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Abstract. We present Gbu, a terminating variant of the sequent calcu-
lus G3i for intuitionistic propositional logic. Gbu modifies G3i by anno-
tating the sequents so to distinguish rule applications into two phases: an
unblocked phase where any rule can be backward applied, and a blocked
phase where only right rules can be used. Derivations of Gbu have a triv-
ial translation into G3i. Rules for right implication exploit an evaluation
relation, defined on sequents; this is the key tool to avoid the generation
of branches of infinite length in proof-search. To prove the completeness
of Gbu, we introduce a refutation calculus Rbu for unprovability dual
to Gbu. We provide a proof-search procedure that, given a sequent as
input, returns either a Rbu-derivation or a Gbu-derivation of it.

1 Introduction

It is well-known that G3i [10], the sequent calculus for intuitionistic proposi-
tional logic with weakening and contraction “absorbed” in the rules, is not suited
for proof-search. Indeed, the näıve proof-search strategy, consisting in applying
the rules of the calculus bottom-up until possible, is not terminating. This is
because the rule for left implication retains the main formula A → B in the
left-hand side premise, hence such a formula might be selected for application
more and more times. A possible solution to this problem is to support the proof-
search procedure with a loop-checking mechanism [5–7]: whenever the “same”
sequent occurs twice along a branch of the proof under construction, the search
is cut. An efficient implementation of loop-checking exploits histories [6, 7]. In
the construction of a branch, the formulas decomposed by right rules are stored
in the history; loops are avoided by preventing the application of some right
rules to formulas in the history.

In this paper we propose a different and original approach: we show that
terminating proof-search for G3i can be accomplished only exploiting the infor-
mation contained in the sequent to be proved by means of a suitable evaluation
relation. Our proof-search strategy alternates two phases: an unblocked phase
(u-phase), where all the rules of G3i can be backward applied, and a blocked
phase (b-phase), where only right-rules can be used. To improve the presenta-
tion, we embed the strategy inside the calculus by annotating sequents with
the label u (unblocked) or b (blocked); we call Gbu the resulting calculus (see
Fig. 1). A Gbu-derivation can be straightforwardly mapped to a G3i-derivation



by erasing the labels and, possibly, by padding the left contexts; from this, the
soundness of Gbu immediately follows. Unblocked sequents, characterizing an
u-phase, behave as the ordinary sequents of G3i: any rule of Gbu can be (back-
ward) applied to them. Instead, b-sequents resemble focused-right sequents (see,
e.g., [2]): they only allow backward right-rule applications (thus, the left context
is “blocked”). Proof-search starts from an u-sequent (u-phase); the transition
to a b-phase is determined by the application of one of the rules for left impli-
cation or right disjunction. For instance, let [A → B,Γ u⇒H] be the u-sequent
to be proved and suppose we apply the rule → L with main formula A → B.

The next goals are the b-sequent [A → B,Γ b⇒A] and the u-sequent [B,Γ u⇒H],
corresponding to the two premises of → L. While the latter goal continues the
u-phase, the former one starts a new b-phase, which focuses on A. Similarly, if
we apply the rule ∨Rk (with k ∈ {0, 1}) to [Γ u⇒H0 ∨H1], the phase changes to

b and the next goal is [Γ b⇒Hk], the only premise of ∨Rk.
Rules for right implication have two possible outcomes determined by the

evaluation relation. Indeed, let [Γ l⇒A → B] be the current goal (l ∈ {u,b}) and
let A → B be the selected main formula: if A is evaluated in Γ , then we continue

the search with [Γ l⇒B] and the phase does not change (see rule → R1); note
that the formula A is dropped out. If A is not evaluated in Γ the next goal is
[A,Γ u⇒B]. Moreover, if l = b, we switch from a b-phase to an u-phase and this
is the only case where a b-sequent is “unblocked”. The crucial point is that, due
to the side conditions on the application of rules → R1 and → R2 (which rely on
the evaluation relation), every branch of aGbu-tree has finite length (Section 3);
this implies that our proof-search strategy always terminates. We point out that
we do not bound ourselves to a specific evaluation relation, but we admit any
evaluation relation satisfying properties (E1)–(E6) defined in Section 2.

The proof of completeness ([Γ ⇒ H] provable in G3i implies [Γ u⇒H] prov-
able in Gbu) involves non-trivial aspects. Following [3, 9], we introduce a refuta-
tion calculus Rbu for asserting intuitionistic unprovability (Section 4). From an
Rbu-derivation of an u-sequent σu = [Γ u⇒H] we can extract a Kripke counter-
model for σu, namely a Kripke model such that, at its root, all formulas in Γ are
forced and H is not forced; from this, it follows that σu is not intuitionistically
valid. In Section 5 we introduce the function F which implements the proof-
search strategy outlined above; if the search for a Gbu-derivation of σu fails, an
Rbu-derivation of σu is built. To sum up, F(σu) returns either aGbu-derivation
or an Rbu-derivation of σu; in the former case we get a G3i-derivation of the
sequent σ = [Γ ⇒ H], in the latter case we can build a countermodel for σ.

2 Preliminaries and evaluations

We consider the propositional language L based on a denumerable set of propo-
sitional variables V, the connectives ∧, ∨, → and the logical constant ⊥. We
denote with V(A) the set of propositional variables occurring in A, with |A| the
size of A, that is the number of symbols occurring in A, and with Sf(A) the set
of subformulas of A (including A itself).



A (finite) Kripke model for L is a structure K = ⟨P,≤, ρ, V ⟩, where ⟨P,≤, ρ⟩
is a finite partially ordered set with minimum ρ and V : P → 2V is a function
such that α ≤ β implies V (α) ⊆ V (β). The forcing relation ⊩⊆ P ×L is defined
as follows:

– K, α ⊮ ⊥ and, for every p ∈ V , K, α ⊩ p iff p ∈ V (α);
– K, α ⊩ A ∧B iff K, α ⊩ A and K, α ⊩ B;
– K, α ⊩ A ∨B iff K, α ⊩ A or K, α ⊩ B;
– K, α ⊩ A → B iff, for every β ∈ P such that α ≤ β, K, β ⊮ A or K, β ⊩ B.

