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ABSTRACT

Starting from the ∼50 000 quasars of the Sloan Digital Sky Survey for which Mg II line width
and 3000 Å monochromatic flux are available, we aim to study the dependence of the mass
of active black holes on redshift. We focus on the observed distribution in the full width at
half-maximum–nuclear luminosity plane, which can be reproduced at all redshifts assuming
a limiting MBH, a maximum Eddington ratio and a minimum luminosity (due to the survey
flux limit). We study the z-dependence of the best-fitting parameters of assumed distributions
at increasing redshift and find that the maximum mass of the quasar population evolves as
log (MBH(max)/M⊙) ∼ 0.3z + 9, while the maximum Eddington ratio (∼0.45) is practically
independent of cosmic time. These results are unaffected by the Malmquist bias.
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1 IN T RO D U C T I O N

In the last years, a substantial effort has been devoted to mea-
sure black hole (BH) masses for various quasar samples covering a
wide range of redshifts and luminosities. McLure &Dunlop (2004),
from Hβ and Mg II, measured virial BH masses (MBH) for ∼10 000
quasars with z ≤ 2.1 included in the Sloan Digital Sky Survey
(SDSS) Data Release 1 (DR1). Fine et al. (2006) used composite
spectra to measure the dependence on redshift of the mean BHmass
for an L∗ subsample of the 2dF QSO Redshift Survey (2QZ) quasar
catalogue (Croom et al. 2004) from z ∼ 0.5 to 2.5. Shen et al. (2008)
listed BH masses for ∼60 000 quasars in the redshift range 0.1 .

z . 4.5 contained in the SDSS DR5, by means of virial BH mass
estimators based on the Hβ, Mg II and C IV lines.
A common result of these works is that the mean BH mass of

the quasi-stellar object (QSO) population at given z appears to
increase with redshift, but the observed z-dependence is dominated
by the well-known Malmquist bias, because the BH mass strongly
correlates with the central source luminosity (see Vestergaard et al.
2008 for a detailed analysis of the selection bias effects). McLure
& Dunlop (2004), for instance, suggest that the observed active
BH mass evolution is entirely due to the effective flux limit of the
sample.
A full understanding of this scenario would give important

insights on the BH formation and evolution and on the activa-
tion of the quasar phenomenon. Moreover, along with a parallel
study on the dependence on redshift of the host galaxy luminosity
(mass), this would enlighten on the joint evolution of galaxy bulges
and their central BHs. For these reasons, it is of focal importance to
trace the dependence ofMBH on z, overcoming the problems related
to the Malmquist bias.

⋆E-mail: marzia.labita@gmail.com

We start from the recently published SDSS DR5 quasar cata-
logue (Schneider et al. 2007) and focus on the∼ 50 000 quasars for
which Mg II line width and 3000 Å flux are available (Shen et al.
2008). The sample selection is described in Section 2. The sample
(0.35 < z < 2.25) is divided in eight redshift bins, and it is shown
that, in each bin, the object distribution in the full width at half-
maximum (FWHM)–luminosity plane can be reproduced assuming
a minimum luminosity, a maximum mass and a maximum Edding-
ton ratio (Sections 3.2 and 3.3). Comparing the assumed probability
density to the observed distribution of objects, the parameters can
be determined in each redshift bin (Section 3.4). This procedure is
shown to be unaffected by the Malmquist bias (Section 3.5), and
provides a method to study the ‘unbiassed’ dependence on red-
shift of quasar BH masses and Eddington ratios (Section 4.1). In
Section 4.2, we test the dependence of our results on the assumed
rBLR − λLλ calibration. We compare our results with the previ-
ous literature in Section 4.3, and in Section 4.4 we discuss some
implications of our findings for the study of the co-evolution of
supermassive BHs and their host galaxies. A summary of this paper
is given in the last section.
Throughout this paper, we adopt a concordant cosmology with

H 0 = 70 km s−1Mpc−1, Äm = 0.3 and Ä3 = 0.7.

