A terminating evaluation-driven variant of G3i

Mauro Ferrari¹, Camillo Fiorentini², Guido Fiorino³

¹ DiSTA, Univ. degli Studi dell'Insubria, Via Mazzini, 5, 21100, Varese, Italy

² DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

³ DISCO, Univ. degli Studi di Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy

Abstract. We present Gbu, a terminating variant of the sequent calculus G3i for intuitionistic propositional logic. Gbu modifies G3i by annotating the sequents so to distinguish rule applications into two phases: an unblocked phase where any rule can be backward applied, and a blocked phase where only right rules can be used. Derivations of Gbu have a trivial translation into G3i. Rules for right implication exploit an *evaluation* relation, defined on sequents; this is the key tool to avoid the generation of branches of infinite length in proof-search. To prove the completeness of Gbu, we introduce a refutation calculus Rbu for unprovability dual to Gbu. We provide a proof-search procedure that, given a sequent as input, returns either a Rbu-derivation or a Gbu-derivation of it.

1 Introduction

It is well-known that **G3i** [10], the sequent calculus for intuitionistic propositional logic with weakening and contraction "absorbed" in the rules, is not suited for proof-search. Indeed, the naïve proof-search strategy, consisting in applying the rules of the calculus bottom-up until possible, is not terminating. This is because the rule for left implication retains the main formula $A \rightarrow B$ in the left-hand side premise, hence such a formula might be selected for application more and more times. A possible solution to this problem is to support the proofsearch procedure with a *loop-checking* mechanism [5–7]: whenever the "same" sequent occurs twice along a branch of the proof under construction, the search is cut. An efficient implementation of loop-checking exploits *histories* [6, 7]. In the construction of a branch, the formulas decomposed by right rules are stored in the history; loops are avoided by preventing the application of some right rules to formulas in the history.

In this paper we propose a different and original approach: we show that terminating proof-search for **G3i** can be accomplished only exploiting the information contained in the sequent to be proved by means of a suitable *evaluation relation*. Our proof-search strategy alternates two phases: an unblocked phase (u-phase), where all the rules of **G3i** can be backward applied, and a blocked phase (b-phase), where only right-rules can be used. To improve the presentation, we embed the strategy inside the calculus by annotating sequents with the label u (*unblocked*) or b (*blocked*); we call **Gbu** the resulting calculus (see Fig. 1). A **Gbu**-derivation can be straightforwardly mapped to a **G3i**-derivation

by erasing the labels and, possibly, by padding the left contexts; from this, the soundness of **Gbu** immediately follows. Unblocked sequents, characterizing an u-phase, behave as the ordinary sequents of **G3i**: any rule of **Gbu** can be (backward) applied to them. Instead, b-sequents resemble focused-right sequents (see, e.g., [2]): they only allow backward right-rule applications (thus, the left context is "blocked"). Proof-search starts from an u-sequent (u-phase); the transition to a b-phase is determined by the application of one of the rules for left implication or right disjunction. For instance, let $[A \to B, \Gamma \stackrel{\text{u}}{\Rightarrow} H]$ be the u-sequent to be proved and suppose we apply the rule $\to L$ with main formula $A \to B$. The next goals are the b-sequent $[A \to B, \Gamma \stackrel{\text{b}}{\Rightarrow} A]$ and the u-sequent $[B, \Gamma \stackrel{\text{u}}{\Rightarrow} H]$, corresponding to the two premises of $\to L$. While the latter goal continues the u-phase, the former one starts a new b-phase, which focuses on A. Similarly, if we apply the rule $\lor R_k$ (with $k \in \{0,1\}$) to $[\Gamma \stackrel{\text{u}}{\Rightarrow} H_0 \lor H_1]$, the phase changes to b and the next goal is $[\Gamma \stackrel{\text{b}}{\Rightarrow} H_k]$, the only premise of $\lor R_k$.

Rules for right implication have two possible outcomes determined by the evaluation relation. Indeed, let $[\Gamma \stackrel{l}{\Rightarrow} A \to B]$ be the current goal $(l \in \{u, b\})$ and let $A \to B$ be the selected main formula: if A is evaluated in Γ , then we continue the search with $[\Gamma \stackrel{l}{\Rightarrow} B]$ and the phase does not change (see rule $\to R_1$); note that the formula A is dropped out. If A is not evaluated in Γ the next goal is $[A, \Gamma \stackrel{u}{\Rightarrow} B]$. Moreover, if l = b, we switch from a b-phase to an u-phase and this is the only case where a b-sequent is "unblocked". The crucial point is that, due to the side conditions on the application of rules $\to R_1$ and $\to R_2$ (which rely on the evaluation relation), every branch of a **Gbu**-tree has finite length (Section 3); this implies that our proof-search strategy always terminates. We point out that we do not bound ourselves to a specific evaluation relation, but we admit any evaluation relation satisfying properties $(\mathcal{E}1)-(\mathcal{E}6)$ defined in Section 2.

The proof of completeness ($[\Gamma \Rightarrow H]$ provable in **G3i** implies $[\Gamma \stackrel{u}{\Rightarrow} H]$ provable in **Gbu**) involves non-trivial aspects. Following [3, 9], we introduce a refutation calculus **Rbu** for asserting intuitionistic unprovability (Section 4). From an **Rbu**-derivation of an u-sequent $\sigma^{u} = [\Gamma \stackrel{u}{\Rightarrow} H]$ we can extract a Kripke countermodel for σ^{u} , namely a Kripke model such that, at its root, all formulas in Γ are forced and H is not forced; from this, it follows that σ^{u} is not intuitionistically valid. In Section 5 we introduce the function **F** which implements the proofsearch strategy outlined above; if the search for a **Gbu**-derivation of σ^{u} fails, an **Rbu**-derivation of σ^{u} is built. To sum up, $\mathbf{F}(\sigma^{u})$ returns either a **Gbu**-derivation or an **Rbu**-derivation of σ^{u} ; in the former case we get a **G3i**-derivation of the sequent $\sigma = [\Gamma \Rightarrow H]$, in the latter case we can build a countermodel for σ .

2 Preliminaries and evaluations

We consider the propositional language \mathcal{L} based on a denumerable set of propositional variables \mathcal{V} , the connectives \wedge , \vee , \rightarrow and the logical constant \perp . We denote with $\mathcal{V}(A)$ the set of propositional variables occurring in A, with |A| the size of A, that is the number of symbols occurring in A, and with Sf(A) the set of subformulas of A (including A itself). A (finite) Kripke model for \mathcal{L} is a structure $\mathcal{K} = \langle P, \leq, \rho, V \rangle$, where $\langle P, \leq, \rho \rangle$ is a finite partially ordered set with minimum ρ and $V : P \to 2^{\mathcal{V}}$ is a function such that $\alpha \leq \beta$ implies $V(\alpha) \subseteq V(\beta)$. The forcing relation $\Vdash \subseteq P \times \mathcal{L}$ is defined as follows:

- $-\mathcal{K}, \alpha \nvDash \perp$ and, for every $p \in \mathcal{V}, \mathcal{K}, \alpha \Vdash p$ iff $p \in V(\alpha)$;
- $-\mathcal{K}, \alpha \Vdash A \land B \text{ iff } \mathcal{K}, \alpha \Vdash A \text{ and } \mathcal{K}, \alpha \Vdash B;$
- $-\mathcal{K}, \alpha \Vdash A \lor B$ iff $\mathcal{K}, \alpha \Vdash A$ or $\mathcal{K}, \alpha \Vdash B;$
- $-\mathcal{K}, \alpha \Vdash A \to B$ iff, for every $\beta \in P$ such that $\alpha \leq \beta, \mathcal{K}, \beta \nvDash A$ or $\mathcal{K}, \beta \Vdash B$.

Given a set Γ of formulas, $\mathcal{K}, \alpha \Vdash \Gamma$ iff $\mathcal{K}, \alpha \Vdash A$ for every $A \in \Gamma$. Monotonicity property holds for arbitrary formulas, i.e.: $\mathcal{K}, \alpha \Vdash A$ and $\alpha \leq \beta$ imply $\mathcal{K}, \beta \Vdash A$. A formula A is valid in \mathcal{K} iff $\mathcal{K}, \rho \Vdash A$. Intuitionistic propositional logic coincides with the set of the formulas valid in all (finite) Kripke models [1].

As motivated in the Introduction, we use (labelled) sequents of the form $\sigma = [\Gamma \stackrel{l}{\Rightarrow} H]$ where $l \in \{b, u\}, \Gamma$ is a finite set of formulas and H is a formula. We adopt the usual notational conventions; e.g., $[A, \Gamma \stackrel{l}{\Rightarrow} H]$ stands for $[\{A\} \cup \Gamma \stackrel{l}{\Rightarrow} H]$. The size of σ is $|\sigma| = \sum_{A \in \Gamma} |A| + |H|$; the set of subformulas of σ is $\mathrm{Sf}(\sigma) = \bigcup_{A \in \Gamma \cup \{H\}} \mathrm{Sf}(A)$.