Given a set Γ of formulas, K, α ⊩ Γ iff K, α ⊩ A for every A ∈ Γ . Monotonicity
property holds for arbitrary formulas, i.e.: K, α ⊩ A and α ≤ β imply K, β ⊩ A.
A formula A is valid in K iff K, ρ ⊩ A. Intuitionistic propositional logic coincides
with the set of the formulas valid in all (finite) Kripke models [1].

As motivated in the Introduction, we use (labelled) sequents of the form

σ = [Γ l⇒H] where l ∈ {b, u}, Γ is a finite set of formulas and H is a formula. We

adopt the usual notational conventions; e.g., [A,Γ l⇒H] stands for [{A}∪Γ l⇒H].
The size of σ is |σ| =

∑
A∈Γ |A| + |H|; the set of subformulas of σ is Sf(σ) =∪

A∈Γ∪{H} Sf(A).
The semantics of formulas extends to sequents as follows. Given a Kripke

model K and a world α of K, α refutes σ = [Γ l⇒H] in K, written K, α ▷ σ, iff
K, α ⊩ Γ and K, α ⊮ H; σ is refutable if there exists a Kripke model K with root
ρ such that K, ρ ▷ σ; in this case K is a countermodel for σ. It is easy to check
that σ is refutable iff the formula ∧Γ → H is not intuitionistically valid iff, by
soundness and completeness of G3i [10], [Γ ⇒ H] is not provable in G3i.

Evaluations An evaluation relation ⊢E is a relation between a set Γ of formulas
and a formula A satisfying the following properties:

(E1) Γ ⊢E A iff Γ ∩ Sf(A) ⊢E A.
(E2) A,Γ ⊢E A.
(E3) Γ ⊢E A and Γ ⊢E B implies Γ ⊢E A ∧B.
(E4) Γ ⊢E Ak, with k ∈ {0, 1}, implies Γ ⊢E A0 ∨A1.
(E5) Γ ⊢E B implies Γ ⊢E A → B.
(E6) Let K = ⟨P,≤, ρ, V ⟩ and α ∈ P ; if K, α ⊩ Γ and Γ ⊢E A, then K, α ⊩ A.

Conditions (E1)–(E5) concern syntactical properties; note that, by (E1), the eval-
uation of A w.r.t. Γ only depends on the subformulas in Γ which are subformulas
of A. Intuitively, the role of an evaluation relation is to check if the “information
contained” in A is semantically implied by Γ (see (E6)). In the sequel, we also

write [Γ l⇒H] ⊢E A to mean Γ ⊢E A.
In the examples we use the evaluation relation ⊢Ẽ defined below. Let L⊤ be

the language extending L with the constant ⊤ (K, α ⊩ ⊤, for every K and every
α in K). To define ⊢Ẽ , we introduce the function R which simplifies a formula
A ∈ L⊤ w.r.t. a set Γ of formulas of L (see [4]):



R(A,Γ ) =


⊤ A ∈ Γ

A if A ̸∈ Γ and A ∈ V ∪ {⊥,⊤}
B (R(A0, Γ ) · R(A1, Γ )) if A ̸∈ Γ and A = A0 ·A1 with · ∈ {∧,∨,→}

B(A) performs the boolean simplification of A [4, 8], consisting in applying the
following reductions inside A:

K ∧ ⊤⇝ K K ∧ ⊥⇝ ⊥ K ∨ ⊤⇝ ⊤ K ∨ ⊥⇝ K K → ⊤⇝ ⊤ K → K ⇝ ⊤
⊤ ∧K ⇝ K ⊥ ∧K ⇝ ⊥ ⊤ ∨K ⇝ ⊤ ⊥ ∨K ⇝ K ⊤ → K ⇝ K ⊥ → K ⇝ ⊤

We set Γ ⊢Ẽ A iff R(A,Γ ) = ⊤.

Theorem 1. ⊢Ẽ is an evaluation relation.

Proof. We have to prove that ⊢Ẽ satisfies properties (E1)–(E6) of Section 2.

– (E1) It is easy to prove, by induction on the structure of A, that R(A,Γ ) =
R(A,Γ ∩ Sf(A)), thus Γ ⊢Ẽ A iff Γ ∩ Sf(A) ⊢Ẽ A.

– (E2) It immediately follows by the definition of ⊢Ẽ and R.
– (E3) Let Γ ⊢Ẽ A and Γ ⊢Ẽ B. By definition of ⊢Ẽ , R(A,Γ ) = R(B,Γ ) = ⊤.

To prove Γ ⊢Ẽ A∧B, we must show that R(A∧B,Γ ) = ⊤. If A∧B ∈ Γ , this
immediately follows. Otherwise: R(A ∧ B,Γ ) = B(R(A,Γ ) ∧ R(B,Γ )) =
B(⊤ ∧⊤) = ⊤. The proof of properties (E4) and (E5) is similar.

– (E6) Let K = ⟨P,≤, ρ, V ⟩ and α ∈ P such that K, α ⊩ Γ . It is easy to prove, by
induction on A, that K, α ⊩ A ↔ R(A,Γ ). Now, if Γ ⊢Ẽ A then R(A,Γ ) = ⊤;
hence by the above property K, α ⊩ A ↔ ⊤ and this implies K, α ⊩ A. ⊓⊔

3 The sequent calculus Gbu

We present the G3-style [10] calculus Gbu for intuitionistic propositional logic.
The calculus consists of the axiom rules (rules with zero premises) ⊥L and Id,
and the left and right introduction rules in Fig. 1. The main formula of a rule is
the one put in evidence in the conclusion of the rule. In the conclusion of a rule,
when we write C, Γ we assume that C ̸∈ Γ ; e.g., in the rule ∧L it is assumed
that A ∧ B ̸∈ Γ , hence the formula A ∧ B is not retained in the premise. The
choice between →R1 and →R2 depends on the relation ⊢E . In the application
of →L to σ = [A → B,Γ u⇒H], contraction of A → B is explicitly introduced in
the leftmost premise σA; as a consequence we might have |σA| ≥ |σ|. In all the
other cases, passing from the conclusion to a premise of a rule, the size of the
sequents strictly decreases. The rule →R2 is the only rule that, when applied
backward, can turn a b-sequent into an u-sequent.

