that ∥σ′∥ < ∥σ∥.

In the next lemma we prove the correctness of F.

Lemma 4. Let σ be a sequent in normal form. Then, F(σ) returns either a
Gbu-derivation or an Rbu-derivation of σ.

Proof. By induction on ∥σ∥. If ∥σ∥ = 1, F(σ) does not execute any recursive
invocation and the computation ends at line 1 or at line 34. In the former case,
a Gbu-derivation of σ is returned. In the latter case, since σ is in normal form
and none of the conditions at lines 1, 2, 6, 10 15, 20 holds, the sequent σ is
irreducible and the tree built at line 34 is an Rbu-derivation of σ.

Let ∥σ∥ > 1. Whenever a recursive call F(σ′) occurs, we have that ∥σ′∥ <
∥σ∥ and σ′ is in normal form, hence the induction hypothesis applies to F(σ′).
Using this, one can easily show that the arguments of function B are correctly
instantiated. We only analyse some cases.

Let us assume that one of the return instructions at lines 8–9 is executed.
By induction hypothesis, for every k ∈ {0, 1}, πk is either a Gbu-proof or an
Rbu-derivation of σk = [Ak, Γ

′ u⇒H]. If, for some k, πk is an Rbu-derivation of
σk, then the Rbu-tree returned at line 8 is an Rbu-derivation of σ. Otherwise,
both π0 and π1 are Gbu-derivations, hence the value returned at line 9 is a
Gbu-derivation of σ.

Let us assume that F(σ) ends at line 32; in this case σ satisfies the conditions
at lines 19 and 20. If l = b, then H = H0 ∨H1. Since the condition at line 24 is
false, we have Refs = {π0, π1} and, by induction hypothesis, both π0 and π1 are
Rbu-derivations. Accordingly, the value returned at line 32 is anRbu-derivation
of σ with root rule Rs(σ) = ∨R. Let l = u and let us assume that H = ⊥ or
H ∈ V\Γ . In this case σ = [Γ→, ΓAt u⇒H] and the set Refs contains an Rbu-tree

πA of σA = [Γ→, ΓAt b⇒A] for every A → B ∈ Γ→. By induction hypothesis, πA

is an Rbu-derivation of σA, hence line 32 returns an Rbu-derivation of σ with
root rule Rs(σ) = SAt

u . The subcase (l = u and H = H0 ∨H1) is similar. ⊓⊔

Finally, we get the completeness of Gbu:

Theorem 4. An u-sequent σu is provable in Gbu iff σu is not refutable.

Proof. The ⇒-statement follows by the soundness of Gbu. Conversely, let σu

be not refutable. Then, there is no Rbu-derivation π of σu; otherwise, by The-
orem 3, from π we could extract a countermodel for σu. Since σu is in normal
form, by Lemma 4 the call F(σu) returns a Gbu-derivation of σu. ⊓⊔

6 Conclusions and future works

We have presented Gbu, a terminating sequent calculus for intuitionistic propo-
sitional logic. Gbu is a notational variant of G3i, where sequents are labelled to
mark the right-focused phase. Note that focusing techniques reduce the search
space limiting the use of contraction, but they do not guarantee termination of
proof-search (see, e.g., the right-focused calculus LJQ [2]). To get this, one has
to introduce extra machinery. An efficient solution is loop-checking implemented
by history mechanisms [6, 7]. Here we propose a different approach, based on an
evaluation relation defined on sequents. Histories require space to store the right
formulas already used so to direct and possibly stop the proof-search. Instead,
we have to compute evaluation relations when right-implication is treated. We
remark that, with an appropriate implementation of the involved data struc-
tures (see [4]), the evaluation relation ⊢Ẽ defined in Section 2 can be computed
in time linear in the size of the arguments. Hence, we get by means of computa-
tion what history mechanisms get using memory. Although a strict comparison

is hard, to stress the difference between the two approaches we provide an ex-
ample where Gbu outperforms history-based calculi. Let σ = [Γ→ u⇒⊥], where
Γ→ = {p1 → ⊥, . . . , pn → ⊥} and the pi’s are distinct propositional variables.
The only rule that can be used to derive σ is →L. For every pi→⊥ chosen as
main formula, the right-hand premise is provable in Gbu, while the left-hand

premise σb
i = [Γ→ b⇒ pi] is not. Thus, we have a backtrack point which forces the

application of →L in all possible ways. Being σb
i blocked, the unprovability of σb

i

is immediately certified. With the calculi in [7], the search process is similar, but
to assert the unprovability of [Γ→ ⇒ pi] one has to chain up to n applications
of →L and build an history set containing all the pi’s.

Differently from the history mechanisms, Gbu only exploits the information
in the left-hand side of a sequent. We are investigating the use of more expressive
evaluation relations to better grasp the information conveyed by a sequent and
further reduce the search space. Finally, we aim to extend the use of these
techniques to other logics having a Kripke semantics.

References

1. A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.
2. R. Dyckhoff and S. Lengrand. LJQ: A Strongly Focused Calculus for Intuitionistic

Logic. In A. Beckmann et al., editor, CiE, volume 3988 of LNCS, pages 173–185.
Springer, 2006.

3. M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent cal-
culi for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. Journal of Automated Reasoning, 2012. doi:10.1007/s10817-
012-9252-7.

4. M. Ferrari, C. Fiorentini, and G. Fiorino. Simplification rules for intuitionis-
tic propositional tableaux. ACM Transactions on Computational Logic (TOCL),
13(2):14:1–14:23, 2012.

5. D.M. Gabbay and N. Olivetti. Goal-Directed Proof Theory. Springer, 2000.
6. A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward

proof search in some non-classical propositional logics. In P. Miglioli et al., editor,
TABLEAUX 96, volume 1071 of LNCS, pages 210–225. Springer, 1996.

7. J. M. Howe. Two loop detection mechanisms: A comparision. In D. Galmiche,
editor, TABLEAUX 97, volume 1227 of LNCS, pages 188–200. Springer, 1997.

8. F. Massacci. Simplification: A general constraint propagation technique for propo-
sitional and modal tableaux. In H.C.M. de Swart, editor, TABLEAUX 98, volume
1397 of LNCS, pages 217–231. Springer, 1998.

9. L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intu-
itionistic propositional logic. In M. Behara et al., editor, Symposia Gaussiana,
Conference A, pages 225–232. Walter de Gruyter, Berlin, 1995.

10. A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