The semantics of formulas extends to sequents as follows. Given a Kripke model \mathcal{K} and a world α of \mathcal{K} , α refutes $\sigma = [\Gamma \stackrel{l}{\Rightarrow} H]$ in \mathcal{K} , written $\mathcal{K}, \alpha \triangleright \sigma$, iff $\mathcal{K}, \alpha \Vdash \Gamma$ and $\mathcal{K}, \alpha \nvDash H$; σ is refutable if there exists a Kripke model \mathcal{K} with root ρ such that $\mathcal{K}, \rho \triangleright \sigma$; in this case \mathcal{K} is a countermodel for σ . It is easy to check that σ is refutable iff the formula $\wedge \Gamma \to H$ is not intuitionistically valid iff, by soundness and completeness of **G3i** [10], [$\Gamma \Rightarrow H$] is not provable in **G3i**.

Evaluations An *evaluation relation* $\vdash_{\mathcal{E}}$ is a relation between a set Γ of formulas and a formula A satisfying the following properties:

- $(\mathcal{E}1) \ \Gamma \vdash_{\mathcal{E}} A \text{ iff } \Gamma \cap \mathrm{Sf}(A) \vdash_{\mathcal{E}} A.$
- $(\mathcal{E}2) A, \Gamma \vdash_{\mathcal{E}} A.$
- ($\mathcal{E}3$) $\Gamma \vdash_{\mathcal{E}} A$ and $\Gamma \vdash_{\mathcal{E}} B$ implies $\Gamma \vdash_{\mathcal{E}} A \land B$.
- ($\mathcal{E}4$) $\Gamma \vdash_{\mathcal{E}} A_k$, with $k \in \{0, 1\}$, implies $\Gamma \vdash_{\mathcal{E}} A_0 \lor A_1$.
- ($\mathcal{E}5$) $\Gamma \vdash_{\mathcal{E}} B$ implies $\Gamma \vdash_{\mathcal{E}} A \to B$.
- $(\mathcal{E}6) \text{ Let } \mathcal{K} = \langle P, \leq, \rho, V \rangle \text{ and } \alpha \in P; \text{ if } \mathcal{K}, \alpha \Vdash \Gamma \text{ and } \Gamma \vdash_{\mathcal{E}} A, \text{ then } \mathcal{K}, \alpha \Vdash A.$

Conditions $(\mathcal{E}1)$ – $(\mathcal{E}5)$ concern syntactical properties; note that, by $(\mathcal{E}1)$, the evaluation of A w.r.t. Γ only depends on the subformulas in Γ which are subformulas of A. Intuitively, the role of an evaluation relation is to check if the "information contained" in A is semantically implied by Γ (see $(\mathcal{E}6)$). In the sequel, we also write $[\Gamma \stackrel{l}{\Rightarrow} H] \vdash_{\mathcal{E}} A$ to mean $\Gamma \vdash_{\mathcal{E}} A$.

In the examples we use the evaluation relation $\vdash_{\tilde{\mathcal{E}}}$ defined below. Let \mathcal{L}_{\top} be the language extending \mathcal{L} with the constant \top ($\mathcal{K}, \alpha \Vdash \top$, for every \mathcal{K} and every α in \mathcal{K}). To define $\vdash_{\tilde{\mathcal{E}}}$, we introduce the function \mathcal{R} which simplifies a formula $A \in \mathcal{L}_{\top}$ w.r.t. a set Γ of formulas of \mathcal{L} (see [4]):

$$\mathcal{R}(A,\Gamma) = \begin{cases} \top & A \in \Gamma \\ A & \text{if } A \notin \Gamma \text{ and } A \in \mathcal{V} \cup \{\bot,\top\} \\ \mathcal{B}\left(\mathcal{R}(A_0,\Gamma) \cdot \mathcal{R}(A_1,\Gamma)\right) & \text{if } A \notin \Gamma \text{ and } A = A_0 \cdot A_1 \text{ with } \cdot \in \{\land,\lor,\rightarrow\} \end{cases}$$

 $\mathcal{B}(A)$ performs the *boolean simplification* of A [4,8], consisting in applying the following reductions inside A:

We set $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ iff $\mathcal{R}(A, \Gamma) = \top$.

Theorem 1. $\vdash_{\tilde{\mathcal{E}}}$ is an evaluation relation.

Proof. We have to prove that $\vdash_{\mathcal{E}}$ satisfies properties $(\mathcal{E}1)$ – $(\mathcal{E}6)$ of Section 2.

- ($\mathcal{E}1$) It is easy to prove, by induction on the structure of A, that $\mathcal{R}(A, \Gamma) = \mathcal{R}(A, \Gamma \cap \mathrm{Sf}(A))$, thus $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ iff $\Gamma \cap \mathrm{Sf}(A) \vdash_{\tilde{\mathcal{E}}} A$.
- ($\mathcal{E}2$) It immediately follows by the definition of $\vdash_{\tilde{\mathcal{E}}}$ and \mathcal{R} .
- ($\mathcal{E}3$) Let $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ and $\Gamma \vdash_{\tilde{\mathcal{E}}} B$. By definition of $\vdash_{\tilde{\mathcal{E}}}, \mathcal{R}(A, \Gamma) = \mathcal{R}(B, \Gamma) = \top$. To prove $\Gamma \vdash_{\tilde{\mathcal{E}}} A \wedge B$, we must show that $\mathcal{R}(A \wedge B, \Gamma) = \top$. If $A \wedge B \in \Gamma$, this immediately follows. Otherwise: $\mathcal{R}(A \wedge B, \Gamma) = \mathcal{B}(\mathcal{R}(A, \Gamma) \wedge \mathcal{R}(B, \Gamma)) = \mathcal{B}(\top \wedge \top) = \top$. The proof of properties ($\mathcal{E}4$) and ($\mathcal{E}5$) is similar.
- $(\mathcal{E}6)$ Let $\mathcal{K} = \langle P, \leq, \rho, V \rangle$ and $\alpha \in P$ such that $\mathcal{K}, \alpha \Vdash \Gamma$. It is easy to prove, by induction on A, that $\mathcal{K}, \alpha \Vdash A \leftrightarrow \mathcal{R}(A, \Gamma)$. Now, if $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ then $\mathcal{R}(A, \Gamma) = \top$; hence by the above property $\mathcal{K}, \alpha \Vdash A \leftrightarrow \top$ and this implies $\mathcal{K}, \alpha \Vdash A$. \Box

3 The sequent calculus Gbu

We present the **G3**-style [10] calculus **Gbu** for intuitionistic propositional logic. The calculus consists of the *axiom rules* (rules with zero premises) $\perp L$ and Id, and the left and right introduction rules in Fig. 1. The *main formula* of a rule is the one put in evidence in the conclusion of the rule. In the conclusion of a rule, when we write C, Γ we assume that $C \notin \Gamma$; e.g., in the rule $\wedge L$ it is assumed that $A \wedge B \notin \Gamma$, hence the formula $A \wedge B$ is not retained in the premise. The choice between $\rightarrow R_1$ and $\rightarrow R_2$ depends on the relation $\vdash_{\mathcal{E}}$. In the application of $\rightarrow L$ to $\sigma = [A \rightarrow B, \Gamma \stackrel{u}{\Rightarrow} H]$, contraction of $A \rightarrow B$ is explicitly introduced in the leftmost premise σ_A ; as a consequence we might have $|\sigma_A| \geq |\sigma|$. In all the other cases, passing from the conclusion to a premise of a rule, the size of the sequents strictly decreases. The rule $\rightarrow R_2$ is the only rule that, when applied backward, can turn a b-sequent into an u-sequent.

A **Gbu**-tree π is a tree of sequents such that: if σ is a node of π with $\sigma_1, \ldots, \sigma_n$ as children, then there exists a rule of **Gbu** having premises $\sigma_1, \ldots, \sigma_n$ and conclusion σ . The root rule of π is the one having as conclusion the root sequent

$$\begin{split} \overline{[\bot,\Gamma\stackrel{l}{\Rightarrow}H]} \stackrel{\bot L}{\longrightarrow} I & \overline{[H,\Gamma\stackrel{l}{\Rightarrow}H]} & \mathrm{Id} \\ \frac{[A,B,\Gamma\stackrel{u}{\Rightarrow}H]}{[A \land B,\Gamma\stackrel{u}{\Rightarrow}H]} \land L & \frac{[\Gamma\stackrel{l}{\Rightarrow}A] & [\Gamma\stackrel{l}{\Rightarrow}B]}{[\Gamma\stackrel{l}{\Rightarrow}A \land B]} \land R \\ \frac{[A,\Gamma\stackrel{u}{\Rightarrow}H] & [B,\Gamma\stackrel{u}{\Rightarrow}H]}{[A \lor B,\Gamma\stackrel{u}{\Rightarrow}H]} \lor L & \frac{[\Gamma\stackrel{b}{\Rightarrow}H_{k}]}{[\Gamma\stackrel{l}{\Rightarrow}H_{0} \lor H_{1}]} \lor R_{k} \\ \frac{[A \to B,\Gamma\stackrel{b}{\Rightarrow}A] [B,\Gamma\stackrel{u}{\Rightarrow}H]}{[A \to B,\Gamma\stackrel{u}{\Rightarrow}H]} \to L & \frac{[\Gamma\stackrel{l}{\Rightarrow}B]}{[\Gamma\stackrel{l}{\Rightarrow}A \to B]} \to R_{1} & \frac{[A,\Gamma\stackrel{u}{\Rightarrow}B]}{[\Gamma\stackrel{l}{\Rightarrow}A \to B]} \to R_{2} \\ & \text{if } \Gamma \vdash_{\mathcal{E}}A & \text{if } \Gamma \nvDash_{\mathcal{E}}A \end{split}$$