2 TH E MG I I SAMPLE

The SDSS DR5 quasar catalogue (Schneider et al. 2007) contains
more than 77 000 quasars. It covers about 8000 deg2 and selects
objects withMi < −22, have at least one emission line with FWHM
larger than 1000 km s−1 or are unambiguously broad-absorption-
line objects, are fainter than i = 15.0 and have highly reliable
redshifts.
Shen et al. (2008) calculated BH masses for ∼60 000 quasars

in the redshift range 0.1 < z < 4.5 included in the SDSS DR5
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Figure 1. Average values of the absolute magnitude Mi (triangles) and
of MBH (circles) versus redshift, in bins 1z = 0.15. The typical standard
deviation of each bin is given in the inset.

quasar catalogue, using virial BH mass estimators based on the Hβ,
Mg II and C IV emission lines. They provide rest-frame line widths
and monochromatic luminosities at 5100, 3000 and 1350 Å (see
Shen et al. 2008 for details on calibrations, measure procedures and
corrections).
In the following, we will focus on the ∼50 000 quasars from

the Shen et al. (2008) sample for which Mg II line width and
3000 Å monochromatic flux are available (Mg II sample). We as-
sume the virial theorem and adopt the calibration of McLure &
Dunlop (2004) to evaluate the BH mass:

logMBH = 6+ log(a)+ 2 log(FWHM)+ b log λLλ (1)

with a = 3.2± 1.1 and b = 0.62± 0.14. Here,MBH is expressed in
solar masses, FWHM in units of 1000 km s−1 and λLλ in units of
1044 erg s−1.

3 D E S C R I P T I O N O F TH E P RO C E D U R E

3.1 Malmquist bias

Fig. 1 shows the mean absolute i magnitude (see Shen et al. 2008
for details) versus redshift of the Mg II sample. The effects of the
Malmquist bias are apparent as an increase of the average observed
luminosity with redshift. The mean BHmass versus redshift is over-
plotted to the mean Mi(z): it is apparent that the average observed
BHmasses follow the same trend as the absolute magnitudes with a
higher dispersion, as expected given that the distribution of the line
widths does not depend on luminosity or redshift (Shen et al. 2008).
This suggests that the z-dependence of the observed BH masses is
strongly subject to a Malmquist-type bias, because at high redshift
one cannot observe low-mass objects. In order to trace the ‘unbi-
assed’ dependence of active BH masses with redshift, one should
consider a combination of two effects, namely the z-dependence of
the quasar number density and the increase of the average mass of
quasar populations with redshift. To illustrate these effects consider
the following two extreme cases.

(i) The MBH distribution does not depend on redshift, but the
quasar number density increases until z ∼ 2–2.5. At any redshift,
there is a population of low-mass (∼108M⊙) quasars, which can-
not be observed at high redshift, and the population of high-mass
(∼109.5M⊙) active BHs that is observed at z & 1.5 is the high-mass
end of the MBH distribution.

(ii) The quasar MBH distribution shifts towards higher masses at
increasing redshift. The population of low-mass (∼108M⊙) objects
that is observed at low redshift is not present at all at z & 1.5. The
observed increase ofMBH with redshift, in active BHs, is ‘true’ and
it is not due to a Malmquist-type bias.

Of course, each of these pictures is per se unlikely: the observed
dependence on redshift of quasar BHmasses is due to a combination
of both these effects. In the following, we will concentrate on these
points using statistical arguments, focusing on the distribution of
objects in the FWHM–luminosity plane.

3.2 Quasar distribution in the FWHM–λLλ plane

Fig. 2 shows the objects of the Mg II sample in the logFWHM–
logλLλ plane (see Fine et al. 2008 for a similar approach). The
sample has been divided in eight redshift bins of equal comoving
volume. In each panel, it is apparent that the data points form a sort
of ‘triangle’, the left-hand side of which represents a cut due to the
survey flux limit (which gives rise to the Malmquist bias). From
equation (1), the loci of quasars with constant mass are represented
in this plane by straight lines with fixed slope, as plotted in the
figure:

log(FWHM) = −0.31 log λLλ + 0.5 log
MBH

M⊙
− 3.25, (2)

where units are the same as in equation (1). We propose that the
top-right side of the triangle is the representative of a maximum
mass in the quasar sample.
The third (i.e. the bottom-right) side of the triangle is supposedly

due to the Eddington limit, as the loci of quasars with constant
Eddington ratios are again straight lines. The dependence of FWHM
on the monochromatic luminosity at a given Eddington ratio is
fixed assuming the bolometric correction by Richards et al. (2006;
BC3000 = 5.15) and equation (1). This yields

log(FWHM) = 0.19 log λLλ − 0.5 log
Lbol

LEdd
+ 0.05, (3)

where units are the same as in equation (1). Note that in each redshift
bin, the plotted cuts describe the shape of the quasar distribution in
the FWHM–luminosity plane qualitatively well.