AGbu-tree π is a tree of sequents such that: if σ is a node of π with σ1, . . . , σn

as children, then there exists a rule of Gbu having premises σ1, . . . , σn and
conclusion σ. The root rule of π is the one having as conclusion the root sequent



[⊥, Γ l⇒H]
⊥L

[H,Γ l⇒H]
Id

[A,B, Γ u⇒H]

[A ∧B,Γ u⇒H]
∧L

[Γ l⇒A] [Γ l⇒B]

[Γ l⇒A ∧B]
∧R

[A,Γ u⇒H] [B,Γ u⇒H]

[A ∨B,Γ u⇒H]
∨L

[Γ b⇒Hk]

[Γ l⇒H0 ∨H1]
∨Rk

k ∈ {0, 1}

[A → B,Γ b⇒A] [B,Γ u⇒H]

[A → B,Γ u⇒H]
→L

[Γ l⇒B]

[Γ l⇒A → B]
→R1

if Γ ⊢E A

[A,Γ u⇒B]

[Γ l⇒A → B]
→R2

if Γ ̸⊢E A

Fig. 1. The calculus Gbu.

of π. A Gbu-derivation of σ is a Gbu-tree π with root σ and having conclusions
of an axiom rule as leaves. A sequent σ is provable in Gbu iff there exists a Gbu-
derivation of σ; H is provable in Gbu iff [ u⇒H] is provable in Gbu. Note that
Gbu has the subformula property : given a Gbu-tree π with root σ, for every
sequent σ′ occurring in π it holds that Sf(σ′) ⊆ Sf(σ).

A Gbu-derivation π can be translated into a G3i-derivation π̃ applying the
following steps: erase the labels from the sequents in π; when rule → R1 is
applied, add the formula A to the left context; rename all occurrences of →R1

and →R2 to →R. From this translation and the soundness of G3i [10] we get
the soundness of Gbu. Semantically, this means that, if σ is provable in Gbu,
then σ is not refutable.

Here we provide an example of a Gbu-derivation, then we prove that Gbu
is terminating. The completeness of Gbu (Theorem 4) is proved in Section 5 as
a consequence of the correctness of the proof-search procedure.

Example 1. Let W = ((((p → q) → p) → p) → q) → q be an instance of the
Weak Pierce Law [1]. In Fig. 2 we give a Gbu-derivation1 π1 of σ1 = [ u⇒W ],
using the evaluation ⊢Ẽ of Section 2. Sequents are indexed by integers; by πi

we denote the subderivation of π1 with root σi. When ambiguities can arise,
we underline the main formula of a rule application. Building the derivation
bottom-up, the only choice points are in the (backward) application of rule →L
to σ4 and σ7, since we can select both A and B as main formula. If at sequent
σ6 we choose B instead of A, we
get the Gbu-tree with root σ6

sketched on the right. We have
σ7′ ⊢Ẽ p (indeed, p occurs on the
left in σ7′), hence the rule →R1

must be applied to σ7′ , which

[p,B,Ab⇒ q]8′

[p,B,Ab⇒ p→ q]7′
→ R1

.

..

.
[p,Au⇒ q]9′

[p, (p→ q)→ p︸ ︷︷ ︸
B

, Au⇒ q]6
→ L

1 The derivations and their LATEX rendering are generated with g3ibu, an implemen-
tation of Gbu and Rbu available at http://www.dista.uninsubria.it/~ferram/.



W = A→ q A = (B → p)→ q B = (p→ q)→ p

[p,B,Ab⇒ p]8
Id

[p,B,Ab⇒B → p]7
→ R1

[q, p, Bu⇒ q]9
Id

[p,B,Au⇒ q]6
→ L

[B,Ab⇒ p→ q]5
→ R2

[p,Au⇒ p]10
Id

[B,Au⇒ p]4
→ L

[Ab⇒ ((p→ q)→ p)︸ ︷︷ ︸
B

→ p]3
→ R2

[qu⇒ q]11
Id

[Au⇒ q]2
→ L

[ u⇒ ((((p→ q)→ p)→ p)→ q)︸ ︷︷ ︸
A

→ q]1
→ R2

Fig. 2. Gbu-derivation of Weak Pierce Law

yields the b-sequent σ8′ . Since σ8′ is blocked, we cannot decompose again left
implications; thus the proof-search fails without entering an infinite loop. ♢

Termination of Gbu We show that every Gbu-tree has finite depth. A Gbu-
branch is a sequence of sequents B = (σ1, σ2, . . . ) such that, for every i ≥ 1, there
exists a rule R of Gbu having σi as conclusion and σi+1 among its premises.
The length of B is the number of sequents in it. Let γ = (σi, σi+1) be a pair
of successive sequents in B with labels li and li+1 respectively; γ is a bu-pair if
li = b and li+1 = u; γ is an ub-pair if li = u and li+1 = b. By BU(B) and UB(B)
we denote the number of bu-pairs and ub-pairs occurring in B respectively. Note
that the only rule generating bu-pairs is → R2. Moreover, |σi+1| ≥ |σi| can
happen only if (σi, σi+1) is an ub-pair generated by → L: σi+1 is the leftmost
premise of an application of → L with conclusion σi. As a consequence, every
subbranch of B not containing ub-pairs is finite. Hence, if we show that UB(B)
is finite, we get that B has finite length.

We prove a kind of persistence of ⊢E , namely: if A occurs in the left-hand
side of a sequent σ occurring in B, then σ′ ⊢E A for every σ′ following σ in B.