Fig. 1. The calculus Gbu.

of π . A **Gbu**-derivation of σ is a **Gbu**-tree π with root σ and having conclusions of an axiom rule as leaves. A sequent σ is provable in **Gbu** iff there exists a **Gbu**derivation of σ ; H is provable in **Gbu** iff $[\stackrel{\mathbf{u}}{\Rightarrow} H]$ is provable in **Gbu**. Note that **Gbu** has the subformula property: given a **Gbu**-tree π with root σ , for every sequent σ' occurring in π it holds that $\mathrm{Sf}(\sigma') \subseteq \mathrm{Sf}(\sigma)$.

A **Gbu**-derivation π can be translated into a **G3i**-derivation $\tilde{\pi}$ applying the following steps: erase the labels from the sequents in π ; when rule $\rightarrow R_1$ is applied, add the formula A to the left context; rename all occurrences of $\rightarrow R_1$ and $\rightarrow R_2$ to $\rightarrow R$. From this translation and the soundness of **G3i** [10] we get the soundness of **Gbu**. Semantically, this means that, if σ is provable in **Gbu**, then σ is not refutable.

Here we provide an example of a **Gbu**-derivation, then we prove that **Gbu** is terminating. The completeness of **Gbu** (Theorem 4) is proved in Section 5 as a consequence of the correctness of the proof-search procedure.

Example 1. Let $W = ((((p \to q) \to p) \to p) \to q) \to q) \to q$ be an instance of the Weak Pierce Law [1]. In Fig. 2 we give a **Gbu**-derivation¹ π_1 of $\sigma_1 = [\stackrel{\mathbf{u}}{\Rightarrow} W]$, using the evaluation $\vdash_{\tilde{\mathcal{E}}}$ of Section 2. Sequents are indexed by integers; by π_i we denote the subderivation of π_1 with root σ_i . When ambiguities can arise, we underline the main formula of a rule application. Building the derivation bottom-up, the only choice points are in the (backward) application of rule $\to L$ to σ_4 and σ_7 , since we can select both A and B as main formula. If at sequent

 σ_6 we choose *B* instead of *A*, we get the **Gbu**-tree with root σ_6 sketched on the right. We have $\sigma_{7'} \vdash_{\tilde{\mathcal{E}}} p$ (indeed, *p* occurs on the left in $\sigma_{7'}$), hence the rule $\rightarrow R_1$ must be applied to $\sigma_{7'}$, which

$$\frac{ \begin{matrix} [p,B,A \xrightarrow{\mathbf{b}} q]_{8'} \\ \hline [p,B,A \xrightarrow{\mathbf{b}} p \to q]_{7'} \\ \hline \\ \hline \begin{matrix} [p,(p \to q) \to p,A \xrightarrow{\mathbf{u}} q]_{9'} \\ \hline \\ \hline \end{matrix} \xrightarrow{[p,(p \to q) \to p,A \xrightarrow{\mathbf{u}} q]_{6}} \\ \hline \end{matrix} \to L$$

¹ The derivations and their LATEX rendering are generated with g3ibu, an implementation of Gbu and Rbu available at http://www.dista.uninsubria.it/~ferram/.

$$\begin{split} \frac{W = A \rightarrow q}{[p, B, A \stackrel{\text{b}}{\Rightarrow} p]_8} & \text{Id} \\ \frac{1}{[p, B, A \stackrel{\text{b}}{\Rightarrow} p]_8} & \text{Id} \\ \frac{1}{[p, B, A \stackrel{\text{b}}{\Rightarrow} B \rightarrow p]_7} \rightarrow R_1 & \frac{1}{[q, p, B \stackrel{\text{b}}{\Rightarrow} q]_9} & \text{Id} \\ \frac{1}{[p, B, A \stackrel{\text{b}}{\Rightarrow} p \rightarrow q]_5} & \rightarrow R_2 & \frac{1}{[p, A \stackrel{\text{b}}{\Rightarrow} p]_{10}} & \text{Id} \\ \frac{1}{[B, A \stackrel{\text{b}}{\Rightarrow} p \rightarrow q]_5} \rightarrow R_2 & \frac{1}{[p, A \stackrel{\text{b}}{\Rightarrow} p]_{10}} & \rightarrow L \\ \frac{1}{[A \stackrel{\text{b}}{\Rightarrow} \underbrace{((p \rightarrow q) \rightarrow p)}_B \rightarrow p]_3} \rightarrow R_2 & \frac{1}{[q \stackrel{\text{b}}{\Rightarrow} q]_{11}} & \text{Id} \\ \frac{1}{[A \stackrel{\text{b}}{\Rightarrow} \underbrace{((p \rightarrow q) \rightarrow p)}_B \rightarrow p]_3} \rightarrow R_2 & \frac{1}{[q \stackrel{\text{b}}{\Rightarrow} q]_{11}} & \text{Id} \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow R_2} & \frac{1}{[q \stackrel{\text{b}}{\Rightarrow} q]_{11}} & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow R_2} & \frac{1}{[q \stackrel{\text{b}}{\Rightarrow} q]_{11}} & \rightarrow R_2 \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} & \rightarrow R_2 & \xrightarrow{(p \rightarrow q)} P_1 & \rightarrow R_2 \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{((p \rightarrow q) \rightarrow p) \rightarrow p]_3} \rightarrow Q_1} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{((p \rightarrow q) \rightarrow p) \rightarrow p]_3} \rightarrow Q_2 & \rightarrow Q_2} \rightarrow Q_2 & \rightarrow L \\ \frac{1}{[p \stackrel{\text{b}}{\Rightarrow} \underbrace{((p \rightarrow q) \rightarrow p]_3} \rightarrow Q_2 & \rightarrow Q_2} \rightarrow Q_2 & \rightarrow Q_2 &$$

Fig. 2. Gbu-derivation of Weak Pierce Law

yields the b-sequent $\sigma_{8'}$. Since $\sigma_{8'}$ is blocked, we cannot decompose again left implications; thus the proof-search fails without entering an infinite loop. \diamond

Termination of Gbu We show that every **Gbu**-tree has finite depth. A **Gbu**branch is a sequence of sequents $\mathcal{B} = (\sigma_1, \sigma_2, ...)$ such that, for every $i \geq 1$, there exists a rule \mathcal{R} of **Gbu** having σ_i as conclusion and σ_{i+1} among its premises. The *length* of \mathcal{B} is the number of sequents in it. Let $\gamma = (\sigma_i, \sigma_{i+1})$ be a pair of successive sequents in \mathcal{B} with labels l_i and l_{i+1} respectively; γ is a bu-pair if $l_i = b$ and $l_{i+1} = u$; γ is an ub-pair if $l_i = u$ and $l_{i+1} = b$. By BU(\mathcal{B}) and UB(\mathcal{B}) we denote the number of bu-pairs and ub-pairs occurring in \mathcal{B} respectively. Note that the only rule generating bu-pairs is $\rightarrow R_2$. Moreover, $|\sigma_{i+1}| \geq |\sigma_i|$ can happen only if (σ_i, σ_{i+1}) is an ub-pair generated by $\rightarrow L$: σ_{i+1} is the leftmost premise of an application of $\rightarrow L$ with conclusion σ_i . As a consequence, every subbranch of \mathcal{B} not containing ub-pairs is finite. Hence, if we show that UB(\mathcal{B}) is finite, we get that \mathcal{B} has finite length.

We prove a kind of persistence of $\vdash_{\mathcal{E}}$, namely: if A occurs in the left-hand side of a sequent σ occurring in \mathcal{B} , then $\sigma' \vdash_{\mathcal{E}} A$ for every σ' following σ in \mathcal{B} .

Lemma 1. Let $\mathcal{B} = (\sigma_1, \sigma_2, ...)$ be a **Gbu**-branch where, for every $i \ge 1$, $\sigma_i = [\Gamma_i \stackrel{l_i}{\Rightarrow} H_i]$. Let $n \ge 1$ and $A \in \bigcup_{1 \le i \le n} \Gamma_i$. Then, $\Gamma_n \vdash_{\mathcal{E}} A$.