Lemma 1. Let B = (σ1, σ2, . . . ) be a Gbu-branch where, for every i ≥ 1, σi =

[Γi
li⇒Hi]. Let n ≥ 1 and A ∈

∪
1≤i≤n Γi. Then, Γn ⊢E A.

Proof. By induction on |A|. If A ∈ Γn, by (E2) we immediately get Γn ⊢E A. If
A ̸∈ Γn, there exists i : 1 ≤ i < n such that A ∈ Γi and A ̸∈ Γi+1. This implies
A = B · C with · ∈ {∧,∨,→}. Let · = ∧; then σi+1 is obtained from σi by an
application of ∧L with main formula B ∧ C, hence B ∈ Γi+1 and C ∈ Γi+1. By
induction hypothesis, Γn ⊢E B and Γn ⊢E C; by (E3), Γn ⊢E B ∧ C. The cases
· ∈ {∨,→} are similar and require properties (E4) and (E5). ⊓⊔

Now, we provide a bound on BU(B).



[Γ→, ΓAt l⇒H]
Irr

if [Γ→, ΓAt l⇒H] is irreducible

{
H = ⊥ or H ∈ V \ ΓAt

l = b or Γ→ = ∅

[A,B, Γ u⇒H]

[A ∧B,Γ u⇒H]
∧L

[Γ l⇒Hk]

[Γ l⇒H0 ∧H1]
∧Rk

k ∈ {0, 1}

[Ak, Γ
u⇒H]

[A0 ∨A1, Γ
u⇒H]

∨Lk

k ∈ {0, 1}

[Γ b⇒H0] [Γ b⇒H1]

[Γ b⇒H0 ∨H1]
∨R

[B,Γ u⇒H]

[A → B,Γ u⇒H]
→L

[Γ l⇒B]

[Γ l⇒A → B]
→R1

if Γ ⊢E A

[A,Γ u⇒B]

[Γ l⇒A → B]
→R2

if Γ ̸⊢E A

{ [Γ→, ΓAt b⇒A] }A→B∈Γ→

[Γ→, ΓAt u⇒H]
SAt
u

where Γ→ ̸= ∅ and (H = ⊥ or H ∈ V \ ΓAt)

{ [Γ→, ΓAt b⇒A] }A→B∈Γ→ [Γ→, ΓAt b⇒H0] [Γ→, ΓAt b⇒H1]

[Γ→, ΓAt u⇒H0 ∨H1]
S∨
u

Fig. 3. The refutation calculus Rbu.

Lemma 2. Let B = (σ1, σ2, . . . ) be a Gbu-branch. Then, BU(B) ≤ |σ1|.

Proof. Let (σb
i , σ

u
i+1) be a bu-pair in B. Since bu-pairs are generated by applica-

tions of →R2, we have: σb
i = [Γ b⇒A → B], σu

i+1 = [A,Γ u⇒B] and Γ ̸⊢E A. By
Lemma 1, for every j ≥ i+1 it holds that Γj ⊢E A. Thus, any bu-pair following
(σb

i , σ
u
i+1) must treat an implication C → D with C ̸= A. Since Gbu has the

subformula property, the main formulas of →R2 applications belong to Sf(σ1).
Thus, BU(B) is bounded by the number #Sf(σ1) of subformulas of σ1. Since
#Sf(σ1) ≤ |σ1|, we get BU(B) ≤ |σ1|. ⊓⊔

Since between two ub-pairs of B a bu-pair must occur, UB(B) ≤ BU(B) + 1; by
Lemma 2, UB(B) is finite. We can conclude:

Proposition 1. Every Gbu-branch has finite length. ⊓⊔

As a consequence, every Gbu-tree has finite depth and Gbu is terminating.

4 The refutation calculus Rbu

In this section, following the ideas of [3, 9], we introduce the refutation calculus
Rbu for deriving intuitionistic unprovability. Intuitively, an Rbu-derivation π
of a sequent σu is a sort of “constructive proof” of refutability of σu in the sense
that from π we can extract a countermodel Mod(π) for σu.

We denote with ΓAt a finite set of propositional variables and with Γ→ a

finite set of implicative formulas. A sequent σ is irreducible iff σ = [Γ→, ΓAt l⇒H]



with H ∈ {⊥} ∪ (V \ ΓAt) and (l = b or Γ→ = ∅). The rules of Rbu are given
in Fig. 3. As in Gbu, writing C, Γ in the conclusion of a rule, we assume that
C ̸∈ Γ . The notions of Rbu-tree, Rbu-derivation and Rbu-branch are defined
analogously to those for Gbu.

The rule SAt
u has a premise [Γ→, ΓAt b⇒A] for every A such that A → B ∈

Γ→; since Γ→ ̸= ∅, there exists at least one premise. The rule S∨u is similar and
has at least two premises. All the premises of SAt

u and S∨u are b-sequents.
It is easy to check that an Rbu-branch is also a Gbu-branch2. Accordingly,

Proposition 1 implies that the calculus Rbu is terminating. In the following we
prove that Rbu is sound in the following sense:

Theorem 2 (Soundness of Rbu). If an u-sequent σu is provable in Rbu,
then σu is refutable. ⊓⊔

Example 2. Let S = ((¬¬p → p) → (¬p ∨ p)) → (¬¬p ∨ ¬p) be an instance of the
Scott principle [1], where ¬Z = Z → ⊥. We show the Rbu-derivation π1 of [ u⇒S].