Proof. By induction on |A|. If $A \in \Gamma_n$, by ($\mathcal{E}2$) we immediately get $\Gamma_n \vdash_{\mathcal{E}} A$. If $A \notin \Gamma_n$, there exists $i : 1 \leq i < n$ such that $A \in \Gamma_i$ and $A \notin \Gamma_{i+1}$. This implies $A = B \cdot C$ with $\cdot \in \{\land, \lor, \rightarrow\}$. Let $\cdot = \land$; then σ_{i+1} is obtained from σ_i by an application of $\land L$ with main formula $B \land C$, hence $B \in \Gamma_{i+1}$ and $C \in \Gamma_{i+1}$. By induction hypothesis, $\Gamma_n \vdash_{\mathcal{E}} B$ and $\Gamma_n \vdash_{\mathcal{E}} C$; by ($\mathcal{E}3$), $\Gamma_n \vdash_{\mathcal{E}} B \land C$. The cases $\cdot \in \{\lor, \rightarrow\}$ are similar and require properties ($\mathcal{E}4$) and ($\mathcal{E}5$).

Now, we provide a bound on $BU(\mathcal{B})$.

$$\begin{split} \overline{[\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{l}{\Rightarrow}H]} & \operatorname{Irr} & \operatorname{if} [\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{l}{\Rightarrow}H] \text{ is irreducible } \begin{cases} H = \bot \text{ or } H \in \mathcal{V} \setminus \Gamma^{\operatorname{At}} \\ l = b \text{ or } \Gamma^{\rightarrow} = \emptyset \end{cases} \\ \hline \\ \frac{[A,B,\Gamma\overset{u}{\Rightarrow}H]}{[A \wedge B,\Gamma\overset{u}{\Rightarrow}H]} \wedge L & \frac{[\Gamma\overset{l}{\Rightarrow}H_{k}]}{[\Gamma\overset{l}{\Rightarrow}H_{0} \wedge H_{1}]} \wedge R_{k} \\ \hline \\ \frac{[A_{k},\Gamma\overset{u}{\Rightarrow}H]}{[A_{0} \vee A_{1},\Gamma\overset{u}{\Rightarrow}H]} \vee L_{k} & k \in \{0,1\} \end{cases} \\ \hline \\ \frac{[B,\Gamma\overset{u}{\Rightarrow}H]}{[A \rightarrow B,\Gamma\overset{u}{\Rightarrow}H]} \rightarrow L & \frac{[\Gamma\overset{l}{\Rightarrow}B]}{[\Gamma\overset{l}{\Rightarrow}A \rightarrow B]} \rightarrow R_{1} & \frac{[A,\Gamma\overset{u}{\Rightarrow}B]}{[\Gamma\overset{l}{\Rightarrow}A \rightarrow B]} \rightarrow R_{2} \\ \hline \\ \frac{\{[\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{b}{\Rightarrow}A]\}_{A \rightarrow B \in \Gamma^{\rightarrow}}}{[\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{b}{\Rightarrow}H_{0}]} & [\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{b}{\Rightarrow}H_{1}] \end{cases} \\ \hline \\ \frac{\{[\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{u}{\Rightarrow}H]}{[\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{u}{\Rightarrow}H]} \rightarrow R_{1} & \frac{[\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{b}{\Rightarrow}H_{0}]}{[\Gamma^{\rightarrow},\Gamma^{\operatorname{At}}\overset{b}{\Rightarrow}H_{1}]} \rightarrow R_{2} \\ \hline \\ \end{array}$$

Fig. 3. The refutation calculus Rbu.

Lemma 2. Let $\mathcal{B} = (\sigma_1, \sigma_2, \dots)$ be a **Gbu**-branch. Then, $\mathrm{BU}(\mathcal{B}) \leq |\sigma_1|$.

Proof. Let $(\sigma_i^{\rm b}, \sigma_{i+1}^{\rm u})$ be a bu-pair in \mathcal{B} . Since bu-pairs are generated by applications of $\to R_2$, we have: $\sigma_i^{\rm b} = [\Gamma \stackrel{\rm b}{\Rightarrow} A \to B], \sigma_{i+1}^{\rm u} = [A, \Gamma \stackrel{\rm u}{\Rightarrow} B]$ and $\Gamma \not\models_{\mathcal{E}} A$. By Lemma 1, for every $j \ge i+1$ it holds that $\Gamma_j \vdash_{\mathcal{E}} A$. Thus, any bu-pair following $(\sigma_i^{\rm b}, \sigma_{i+1}^{\rm u})$ must treat an implication $C \to D$ with $C \ne A$. Since **Gbu** has the subformula property, the main formulas of $\to R_2$ applications belong to $\mathrm{Sf}(\sigma_1)$. Thus, $\mathrm{BU}(\mathcal{B})$ is bounded by the number $\#\mathrm{Sf}(\sigma_1)$ of subformulas of σ_1 . Since $\#\mathrm{Sf}(\sigma_1) \le |\sigma_1|$, we get $\mathrm{BU}(\mathcal{B}) \le |\sigma_1|$.

Since between two ub-pairs of \mathcal{B} a bu-pair must occur, $UB(\mathcal{B}) \leq BU(\mathcal{B}) + 1$; by Lemma 2, $UB(\mathcal{B})$ is finite. We can conclude:

Proposition 1. Every **Gbu**-branch has finite length.

As a consequence, every **Gbu**-tree has finite depth and **Gbu** is terminating.

4 The refutation calculus Rbu

In this section, following the ideas of [3,9], we introduce the refutation calculus **Rbu** for deriving intuitionistic unprovability. Intuitively, an **Rbu**-derivation π of a sequent σ^{u} is a sort of "constructive proof" of refutability of σ^{u} in the sense that from π we can extract a countermodel $Mod(\pi)$ for σ^{u} .

We denote with Γ^{At} a finite set of propositional variables and with Γ^{\rightarrow} a finite set of implicative formulas. A sequent σ is *irreducible* iff $\sigma = [\Gamma^{\rightarrow}, \Gamma^{\text{At}} \stackrel{l}{\Rightarrow} H]$

with $H \in \{\bot\} \cup (\mathcal{V} \setminus \Gamma^{\mathrm{At}})$ and $(l = \mathrm{b} \text{ or } \Gamma^{\rightarrow} = \emptyset)$. The rules of **Rbu** are given in Fig. 3. As in **Gbu**, writing C, Γ in the conclusion of a rule, we assume that $C \notin \Gamma$. The notions of **Rbu**-tree, **Rbu**-derivation and **Rbu**-branch are defined analogously to those for **Gbu**.

The rule S_u^{At} has a premise $[\Gamma^{\rightarrow}, \Gamma^{At} \stackrel{b}{\Rightarrow} A]$ for every A such that $A \rightarrow B \in \Gamma^{\rightarrow}$; since $\Gamma^{\rightarrow} \neq \emptyset$, there exists at least one premise. The rule S_u^{\vee} is similar and has at least two premises. All the premises of S_u^{At} and S_u^{\vee} are b-sequents.

It is easy to check that an **Rbu**-branch is also a **Gbu**-branch². Accordingly, Proposition 1 implies that the calculus **Rbu** is terminating. In the following we prove that **Rbu** is sound in the following sense:

Theorem 2 (Soundness of Rbu). If an u-sequent σ^{u} is provable in **Rbu**, then σ^{u} is refutable.

Example 2. Let $S = ((\neg \neg p \rightarrow p) \rightarrow (\neg p \lor p)) \rightarrow (\neg \neg p \lor \neg p)$ be an instance of the *Scott principle* [1], where $\neg Z = Z \rightarrow \bot$. We show the **Rbu**-derivation π_1 of $[\stackrel{\mathbf{u}}{\Rightarrow} S]$. $S = A \rightarrow (\neg \neg p \lor \neg p) \qquad A = (\neg \neg p \rightarrow p) \rightarrow (\neg p \lor p)$

 $\frac{\overline{[p,\neg\neg p\overset{b}{\Rightarrow} \perp]_{10}}_{[p,\neg\neg p\overset{b}{\Rightarrow} \neg p]_{9}} g_{u}^{At}}{[p,\neg\neg p\overset{b}{\Rightarrow} \perp]_{8}} \xrightarrow{VL_{1}}_{VL_{1}} \xrightarrow{Irr}_{[\neg p, A\overset{b}{\Rightarrow} p]_{12}} rr \\
\frac{\overline{[p,\neg\neg p, A\overset{u}{\Rightarrow} \perp]_{6}}_{[\neg \neg p, A\overset{b}{\Rightarrow} \neg p \rightarrow p]_{11}} \xrightarrow{PR_{1}}_{[\neg p, A\overset{b}{\Rightarrow} \neg p \rightarrow p]_{11}} \xrightarrow{R_{1}}_{S_{u}^{At}} \frac{\overline{[\neg p\overset{b}{\Rightarrow} p]_{17}}_{[\neg p\overset{u}{\Rightarrow} \perp]_{16}} g_{u}^{At}}{[\neg p, A\overset{b}{\Rightarrow} \neg p \rightarrow p]_{11}} \xrightarrow{R_{1}}_{S_{u}^{At}} \frac{\overline{[\neg p\overset{u}{\Rightarrow} \perp]_{16}}_{[\neg p\overset{u}{\Rightarrow} \perp]_{16}} \times L_{1}}{[\neg p, A\overset{b}{\Rightarrow} \neg p \rightarrow p]_{11}} \xrightarrow{R_{1}}_{S_{u}^{At}} \frac{\overline{[\neg p\overset{u}{\Rightarrow} \perp]_{16}}_{[\neg p\overset{u}{\Rightarrow} \perp]_{16}} \times L_{1}}{[\neg p, A\overset{b}{\Rightarrow} \neg p \rightarrow p]_{11}} \xrightarrow{R_{2}}_{A} \xrightarrow{L_{1}}_{[\neg p, A\overset{u}{\Rightarrow} \perp]_{16}} \times L_{2}} \frac{\overline{[p\overset{u}{\Rightarrow} \perp]_{20}}_{[N} \times L_{1}}{[\neg p, A\overset{u}{\Rightarrow} \perp]_{16}} \xrightarrow{L_{16}}_{A} \xrightarrow{L_{16}}_{A} \xrightarrow{L_{16}}_{A} \xrightarrow{L_{17}}_{A} \xrightarrow{L_{1$

Soundness of Rbu Let π be an **Rbu**-derivation with root $\sigma^{\rm b} = [\Gamma^{\rightarrow}, \Gamma^{\rm At} \stackrel{\rm b}{\Rightarrow} H]$. By $\Pi(\pi, \sigma^{\rm b})$ we denote the maximal subtree of π having root $\sigma^{\rm b}$ and only containing b-sequents (that is, any subtree of π with root $\sigma^{\rm b}$ extending $\Pi(\pi, \sigma^{\rm b})$ contains at least one u-sequent). Since only the rules $\wedge R_k$, $\vee R$ and $\rightarrow R_1$ can be applied in $\Pi(\pi, \sigma^{\rm b})$, every leaf σ' of $\Pi(\pi, \sigma^{\rm b})$ has the form $[\Gamma^{\rightarrow}, \Gamma^{\rm At} \stackrel{\rm b}{\Rightarrow} H']$, where $H' \in \mathrm{Sf}(H)$; moreover, σ' is either an irreducible sequent (hence a leaf of π) or the conclusion of an application of $\rightarrow R_2$ (the only rule of **Rbu** which, read bottom-up, "unblocks" a b-sequent). Thus, π can be displayed as in Fig. 4. The sequents $\sigma_1^{\rm u}, \ldots, \sigma_n^{\rm u}$ $(n \geq 0)$ are called the u-successors of $\sigma^{\rm b}$ in π , while the sequents $\tau_1^{\rm b}, \ldots, \tau_m^{\rm b}$ $(m \geq 0)$ are the *i*-successors (irreducible successors) of $\sigma^{\rm b}$ in π . Let $d(\pi)$ be the depth of π ; if $d(\pi) = 0$, then $\sigma^{\rm b}$ coincides with $\tau_1^{\rm b}$, hence $\sigma^{\rm b}$ has no u-successors and has itself as only i-successor.

² The converse in general does not hold since the rule $\lor R$ of **Rbu** requires a b-sequent as conclusion.

where $i \in \{1, ..., n\}, j \in \{1, ..., m\}, n \ge 0, m \ge 0, n + m \ge 1$ and:

– the **Rbu**-tree $\Pi(\pi, \sigma^{\rm b})$ only contains b-sequents;

 $-\pi_i$ is an **Rbu**-derivation of $\sigma_i^{\rm u}$.

Fig. 4. Structure of an **Rbu**-derivation π of $\sigma^{\rm b} = [\Gamma^{\rightarrow}, \Gamma^{\rm At} \stackrel{\rm b}{\Rightarrow} H]$.

Now, let us consider an **Rbu**-derivation π of an u-sequent σ^{u} having root rule $\mathcal{R} = S_{u}^{At}$ or $\mathcal{R} = S_{u}^{\vee}$. Every premise σ' of \mathcal{R} is a b-sequent and the subderivation of π with root σ' has the structure shown in Fig. 4. The set of the u-successors of σ^{u} in π is the union of the sets of u-successors in π of the premises of \mathcal{R} ; the set of the i-successors of σ^{u} in π is defined analogously. To display a proof π of this kind we use the concise notation of Fig. 5.

Example 3. Let us consider the **Rbu**-derivation π_1 in Ex. 2. The u-successors and i-successors are defined as follows:

u-sequent	u-successors	i-successors
σ_2	$\sigma_4,\sigma_{14},\sigma_{19}$	
σ_4	σ_6	σ_{12}
σ_8		σ_{10}
σ_{16}		σ_{17}

 \Diamond

Now we describe how to extract from an **Rbu**-derivation of an u-sequent σ^{u} a Kripke countermodel $\operatorname{Mod}(\pi)$ for σ^{u} . $\operatorname{Mod}(\pi)$ is defined by induction on $d(\pi)$. By $\mathcal{K}^{1}(\rho, \Gamma^{\operatorname{At}})$ we denote the Kripke model $\mathcal{K} = \langle \{\rho\}, \{(\rho, \rho)\}, \rho, V \rangle$ consisting of only one world ρ such that $V(\rho) = \Gamma^{\operatorname{At}}$. Let \mathcal{R} be the root rule of π .

- (K1) If $\mathcal{R} = \text{Irr}$, then $d(\pi) = 0$ and $\sigma^{u} = [\Gamma^{\text{At}} \stackrel{u}{\Rightarrow} H]$ (being σ^{u} irreducible, $\Gamma^{\rightarrow} = \emptyset$). We set $\text{Mod}(\pi) = \mathcal{K}^{1}(\rho, \Gamma^{\text{At}})$, with ρ any element.
- (K2) Let \mathcal{R} be different from Irr, S_u^{At} , S_u^{\vee} and let π' be the only immediate subderivation of π . Then, $Mod(\pi) = Mod(\pi')$.
- (K3) Let \mathcal{R} be S_u^{At} or S_u^{\vee} and let π be displayed as in Fig. 5. If n = 0, then \mathcal{K} is the model $\mathcal{K}^1(\rho, \Gamma^{At})$, with ρ any element. Let n > 0 and, for every $i \in \{1, \ldots, n\}$, let $Mod(\pi_i) = \langle P_i, \leq_i, \rho_i, V_i \rangle$. Without loss of generality, we can assume that the P_i 's are pairwise disjoint. Let ρ be an element not in $\bigcup_{i \in \{1, \ldots, n\}} P_i$ and let $\mathcal{K} = \langle P, \leq, \rho, V \rangle$ be the model such that:

$$-P = \{\rho\} \cup \bigcup_{i \in \{1,...,n\}} P_i;$$

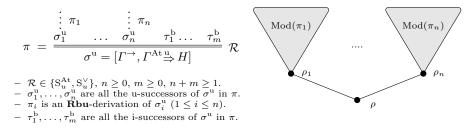


Fig. 5. An **Rbu**-derivation π with root rule S_u^{At} or S_u^{\vee} and the model $Mod(\pi)$.

 $\begin{aligned} - &\leq = \{ (\rho, \alpha) \mid \alpha \in P \} \cup \bigcup_{i \in \{1, \dots, n\}} \leq_i; \\ - &V(\rho) = \Gamma^{\text{At}} \text{ and, for every } i \in \{1, \dots, n\} \text{ and } \alpha \in P_i, V(\alpha) = V_i(\alpha). \end{aligned}$ Then $\operatorname{Mod}(\pi) = \mathcal{K}$. The model $\operatorname{Mod}(\pi)$ is represented in Fig. 5.

Example 4. We show the Kripke model $Mod(\pi_1)$ extracted from the **Rbu**-derivation π_1 of Ex. 2. The model is displayed as a tree with the convention that w < w' if the world w_8 : p

with the convention that w < w in the world w is drawn below w'. For each w_i , we list the propositional variables in $V(w_i)$. We inductively define the models $Mod(\pi_i)$ for every

i such that $\sigma_i = [\Gamma_i \stackrel{\mathbf{u}}{\Rightarrow} H_i]$ is an u-sequent. At each step one can check that $\operatorname{Mod}(\pi_i), \rho_i \triangleright \sigma_i$, where ρ_i is the root of $\operatorname{Mod}(\pi_i)$. Hence, $\operatorname{Mod}(\pi_1), w_2 \nvDash S$ ($\operatorname{Mod}(\pi_1)$) is a countermodel for S).

- By Point (K3), since σ_8 has no u-successors (see Ex. 3), $Mod(\pi_8) = \mathcal{K}^1(w_8, \{p\})$. Similarly, $Mod(\pi_{16}) = \mathcal{K}^1(w_{16}, \emptyset)$.
- Since σ_{21} is irreducible, by Point (K1) $\operatorname{Mod}(\pi_{21}) = \mathcal{K}^1(w_{21}, \{p\}).$
- By Point (K2), $Mod(\pi_6) = Mod(\pi_7) = Mod(\pi_8)$. Similarly,

 $Mod(\pi_{14}) = Mod(\pi_{15}) = Mod(\pi_{16})$ and $Mod(\pi_{19}) = Mod(\pi_{20}) = Mod(\pi_{21})$.