S = A → (¬¬p ∨ ¬p) A = (¬¬p → p) → (¬p ∨ p)

[p,¬¬pb⇒⊥]10

Irr

[p,¬¬pb⇒¬p]9

→ R1

[p,¬¬pu⇒⊥]8
SAt
u

[¬p ∨ p, p,¬¬pu⇒⊥]7
∨L1

[p,¬¬p,Au⇒⊥]6
→ L

[¬¬p,Ab⇒¬p]5

→ R2

[¬¬p,Ab⇒ p]12

Irr

[¬¬p,Ab⇒¬¬p → p]11

→ R1

[¬¬p,Au⇒ p]4
SAt
u

[Ab⇒¬¬p → p]3

→ R2

[¬pb⇒ p]17

Irr

[¬pu⇒⊥]16
SAt
u

[¬p ∨ p,¬pu⇒⊥]15
∨L0

[¬p,Au⇒⊥]14
→ L

[Ab⇒¬¬p]13

→ R2

[pu⇒⊥]21
Irr

[¬p ∨ p, pu⇒⊥]20
∨L1

[p,Au⇒⊥]19
→ L

[Ab⇒¬p]18

→ R2

[Au⇒¬¬p ∨ ¬p]2
S∨
u

[ u⇒ ((¬¬p → p) → (¬p ∨ p))︸ ︷︷ ︸
A

→ (¬¬p ∨ ¬p)]1
→R2

♢

Soundness of Rbu Let π be anRbu-derivation with root σb = [Γ→, ΓAt b⇒H].
By Π(π, σb) we denote the maximal subtree of π having root σb and only con-
taining b-sequents (that is, any subtree of π with root σb extending Π(π, σb)
contains at least one u-sequent). Since only the rules ∧Rk, ∨R and →R1 can

be applied in Π(π, σb), every leaf σ′ of Π(π, σb) has the form [Γ→, ΓAt b⇒H ′],
where H ′ ∈ Sf(H); moreover, σ′ is either an irreducible sequent (hence a leaf
of π) or the conclusion of an application of →R2 (the only rule of Rbu which,
read bottom-up, “unblocks” a b-sequent). Thus, π can be displayed as in Fig. 4.
The sequents σu

1 , . . . , σ
u
n (n ≥ 0) are called the u-successors of σb in π, while the

sequents τb1 , . . . , τ
b
m (m ≥ 0) are the i-successors (irreducible successors) of σb

in π. Let d(π) be the depth of π; if d(π) = 0, then σb coincides with τb1 , hence
σb has no u-successors and has itself as only i-successor.

2 The converse in general does not hold since the rule ∨R of Rbu requires a b-sequent
as conclusion.



. . .

..

.. πi

σu
i = [Γ→, ΓAt, Ai

u⇒Bi]

σb
i = [Γ→, ΓAt b⇒Ai → Bi]

→R2
. . . τbj = [Γ→, ΓAt b⇒Hj ]

Irr
. . .

..

.. Π(π, σb)

σb = [Γ→, ΓAt b⇒H]

where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, n ≥ 0, m ≥ 0, n+m ≥ 1 and:

– the Rbu-tree Π(π, σb) only contains b-sequents;
– πi is an Rbu-derivation of σu

i .

Fig. 4. Structure of an Rbu-derivation π of σb = [Γ→, ΓAt b⇒ H].

Now, let us consider an Rbu-derivation π of an u-sequent σu having root rule
R = SAt

u or R = S∨u . Every premise σ′ of R is a b-sequent and the subderivation
of π with root σ′ has the structure shown in Fig. 4. The set of the u-successors
of σu in π is the union of the sets of u-successors in π of the premises of R; the
set of the i-successors of σu in π is defined analogously. To display a proof π of
this kind we use the concise notation of Fig. 5.

Example 3. Let us consider the Rbu-derivation π1 in Ex. 2. The u-successors
and i-successors are defined as follows:

u-sequent u-successors i-successors

σ2 σ4 , σ14 , σ19

σ4 σ6 σ12

σ8 σ10

σ16 σ17 ♢

Now we describe how to extract from an Rbu-derivation of an u-sequent σu a
Kripke countermodel Mod(π) for σu. Mod(π) is defined by induction on d(π).
By K1(ρ, ΓAt) we denote the Kripke model K = ⟨{ρ}, {(ρ, ρ)}, ρ, V ⟩ consisting
of only one world ρ such that V (ρ) = ΓAt. Let R be the root rule of π.

(K1) If R = Irr, then d(π) = 0 and σu = [ΓAt u⇒H] (being σu irreducible,
Γ→ = ∅). We set Mod(π) = K1(ρ, ΓAt), with ρ any element.

(K2) Let R be different from Irr, SAt
u , S∨u and let π′ be the only immediate

subderivation of π. Then, Mod(π) = Mod(π′).
(K3) Let R be SAt

u or S∨u and let π be displayed as in Fig. 5.
If n = 0, then K is the model K1(ρ, ΓAt), with ρ any element.
Let n > 0 and, for every i ∈ {1, . . . , n}, let Mod(πi) = ⟨Pi,≤i, ρi, Vi⟩.
Without loss of generality, we can assume that the Pi’s are pairwise dis-
joint. Let ρ be an element not in

∪
i∈{1,...,n} Pi and let K = ⟨P,≤, ρ, V ⟩ be

the model such that:

– P = {ρ} ∪
∪

i∈{1,...,n} Pi;



π =

.... π1

σu
1 . . .

.... πn

σu
n τb

1 . . . τb
m

σu = [Γ→, ΓAt u⇒H]
R

– R ∈ {SAt
u , S∨

u}, n ≥ 0, m ≥ 0, n + m ≥ 1.
– σu

1 , . . . , σ
u
n are all the u-successors of σu in π.

– πi is an Rbu-derivation of σu
i (1 ≤ i ≤ n).

– τb
1 , . . . , τb

m are all the i-successors of σu in π.

..
ρ

.

Mod(π1)

.

ρ1

.

....

.

Mod(πn)

.

ρn

Fig. 5. An Rbu-derivation π with root rule SAt
u or S∨

u and the model Mod(π).

– ≤ = { (ρ, α) | α ∈ P } ∪
∪

i∈{1,...,n} ≤i;

– V (ρ) = ΓAt and, for every i ∈ {1, . . . , n} and α ∈ Pi, V (α) = Vi(α).
Then Mod(π) = K. The model Mod(π) is represented in Fig. 5.