- By Point (K3), $\operatorname{Mod}(\pi_4)$ is obtained by extending with w_4 the model $\operatorname{Mod}(\pi_6)$ (indeed, σ_6 is the only u-successor of σ_4) and $V(w_4) = \Gamma_4 \cap \mathcal{V} = \emptyset$. Similarly, $\operatorname{Mod}(\pi_2)$ is obtained by gluing on w_2 the models generated by the u-successors σ_4 , σ_{14} and σ_{19} of σ_2 and $V(w_2) = \Gamma_2 \cap \mathcal{V} = \emptyset$.
- Finally, $Mod(\pi_1) = Mod(\pi_2)$ by Point (K2).

$$\diamond$$

We prove the soundness of **Rbu**. Given an **Rbu**-tree π with root $[\Gamma^{\rightarrow}, \Gamma^{\text{At}} \stackrel{\text{b}}{\Rightarrow} H]$ and only containing b-sequents, every leaf of π has the form $[\Gamma^{\rightarrow}, \Gamma^{\text{At}} \stackrel{\text{b}}{\Rightarrow} H']$.

Lemma 3. Let π be an **Rbu**-tree with root $\sigma^{\mathbf{b}} = [\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathbf{b}}{\Rightarrow} H]$ and only containing b-sequents, let $\sigma_1^{\mathbf{b}} = [\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathbf{b}}{\Rightarrow} H_1], \ldots, \sigma_n^{\mathbf{b}} = [\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathbf{b}}{\Rightarrow} H_n]$ be the leaves of π . Let $\mathcal{K} = \langle P, \leq, \rho, V \rangle$ be a Kripke model and $\alpha \in P$ such that:

(H1) $\mathcal{K}, \alpha \nvDash H_i$, for every $i \in \{1, \ldots, n\}$; (H2) $\mathcal{K}, \alpha \Vdash Z$, for every $Z \in \Gamma^{\rightarrow} \cap Sf(H)$; (H3) $V(\alpha) = \Gamma^{\text{At}}$.

Then, $\mathcal{K}, \alpha \nvDash H$.

Proof. By induction on $d(\pi)$. If $d(\pi) = 0$, then $\sigma^{\rm b} = \sigma_1^{\rm b}$ and the assertion immediately follows by (H1). Let us assume that $d(\pi) > 0$ and let \mathcal{R} be the root rule of π . Since both the conclusion and the premises of \mathcal{R} are b-sequents, \mathcal{R} is one of the rules $\wedge R_k$, $\vee R$ and $\rightarrow R_1$. The proof proceeds by cases on \mathcal{R} . The cases $\mathcal{R} \in \{\wedge R_k, \vee R\}$ immediately follow by the induction hypothesis.

If $\mathcal{R} \text{ is } \to R_1$, then $\sigma^{\mathrm{b}} = [\Gamma^{\to}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} A \to B]$, the premise of \mathcal{R} is $\sigma' = [\Gamma^{\to}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} B]$ and, by the side condition, $\Gamma^{\to}, \Gamma^{\mathrm{At}} \vdash_{\mathcal{E}} A$. By induction hypothesis on the subderivation of π having root σ' , we get $\mathcal{K}, \alpha \nvDash B$. We show that $\mathcal{K}, \alpha \Vdash A$. Let $\Gamma_A = (\Gamma^{\to} \cap \mathrm{Sf}(A)) \cup \Gamma^{\mathrm{At}}$. Since $\Gamma_A \cap \mathrm{Sf}(A) = (\Gamma^{\to} \cup \Gamma^{\mathrm{At}}) \cap \mathrm{Sf}(A)$ and $\Gamma^{\to}, \Gamma^{\mathrm{At}} \vdash_{\mathcal{E}} A$, by $(\mathcal{E}1)$ we get $\Gamma_A \vdash_{\mathcal{E}} A$. By the hypothesis (H2) and (H3) of the lemma, it holds that $\mathcal{K}, \alpha \Vdash \Gamma_A$; by $(\mathcal{E}6)$, we deduce $\mathcal{K}, \alpha \Vdash A$. Thus $\mathcal{K}, \alpha \Vdash A$ and $\mathcal{K}, \alpha \nvDash B$, which implies $\mathcal{K}, \alpha \nvDash A \to B$.

Now, we show that the model $Mod(\pi)$ is a countermodel for σ^{u} .

Theorem 3. Let π be an **Rbu**-derivation of an u-sequent σ^{u} and let ρ be the root of $Mod(\pi)$. Then $Mod(\pi), \rho \triangleright \sigma^{u}$.

Proof. By induction on $d(\pi)$. If $d(\pi) = 0$, then $Mod(\pi)$ is defined as in (K1) and the assertion immediately follows.

Let $d(\pi) > 0$ and let \mathcal{R} be the root rule of π . If $\mathcal{R} \notin \{S_u^{At}, S_u^{\vee}\}$, the assertion immediately follows by induction hypothesis (the case $\mathcal{R} = \rightarrow R_1$ requires ($\mathcal{E}6$)).

Let $\mathcal{R} = S_u^{\vee}$ (the case $\mathcal{R} = S_u^{At}$ is similar). Let $\sigma^u = [\Gamma^{\rightarrow}, \Gamma^{At} \stackrel{u}{\Rightarrow} H_0 \vee H_1]$ and let $\mathcal{K} = \langle P, \leq, \rho, V \rangle$ be the model $\operatorname{Mod}(\pi)$. By a secondary induction hypothesis on the structure of formulas, we prove that:

(B1) $\mathcal{K}, \rho \nvDash A$, for every $A \to B \in \Gamma^{\to}$;

(B2) $\mathcal{K}, \rho \Vdash A \to B$, for every $A \to B \in \Gamma^{\to}$;

(B3) $\mathcal{K}, \rho \nvDash H_0$ and $\mathcal{K}, \rho \nvDash H_1$.

To prove Point (B1), let $A \to B \in \Gamma^{\to}$. By definition of S_u^{\vee} , π has an immediate subderivation π_A of $\sigma_A^{\rm b} = [\Gamma^{\to}, \Gamma^{\rm At} \stackrel{\rm b}{\Rightarrow} A]$ of the form (see Fig. 4):

$$\frac{\sigma_i^{\mathrm{u}} = [\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}}, A_i \stackrel{\mathrm{u}}{\Rightarrow} B_i]}{\sigma_i^{\mathrm{b}} = [\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} A_i \rightarrow B_i]} \xrightarrow{\rightarrow R_2} \dots \frac{\tau_j^{\mathrm{b}} = [\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H_j]}{\prod (\pi_A, \sigma_A^{\mathrm{b}})} \prod \cdots$$

We show that $\Pi(\pi_A, \sigma_A^{\rm b})$ meets the hypothesis (H1)–(H3) of Lemma 3 w.r.t. the root ρ of \mathcal{K} , so that we can apply the lemma to infer $\mathcal{K}, \rho \nvDash A$. We prove (H1). Let us assume $n \geq 1$ and let $i \in \{1, \ldots, n\}$; we must show that $\mathcal{K}, \rho \nvDash A_i \to B_i$.

Since σ_i^{u} is an u-successor of σ^{u} , the root ρ_i of $\operatorname{Mod}(\pi_i)$ is an immediate successor of ρ in \mathcal{K} . By the main induction hypothesis $\operatorname{Mod}(\pi_i), \rho_i \triangleright \sigma_i^{\mathrm{u}}$; this implies that $\operatorname{Mod}(\pi_i), \rho_i \Vdash A_i$ and $\operatorname{Mod}(\pi_i), \rho_i \nvDash B_i$. Since $\operatorname{Mod}(\pi_i)$ is a submodel of \mathcal{K} , we get $\mathcal{K}, \rho_i \Vdash A_i$ and $\mathcal{K}, \rho_i \nvDash B_i$, which implies $\mathcal{K}, \rho \nvDash A_i \to B_i$. Let $m \geq 1$ and $j \in \{1, \ldots, m\}$. By definition of τ_j^{b} , either $H_j = \bot$ or $H_j \in \mathcal{V} \setminus \Gamma^{\mathrm{At}}$; in both cases $\mathcal{K}, \rho \nvDash H_j$. This proves that hypothesis (H1) of Lemma 3 holds. To prove hypothesis (H2), let $Z \in \Gamma^{\to} \cap \mathrm{Sf}(A)$. Since $|Z| < |A \to B|$, by the secondary induction hypothesis on Point (B2) we get $\mathcal{K}, \rho \Vdash Z$. The hypothesis (H3) follows by the definition of V in \mathcal{K} . We can apply Lemma 3 to deduce $\mathcal{K}, \rho \nvDash A$, and this proves Point (B1).