Example 4. We show the Kripke model Mod(π1) extracted from theRbu-derivation

π1 of Ex. 2. The model is displayed as a tree
with the convention that w < w′ if the world
w is drawn below w′. For each wi, we list the
propositional variables in V (wi). We induc-
tively define the models Mod(πi) for every

..w2:.

w4:

.

w8: p

.

w16:

.

w21: p

i such that σi = [Γi
u⇒Hi] is an u-sequent. At each step one can check that

Mod(πi), ρi ▷ σi, where ρi is the root of Mod(πi). Hence, Mod(π1), w2 ⊮ S
(Mod(π1) is a countermodel for S).

– By Point (K3), since σ8 has no u-successors (see Ex. 3), Mod(π8) = K1(w8, {p}).
Similarly, Mod(π16) = K1(w16, ∅).

– Since σ21 is irreducible, by Point (K1) Mod(π21) = K1(w21, {p}).
– By Point (K2), Mod(π6) = Mod(π7) = Mod(π8). Similarly,

Mod(π14) = Mod(π15) = Mod(π16) and Mod(π19) = Mod(π20) = Mod(π21).
– By Point (K3), Mod(π4) is obtained by extending with w4 the model Mod(π6)

(indeed, σ6 is the only u-successor of σ4) and V (w4) = Γ4 ∩ V = ∅. Similarly,
Mod(π2) is obtained by gluing on w2 the models generated by the u-successors
σ4, σ14 and σ19 of σ2 and V (w2) = Γ2 ∩ V = ∅.

– Finally, Mod(π1) = Mod(π2) by Point (K2). ♢

We prove the soundness of Rbu. Given an Rbu-tree π with root [Γ→, ΓAt b⇒H]

and only containing b-sequents, every leaf of π has the form [Γ→, ΓAt b⇒H ′].

Lemma 3. Let π be an Rbu-tree with root σb = [Γ→, ΓAt b⇒H] and only con-

taining b-sequents, let σb
1 = [Γ→, ΓAt b⇒H1],. . . , σ

b
n = [Γ→, ΓAt b⇒Hn] be the

leaves of π. Let K = ⟨P,≤, ρ, V ⟩ be a Kripke model and α ∈ P such that:

(H1) K, α ⊮ Hi, for every i ∈ {1, . . . , n};
(H2) K, α ⊩ Z, for every Z ∈ Γ→ ∩ Sf(H);



(H3) V (α) = ΓAt.

Then, K, α ⊮ H.

Proof. By induction on d(π). If d(π) = 0, then σb = σb
1 and the assertion

immediately follows by (H1). Let us assume that d(π) > 0 and let R be the root
rule of π. Since both the conclusion and the premises of R are b-sequents, R is
one of the rules ∧Rk, ∨R and → R1. The proof proceeds by cases on R. The
cases R ∈ {∧Rk,∨R} immediately follow by the induction hypothesis.

If R is → R1, then σb = [Γ→, ΓAt b⇒A → B], the premise of R is σ′ =

[Γ→, ΓAt b⇒B] and, by the side condition, Γ→, ΓAt ⊢E A. By induction hypoth-
esis on the subderivation of π having root σ′, we get K, α ⊮ B. We show that
K, α ⊩ A. Let ΓA = (Γ→∩Sf(A))∪ΓAt. Since ΓA∩Sf(A) = (Γ→∪ΓAt)∩Sf(A)
and Γ→, ΓAt ⊢E A, by (E1) we get ΓA ⊢E A. By the hypothesis (H2) and (H3)
of the lemma, it holds that K, α ⊩ ΓA; by (E6), we deduce K, α ⊩ A. Thus
K, α ⊩ A and K, α ⊮ B, which implies K, α ⊮ A → B. ⊓⊔

Now, we show that the model Mod(π) is a countermodel for σu.

Theorem 3. Let π be an Rbu-derivation of an u-sequent σu and let ρ be the
root of Mod(π). Then Mod(π), ρ ▷ σu.

Proof. By induction on d(π). If d(π) = 0, then Mod(π) is defined as in (K1) and
the assertion immediately follows.

Let d(π) > 0 and let R be the root rule of π. If R ̸∈ {SAt
u , S∨u}, the assertion

immediately follows by induction hypothesis (the case R =→R1 requires (E6)).
Let R = S∨u (the case R = SAt

u is similar). Let σu = [Γ→, ΓAt u⇒H0∨H1] and
let K = ⟨P,≤, ρ, V ⟩ be the model Mod(π). By a secondary induction hypothesis
on the structure of formulas, we prove that:

(B1) K, ρ ⊮ A, for every A → B ∈ Γ→;
(B2) K, ρ ⊩ A → B, for every A → B ∈ Γ→;
(B3) K, ρ ⊮ H0 and K, ρ ⊮ H1.

To prove Point (B1), let A → B ∈ Γ→. By definition of S∨u , π has an immediate

subderivation πA of σb
A = [Γ→, ΓAt b⇒A] of the form (see Fig. 4):

. . .

.

.

.

.
πi

σu
i = [Γ→, ΓAt, Ai

u⇒Bi]

σb
i = [Γ→, ΓAt b⇒Ai → Bi]

→R2

. . . τb
j = [Γ→, ΓAt b⇒Hj ]

Irr
. . .

.

.

.

.
Π(πA, σb

A)

σb
A = [Γ→, ΓAt b⇒A]

We show that Π(πA, σ
b
A) meets the hypothesis (H1)–(H3) of Lemma 3 w.r.t. the

root ρ of K, so that we can apply the lemma to infer K, ρ ⊮ A. We prove (H1).
Let us assume n ≥ 1 and let i ∈ {1, . . . , n}; we must show that K, ρ ⊮ Ai → Bi.