We prove Point (B2). Let π and $\operatorname{Mod}(\pi)$ be as in Fig. 5 (with $H = H_0 \lor H_1$). Let $A \to B \in \Gamma^{\to}$ and let α be a world of \mathcal{K} such that $\mathcal{K}, \alpha \Vdash A$; we show that $\mathcal{K}, \alpha \Vdash B$. By Point (B1), α is different from ρ . Thus, $n \ge 1$ and, for some $i \in \{1, \ldots, n\}, \alpha$ belongs to $\operatorname{Mod}(\pi_i)$. Let ρ_i be the root of $\operatorname{Mod}(\pi_i)$. By the main induction hypothesis, $\operatorname{Mod}(\pi_i), \rho_i \triangleright \sigma_i^{\mathrm{u}}$; since $A \to B$ belongs to the left-hand side of σ_i^{u} , we get $\operatorname{Mod}(\pi_i), \rho_i \vDash A$, which implies $\mathcal{K}, \rho_i \Vdash A \to B$. Since $\rho_i \le \alpha$ and $\mathcal{K}, \alpha \Vdash A$, we get $\mathcal{K}, \alpha \Vdash B$; thus $\mathcal{K}, \rho \Vdash A \to B$ and Point (B2) holds.

The proof of Point (B3) is similar to the proof of Point (B1), considering the immediate subderivations of π with root sequents $[\Gamma^{\rightarrow}, \Gamma^{\operatorname{At}} \stackrel{\mathrm{b}}{\Rightarrow} H_0]$ and $[\Gamma^{\rightarrow}, \Gamma^{\operatorname{At}} \stackrel{\mathrm{b}}{\Rightarrow} H_1]$. By Points (B2) and (B3) we conclude $\mathcal{K}, \rho \triangleright \sigma^{\mathrm{u}}$.

By Theorem 3, we get the soundness of **Rbu** stated in Theorem 2.

5 The proof-search procedure

We show that, given an u-sequent σ^{u} , either a **Gbu**-derivation or an **Rbu**derivation of σ^{u} can be built; from this, the completeness of **Gbu** follows. To this aim, we introduce the function **F** of Fig. 6. A sequent $[\Gamma \stackrel{l}{\Rightarrow} H]$ is in *normal form* if $l = \mathrm{b}$ implies $\Gamma = \Gamma^{\rightarrow}, \Gamma^{\mathrm{At}}$; given a sequent σ in normal form, $\mathbf{F}(\sigma)$ returns either a **Gbu**-derivation or an **Rbu**-derivation of σ . To construct a derivation, we use the auxiliary function **B**: given a calculus $\mathcal{C} \in {\mathbf{Gbu}, \mathbf{Rbu}}$, a sequent σ , a set \mathcal{P} of \mathcal{C} -trees and a rule \mathcal{R} of $\mathcal{C}, \mathbf{B}(\mathcal{C}, \sigma, \mathcal{P}, \mathcal{R})$ is the \mathcal{C} -tree having root sequent σ , root rule \mathcal{R} , and all the \mathcal{C} -trees in \mathcal{P} as immediate subtrees.

Proof-search is performed by applying backward the rules of **Gbu**. For instance, the recursive call $F([A, B, \Gamma' \stackrel{u}{\Rightarrow} H])$ at line 3 corresponds to the backward application of the rule $\wedge L$ to $\sigma = [A \wedge B, \Gamma' \stackrel{u}{\Rightarrow} H]$; according to the outcome, at lines 4–5 a **Gbu**-derivation or an **Rbu**-derivation of σ with root rule $\wedge L$ is built. We remark that the input sequent of F must be in normal form; to guarantee that the recursive invocations are sound, the rules $\vee R_k$ and $\rightarrow L$, generating b-sequents, can be backward applied to $[\Gamma \stackrel{u}{\Rightarrow} H]$ only if Γ has the form $\Gamma^{\rightarrow}, \Gamma^{\text{At}}$.

To save space, some instructions are written in a high-level compact form (see, e.g., line 8); the rules used in lines 1 and 32 are defined as follows:

$$\mathcal{R}_{\mathrm{ax}}([\Gamma \stackrel{l}{\Rightarrow} H]) = \begin{cases} \bot L & \text{if } \bot \in \Gamma \\ \mathrm{Id} & \text{otherwise} \end{cases} \quad \mathcal{R}_{\mathrm{s}}([\Gamma \stackrel{l}{\Rightarrow} H]) = \begin{cases} \forall R & \text{if } l = \mathrm{b} \\ \mathrm{S}_{u}^{\mathrm{At}} & \text{if } l = \mathrm{u} \text{ and } H \in \mathcal{V} \\ \mathrm{S}_{u}^{\vee} & \text{otherwise} \end{cases}$$

Precondition : σ is in normal form $(l = b \text{ implies } \Gamma = \Gamma^{\rightarrow}, \Gamma^{At})$ 1 if $\perp \in \Gamma$ or $H \in \Gamma$ then return B(Gbu, $\sigma, \emptyset, \mathcal{R}_{ax}(\sigma)) // \mathcal{R}_{ax}(\sigma)$ is $\perp L$ or Id 2 else if $\sigma = [A \land B, \Gamma' \stackrel{\mathbf{u}}{\Rightarrow} H]$ where $\Gamma' = \Gamma \setminus \{A \land B\}$ then $\pi' \leftarrow \mathbf{F}([A, B, \Gamma' \stackrel{\mathrm{u}}{\Rightarrow} H])$ 3 if π' is a Gbu-tree then return B(Gbu, σ , $\{\pi'\}$, $\wedge L$) 4 5 else return B(Rbu, σ , $\{\pi'\}$, $\wedge L$) 6 else if $\sigma = [A_0 \vee A_1, \Gamma' \xrightarrow{\mathbf{u}} H]$ where $\Gamma' = \Gamma \setminus \{A_0 \vee A_1\}$ then $\pi_0 \leftarrow \mathbf{F}([A_0, \Gamma' \stackrel{\mathrm{u}}{\Rightarrow} H]), \quad \pi_1 \leftarrow \mathbf{F}([A_1, \Gamma' \stackrel{\mathrm{u}}{\Rightarrow} H])$ 7 if $\exists k \in \{0,1\}$ s.t. π_k is an Rbu-tree then return B(Rbu, σ , $\{\pi_k\}$, $\forall L_k$) 8 else return B(Gbu, σ , { π_0, π_1 }, $\forall L$) 9 10 else if $\sigma = [\Gamma \xrightarrow{l} A \to B]$ then if $\Gamma \vdash_{\mathcal{E}} A$ then $\pi' \leftarrow \mathsf{F}([\Gamma \stackrel{l}{\Rightarrow} B]), k \leftarrow 1$ 11 else $\pi' \leftarrow F([A, \Gamma \xrightarrow{u} B]), k \leftarrow 2$ $\mathbf{12}$ if π' is a Gbu-tree then return B(Gbu, σ , $\{\pi'\}$, $\rightarrow R_k$) 13 else return B(Rbu, σ , $\{\pi'\}, \rightarrow R_k$) 14 else if $\sigma = [\Gamma \xrightarrow{l} H_0 \wedge H_1]$ then 15 $\pi_0 \leftarrow \mathrm{F}([\Gamma \xrightarrow{l} H_0]), \quad \pi_1 \leftarrow \mathrm{F}([\Gamma \xrightarrow{l} H_1])$ 16 17 if $\exists k \in \{0,1\}$ s.t. π_k is an Rbu-tree then return B(Rbu, σ , $\{\pi_k\}$, $\wedge R_k$) else return B(Gbu, σ , { π_0, π_1 }, $\land R$) 18 $// \text{ Here } \sigma = [\Gamma^{\rightarrow}, \Gamma^{\operatorname{At}} \stackrel{l}{\Rightarrow} H] \text{, where } H = \bot \text{ or } H \in \mathcal{V} \setminus \Gamma^{\operatorname{At}} \text{ or } H = H_0 \vee H_1$ 19 20 else if $(l = u \text{ and } \Gamma^{\rightarrow} \neq \emptyset)$ or $H = H_0 \vee H_1$ then Refs $\leftarrow \emptyset$ // set of **Rbu**-trees 21 if $H = H_0 \vee H_1$ then $\mathbf{22}$ $\pi_0 \leftarrow \mathsf{F}([\Gamma \xrightarrow{\mathrm{b}} H_0]), \quad \pi_1 \leftarrow \mathsf{F}([\Gamma \xrightarrow{\mathrm{b}} H_1])$ 23 if $\exists k \in \{0,1\}$ s.t. π_k is a Gbu-tree then return B(Gbu, σ , $\{\pi_k\}$, $\forall R_k$) $\mathbf{24}$ else Refs \leftarrow Refs \cup { π_0, π_1 } 25 if l = u then 26 for each $A \to B \in \Gamma^{\to}$ do 27 $\pi_A \leftarrow \mathsf{F}([\Gamma^{\rightarrow}, \Gamma^{\operatorname{At}} \stackrel{\mathrm{b}}{\Rightarrow} A]), \ \pi_B \leftarrow \mathsf{F}([B, \Gamma^{\rightarrow} \setminus \{A \rightarrow B\}, \Gamma^{\operatorname{At}} \stackrel{\mathrm{u}}{\Rightarrow} H])$ 28 if π_B is an **Rbu**-tree then return $B(\mathbf{Rbu}, \sigma, \{\pi_B\}, \to L)$ 29 else if π_A is a Gbu-tree then return B(Gbu, σ , $\{\pi_A, \pi_B\}, \to L$) 30 31 else Refs \leftarrow Refs \cup { π_A } return B(Rbu, σ , Refs, $\mathcal{R}_{s}(\sigma)$) // $\mathcal{R}_{s}(\sigma)$ is $\forall R$ or S_{u}^{At} or S_{u}^{\vee} 32 33 // Here ($H = \bot$ or $H \in \mathcal{V} \setminus \Gamma^{\operatorname{At}}$) and (l = b or $\Gamma^{\rightarrow} = \emptyset$) 34 else return $B(\mathbf{Rbu},\sigma,\emptyset,\mathrm{Irr})$

Fig. 6.
$$F(\sigma = [\Gamma \stackrel{l}{\Rightarrow} H])$$

By $\|\sigma\|$ we denote the maximal length of a **Gbu**-branch starting from σ (by Prop. 1, $\|\sigma\|$ is finite). Note that, whenever a recursive call $F(\sigma')$ occurs along the computation of $F(\sigma)$, it holds that $\|\sigma'\| < \|\sigma\|$.

In the next lemma we prove the correctness of F.

Lemma 4. Let σ be a sequent in normal form. Then, $F(\sigma)$ returns either a **Gbu**-derivation or an **Rbu**-derivation of σ .

Proof. By induction on $\|\sigma\|$. If $\|\sigma\| = 1$, $F(\sigma)$ does not execute any recursive invocation and the computation ends at line 1 or at line 34. In the former case, a **Gbu**-derivation of σ is returned. In the latter case, since σ is in normal form and none of the conditions at lines 1, 2, 6, 10 15, 20 holds, the sequent σ is irreducible and the tree built at line 34 is an **Rbu**-derivation of σ .

Let $\|\sigma\| > 1$. Whenever a recursive call $F(\sigma')$ occurs, we have that $\|\sigma'\| < \|\sigma\|$ and σ' is in normal form, hence the induction hypothesis applies to $F(\sigma')$. Using this, one can easily show that the arguments of function B are correctly instantiated. We only analyse some cases.

Let us assume that one of the return instructions at lines 8–9 is executed. By induction hypothesis, for every $k \in \{0, 1\}$, π_k is either a **Gbu**-proof or an **Rbu**-derivation of $\sigma_k = [A_k, \Gamma' \stackrel{\text{u}}{\Rightarrow} H]$. If, for some k, π_k is an **Rbu**-derivation of σ_k , then the **Rbu**-tree returned at line 8 is an **Rbu**-derivation of σ . Otherwise, both π_0 and π_1 are **Gbu**-derivations, hence the value returned at line 9 is a **Gbu**-derivation of σ .

Let us assume that $\mathbf{F}(\sigma)$ ends at line 32; in this case σ satisfies the conditions at lines 19 and 20. If $l = \mathbf{b}$, then $H = H_0 \vee H_1$. Since the condition at line 24 is false, we have $\mathsf{Refs} = \{\pi_0, \pi_1\}$ and, by induction hypothesis, both π_0 and π_1 are **Rbu**-derivations. Accordingly, the value returned at line 32 is an **Rbu**-derivation of σ with root rule $\mathcal{R}_{\mathbf{s}}(\sigma) = \vee R$. Let $l = \mathbf{u}$ and let us assume that $H = \bot$ or $H \in \mathcal{V} \setminus \Gamma$. In this case $\sigma = [\Gamma^{\rightarrow}, \Gamma^{\operatorname{At}} \stackrel{\mathrm{u}}{\Rightarrow} H]$ and the set **Refs** contains an **Rbu**-tree π_A of $\sigma_A = [\Gamma^{\rightarrow}, \Gamma^{\operatorname{At}} \stackrel{\mathrm{b}}{\Rightarrow} A]$ for every $A \to B \in \Gamma^{\rightarrow}$. By induction hypothesis, π_A is an **Rbu**-derivation of σ_A , hence line 32 returns an **Rbu**-derivation of σ with root rule $\mathcal{R}_{\mathbf{s}}(\sigma) = \mathbf{S}_u^{\operatorname{At}}$. The subcase $(l = \mathbf{u} \text{ and } H = H_0 \vee H_1)$ is similar. \Box

Finally, we get the completeness of Gbu:

Theorem 4. An u-sequent σ^{u} is provable in **Gbu** iff σ^{u} is not refutable.

Proof. The \Rightarrow -statement follows by the soundness of **Gbu**. Conversely, let σ^{u} be not refutable. Then, there is no **Rbu**-derivation π of σ^{u} ; otherwise, by Theorem 3, from π we could extract a countermodel for σ^{u} . Since σ^{u} is in normal form, by Lemma 4 the call $F(\sigma^{u})$ returns a **Gbu**-derivation of σ^{u} . \Box

6 Conclusions and future works

We have presented **Gbu**, a terminating sequent calculus for intuitionistic propositional logic. **Gbu** is a notational variant of **G3i**, where sequents are labelled to mark the right-focused phase. Note that focusing techniques reduce the search space limiting the use of contraction, but they do not guarantee termination of proof-search (see, e.g., the right-focused calculus LJQ [2]). To get this, one has to introduce extra machinery. An efficient solution is loop-checking implemented by history mechanisms [6,7]. Here we propose a different approach, based on an evaluation relation defined on sequents. Histories require space to store the right formulas already used so to direct and possibly stop the proof-search. Instead, we have to compute evaluation relations when right-implication is treated. We remark that, with an appropriate implementation of the involved data structures (see [4]), the evaluation relation $\vdash_{\tilde{\mathcal{E}}}$ defined in Section 2 can be computed in time linear in the size of the arguments. Hence, we get by means of computation what history mechanisms get using memory. Although a strict comparison is hard, to stress the difference between the two approaches we provide an example where **Gbu** outperforms history-based calculi. Let $\sigma = [\Gamma \xrightarrow{\to} \underline{n} \perp]$, where $\Gamma \xrightarrow{\to} = \{p_1 \rightarrow \bot, \ldots, p_n \rightarrow \bot\}$ and the p_i 's are distinct propositional variables. The only rule that can be used to derive σ is $\rightarrow L$. For every $p_i \rightarrow \bot$ chosen as main formula, the right-hand premise is provable in **Gbu**, while the left-hand premise $\sigma_i^{\rm b} = [\Gamma \xrightarrow{\to} \underline{b} p_i]$ is not. Thus, we have a backtrack point which forces the application of $\rightarrow L$ in all possible ways. Being $\sigma_i^{\rm b}$ blocked, the unprovability of $\sigma_i^{\rm b}$ is immediately certified. With the calculi in [7], the search process is similar, but to assert the unprovability of $[\Gamma \xrightarrow{\to} p_i]$ one has to chain up to n applications of $\rightarrow L$ and build an history set containing all the p_i 's.

Differently from the history mechanisms, **Gbu** only exploits the information in the left-hand side of a sequent. We are investigating the use of more expressive evaluation relations to better grasp the information conveyed by a sequent and further reduce the search space. Finally, we aim to extend the use of these techniques to other logics having a Kripke semantics.

References

- 1. A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.
- R. Dyckhoff and S. Lengrand. LJQ: A Strongly Focused Calculus for Intuitionistic Logic. In A. Beckmann et al., editor, *CiE*, volume 3988 of *LNCS*, pages 173–185. Springer, 2006.
- M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent calculi for intuitionistic propositional logic with the subformula property and minimal depth counter-models. *Journal of Automated Reasoning*, 2012. doi:10.1007/s10817-012-9252-7.
- M. Ferrari, C. Fiorentini, and G. Fiorino. Simplification rules for intuitionistic propositional tableaux. ACM Transactions on Computational Logic (TOCL), 13(2):14:1–14:23, 2012.
- 5. D.M. Gabbay and N. Olivetti. Goal-Directed Proof Theory. Springer, 2000.
- A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward proof search in some non-classical propositional logics. In P. Miglioli et al., editor, *TABLEAUX 96*, volume 1071 of *LNCS*, pages 210–225. Springer, 1996.
- J. M. Howe. Two loop detection mechanisms: A comparision. In D. Galmiche, editor, *TABLEAUX 97*, volume 1227 of *LNCS*, pages 188–200. Springer, 1997.
- F. Massacci. Simplification: A general constraint propagation technique for propositional and modal tableaux. In H.C.M. de Swart, editor, *TABLEAUX 98*, volume 1397 of *LNCS*, pages 217–231. Springer, 1998.
- L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionistic propositional logic. In M. Behara et al., editor, *Symposia Gaussiana*, *Conference A*, pages 225–232. Walter de Gruyter, Berlin, 1995.
- A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1996.