Since σu
i is an u-successor of σu, the root ρi of Mod(πi) is an immediate successor

of ρ in K. By the main induction hypothesis Mod(πi), ρi ▷ σ
u
i ; this implies that

Mod(πi), ρi ⊩ Ai and Mod(πi), ρi ⊮ Bi. Since Mod(πi) is a submodel of K, we
get K, ρi ⊩ Ai and K, ρi ⊮ Bi, which implies K, ρ ⊮ Ai → Bi. Let m ≥ 1 and
j ∈ {1, . . . ,m}. By definition of τbj , either Hj = ⊥ or Hj ∈ V \ ΓAt; in both
cases K, ρ ⊮ Hj . This proves that hypothesis (H1) of Lemma 3 holds. To prove
hypothesis (H2), let Z ∈ Γ→ ∩ Sf(A). Since |Z| < |A → B|, by the secondary
induction hypothesis on Point (B2) we get K, ρ ⊩ Z. The hypothesis (H3) follows
by the definition of V in K. We can apply Lemma 3 to deduce K, ρ ⊮ A, and
this proves Point (B1).

We prove Point (B2). Let π and Mod(π) be as in Fig. 5 (with H = H0∨H1).
Let A → B ∈ Γ→ and let α be a world of K such that K, α ⊩ A; we show
that K, α ⊩ B. By Point (B1), α is different from ρ. Thus, n ≥ 1 and, for some
i ∈ {1, . . . , n}, α belongs to Mod(πi). Let ρi be the root of Mod(πi). By the main
induction hypothesis, Mod(πi), ρi▷σ

u
i ; since A → B belongs to the left-hand side

of σu
i , we get Mod(πi), ρi ⊩ A → B, which implies K, ρi ⊩ A → B. Since ρi ≤ α

and K, α ⊩ A, we get K, α ⊩ B; thus K, ρ ⊩ A → B and Point (B2) holds.
The proof of Point (B3) is similar to the proof of Point (B1), consider-

ing the immediate subderivations of π with root sequents [Γ→, ΓAt b⇒H0] and

[Γ→, ΓAt b⇒H1]. By Points (B2) and (B3) we conclude K, ρ ▷ σu. ⊓⊔

By Theorem 3, we get the soundness of Rbu stated in Theorem 2.

5 The proof-search procedure

We show that, given an u-sequent σu, either a Gbu-derivation or an Rbu-
derivation of σu can be built; from this, the completeness of Gbu follows. To this

aim, we introduce the function F of Fig. 6. A sequent [Γ l⇒H] is in normal form
if l = b implies Γ = Γ→, ΓAt; given a sequent σ in normal form, F(σ) returns
either a Gbu-derivation or an Rbu-derivation of σ. To construct a derivation,
we use the auxiliary function B: given a calculus C ∈ {Gbu,Rbu}, a sequent
σ, a set P of C-trees and a rule R of C, B(C, σ,P,R) is the C-tree having root
sequent σ, root rule R, and all the C-trees in P as immediate subtrees.

Proof-search is performed by applying backward the rules of Gbu. For in-
stance, the recursive call F([A,B, Γ ′ u⇒H]) at line 3 corresponds to the backward
application of the rule ∧L to σ = [A∧B,Γ ′ u⇒H]; according to the outcome, at
lines 4–5 a Gbu-derivation or an Rbu-derivation of σ with root rule ∧L is built.
We remark that the input sequent of F must be in normal form; to guarantee
that the recursive invocations are sound, the rules ∨Rk and → L, generating
b-sequents, can be backward applied to [Γ u⇒H] only if Γ has the form Γ→, ΓAt.

To save space, some instructions are written in a high-level compact form
(see, e.g., line 8); the rules used in lines 1 and 32 are defined as follows:

Rax([Γ
l⇒H]) =

{
⊥L if ⊥ ∈ Γ

Id otherwise
Rs([Γ

l⇒H]) =


∨R if l = b

SAt
u if l = u and H ∈ V

S∨u otherwise



Precondition : σ is in normal form (l = b implies Γ = Γ→, ΓAt)
1 if ⊥ ∈ Γ or H ∈ Γ then return B(Gbu, σ, ∅, Rax(σ)) // Rax(σ) is ⊥L or Id

2 else if σ = [A ∧B,Γ ′u⇒H] where Γ ′ = Γ \ {A ∧B} then
3 π′ ← F([A,B, Γ ′u⇒H])
4 if π′ is a Gbu-tree then return B(Gbu, σ, {π′}, ∧L)
5 else return B(Rbu, σ, {π′}, ∧L)
6 else if σ = [A0 ∨A1, Γ ′u⇒H] where Γ ′ = Γ \ {A0 ∨A1} then
7 π0 ← F([A0, Γ ′u⇒H]) , π1 ← F([A1, Γ ′u⇒H])
8 if ∃k ∈ {0, 1} s.t. πk is an Rbu-tree then return B(Rbu, σ, {πk}, ∨Lk)
9 else return B(Gbu, σ, {π0, π1}, ∨L)

10 else if σ = [Γ l⇒A→ B] then

11 if Γ ⊢E A then π′ ← F([Γ l⇒B]) , k ← 1

12 else π′ ← F([A,Γ u⇒B]) , k ← 2
13 if π′ is a Gbu-tree then return B(Gbu, σ, {π′}, → Rk)
14 else return B(Rbu, σ, {π′}, → Rk)

15 else if σ = [Γ l⇒H0 ∧H1] then

16 π0 ← F([Γ l⇒H0]) , π1 ← F([Γ l⇒H1])
17 if ∃k ∈ {0, 1} s.t. πk is an Rbu-tree then return B(Rbu, σ, {πk}, ∧Rk)
18 else return B(Gbu, σ,{π0, π1}, ∧R)

19 // Here σ = [Γ→, ΓAt l⇒H], where H = ⊥ or H ∈ V \ ΓAt or H = H0 ∨H1

20 else if (l = u and Γ→ ̸= ∅) or H = H0 ∨H1 then
21 Refs ← ∅ // set of Rbu-trees
22 if H = H0 ∨H1 then

23 π0 ← F([Γ b⇒H0]) , π1 ← F([Γ b⇒H1])
24 if ∃k ∈ {0, 1} s.t. πk is a Gbu-tree then return B(Gbu, σ, {πk}, ∨Rk)
25 else Refs ← Refs ∪ {π0, π1 }
26 if l = u then
27 foreach A→ B ∈ Γ→ do

28 πA ← F([Γ→, ΓAtb⇒A]), πB ← F([B, Γ→ \ {A→ B}, ΓAtu⇒H])
29 if πB is an Rbu-tree then return B(Rbu, σ, {πB}, → L)
30 else if πA is a Gbu-tree then return B(Gbu, σ, {πA, πB}, → L)
31 else Refs ← Refs ∪ {πA }
32 return B(Rbu, σ, Refs, Rs(σ)) // Rs(σ) is ∨R or SAt

u or S∨u
33 // Here (H = ⊥ or H ∈ V \ ΓAt) and (l = b or Γ→ = ∅)
34 else return B(Rbu,σ, ∅, Irr)

Fig. 6. F(σ = [Γ
l⇒ H])

By ∥σ∥ we denote the maximal length of a Gbu-branch starting from σ (by
Prop. 1, ∥σ∥ is finite). Note that, whenever a recursive call F(σ′) occurs along
the computation of F(σ), it holds that ∥σ′∥ < ∥σ∥.

In the next lemma we prove the correctness of F.

Lemma 4. Let σ be a sequent in normal form. Then, F(σ) returns either a
Gbu-derivation or an Rbu-derivation of σ.

Proof. By induction on ∥σ∥. If ∥σ∥ = 1, F(σ) does not execute any recursive
invocation and the computation ends at line 1 or at line 34. In the former case,
a Gbu-derivation of σ is returned. In the latter case, since σ is in normal form
and none of the conditions at lines 1, 2, 6, 10 15, 20 holds, the sequent σ is
irreducible and the tree built at line 34 is an Rbu-derivation of σ.



Let ∥σ∥ > 1. Whenever a recursive call F(σ′) occurs, we have that ∥σ′∥ <
∥σ∥ and σ′ is in normal form, hence the induction hypothesis applies to F(σ′).
Using this, one can easily show that the arguments of function B are correctly
instantiated. We only analyse some cases.

Let us assume that one of the return instructions at lines 8–9 is executed.
By induction hypothesis, for every k ∈ {0, 1}, πk is either a Gbu-proof or an
Rbu-derivation of σk = [Ak, Γ

′ u⇒H]. If, for some k, πk is an Rbu-derivation of
σk, then the Rbu-tree returned at line 8 is an Rbu-derivation of σ. Otherwise,
both π0 and π1 are Gbu-derivations, hence the value returned at line 9 is a
Gbu-derivation of σ.

Let us assume that F(σ) ends at line 32; in this case σ satisfies the conditions
at lines 19 and 20. If l = b, then H = H0 ∨H1. Since the condition at line 24 is
false, we have Refs = {π0, π1} and, by induction hypothesis, both π0 and π1 are
Rbu-derivations. Accordingly, the value returned at line 32 is anRbu-derivation
of σ with root rule Rs(σ) = ∨R. Let l = u and let us assume that H = ⊥ or
H ∈ V\Γ . In this case σ = [Γ→, ΓAt u⇒H] and the set Refs contains an Rbu-tree

πA of σA = [Γ→, ΓAt b⇒A] for every A → B ∈ Γ→. By induction hypothesis, πA

is an Rbu-derivation of σA, hence line 32 returns an Rbu-derivation of σ with
root rule Rs(σ) = SAt

u . The subcase (l = u and H = H0 ∨H1) is similar. ⊓⊔

Finally, we get the completeness of Gbu:

Theorem 4. An u-sequent σu is provable in Gbu iff σu is not refutable.

Proof. The ⇒-statement follows by the soundness of Gbu. Conversely, let σu

be not refutable. Then, there is no Rbu-derivation π of σu; otherwise, by The-
orem 3, from π we could extract a countermodel for σu. Since σu is in normal
form, by Lemma 4 the call F(σu) returns a Gbu-derivation of σu. ⊓⊔

6 Conclusions and future works

We have presented Gbu, a terminating sequent calculus for intuitionistic propo-
sitional logic. Gbu is a notational variant of G3i, where sequents are labelled to
mark the right-focused phase. Note that focusing techniques reduce the search
space limiting the use of contraction, but they do not guarantee termination of
proof-search (see, e.g., the right-focused calculus LJQ [2]). To get this, one has
to introduce extra machinery. An efficient solution is loop-checking implemented
by history mechanisms [6, 7]. Here we propose a different approach, based on an
evaluation relation defined on sequents. Histories require space to store the right
formulas already used so to direct and possibly stop the proof-search. Instead,
we have to compute evaluation relations when right-implication is treated. We
remark that, with an appropriate implementation of the involved data struc-
tures (see [4]), the evaluation relation ⊢Ẽ defined in Section 2 can be computed
in time linear in the size of the arguments. Hence, we get by means of computa-
tion what history mechanisms get using memory. Although a strict comparison



is hard, to stress the difference between the two approaches we provide an ex-
ample where Gbu outperforms history-based calculi. Let σ = [Γ→ u⇒⊥], where
Γ→ = {p1 → ⊥, . . . , pn → ⊥} and the pi’s are distinct propositional variables.
The only rule that can be used to derive σ is →L. For every pi→⊥ chosen as
main formula, the right-hand premise is provable in Gbu, while the left-hand

premise σb
i = [Γ→ b⇒ pi] is not. Thus, we have a backtrack point which forces the

application of →L in all possible ways. Being σb
i blocked, the unprovability of σb

i

is immediately certified. With the calculi in [7], the search process is similar, but
to assert the unprovability of [Γ→ ⇒ pi] one has to chain up to n applications
of →L and build an history set containing all the pi’s.

Differently from the history mechanisms, Gbu only exploits the information
in the left-hand side of a sequent. We are investigating the use of more expressive
evaluation relations to better grasp the information conveyed by a sequent and
further reduce the search space. Finally, we aim to extend the use of these
techniques to other logics having a Kripke semantics.
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