3.3 Construction of a probability density

Now we aim to construct a probability density of quasars as a func-
tion of FWHM and luminosity with a main criterion of simplicity.
We propose that in each redshift bin the object density is only con-
strained by a maximum mass, a maximum Eddington ratio and a
minimum luminosity due to the instrumental flux limit. We then
assume a probability density of form

P l, FWHM(l, FWHM) = kP̃l(l)P̃m(m)P̃e(e), (4)

where k is a normalization constant and each P̃ is assumed to be
a smoothed step function, which increases from 0 to 1 (or vice
versa) in a range of width σ around a fixed value of the independent
variable. In the following, we describe our results assuming P̃ of
form (see Fig. 3)

P̃l(l) =
1

σl

√
2π

∫ l

−∞
exp

[

−
(l′ − lmin − 2σl)2

2σ 2l

]

dl′ (5)

P̃m(m) =
1

σm

√
2π

∫ +∞

m

exp

[

−
(m′ − mmax + 2σm)2

2σ 2m

]

dm′ (6)
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Figure 2. The eight panels show the Mg II sample in the FWHM–luminosity plane at increasing redshift. Dotted, dashed and dash–dotted lines (and lines
parallel to them) represent the loci of constant monochromatic luminosity, constant mass and constant Eddington ratio, respectively.

Figure 3. The shape of P̃l(l) (equation 5), P̃m(m) (equation 6) and P̃e(e)
(equation 7).

P̃e(e) =
1

σe

√
2π

∫ +∞

e

exp

[

−
(e′ − emax + 2σe)2

2σ 2e

]

de′, (7)

where

l ≡ log λLλ (8)

m = m(l, FWHM) ≡ log
MBH

M⊙
(9)

e = e(l, FWHM) ≡ log
Lbol

LEdd
. (10)

Here, the parameters lmin and σ l, mmax and σ m, emax and σ e are the
minimum luminosity, the maximum mass, the maximum Edding-
ton ratio and the widths of the corresponding distributions. These

parameters will be determined in the following via a best-fitting
procedure.
Note that, since the integrals of the P̃ functions diverge, we must

restrict their domain to use them as probability densities (e.g. for
values of the parameters l . lmin + 3σ l, m & mmax − 3σ m and e &

emax − 3σ e). This does not significantly affect the results, because
mass, Eddington ratio and luminosity are not independent variables
(e.g. low-mass objects also have low luminosities or high Eddington
ratios), hence the derived probability density P l, FWHM(l, FWHM)
(equation 4) is essentially insensitive to the shape of P̃m(m) at low
masses, of P̃e(e) at low Eddington ratios or to the shape of P̃l(l) at
high luminosities.

3.4 Best-fitting procedure

The assumed probability density depends on six free parameters,
i.e. the minimum luminosity (lmin), the maximum mass (mmax) and
Eddington ratio (emax) and the widths of the corresponding distri-
butions (σ l, σ m and σ e). We focus on the first redshift bin and
determine the free parameters matching with the observed distribu-
tion of objects in the FWHM–luminosity plane. In detail, for each
choice in the six-dimensional parameter space, the probability den-
sity has been constructed, discretized in boxes with 1log FWHM
= 0.04 dex and 1log λLλ = 0.2 dex and then normalized to the
total number of observed objects, in order to evaluate the ex-
pected number of objects in each box (1log λLλ,1log FWHM).
We assumed a Poissonian error (i.e.

√
n) on the observed num-

ber of objects in each box. For each choice of the parameters,
the expected distribution was compared to the observed distribu-
tion in the discrete log λLλ − log FWHM plane, evaluating the
relative χ 2 value. The minimum χ 2 determines the best-fitting
parameters.
In order to determine the uncertainties on these values, the same

fit procedure was repeated many times comparing the observed dis-
tribution to a set of simulated distributions of objects, constructed
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Figure 4. The eight panels show the Mg II sample in the FWHM–luminosity plane at increasing redshift: solid black contour plot (levels: 20, 90, 250 objects
per box, see the text) represents the discrete observed distribution of objects. Dotted red contour plot (same levels) shows the discrete distribution of a sample
of objects simulated with the Monte Carlo method, adopting the assumed P l, FWHM(l, FWHM) probability density with the best-fitting parameters. Dotted,
dashed and dash–dotted lines represent lmin, mmax and emax, respectively.

through the Monte Carlo method. This procedure allows an esti-
mate of the error since we sound the underlying probability density
only through a finite number of observed objects, the distribution of
which in the FWHM–luminosity plane ideally follows equation (4)
with a certain random dispersion. In detail, given a set of values of
the six parameters, we generated 107 points (log λ Lλ, log FWHM)
with uniform probability densities, and then rejected points accord-
ingly to the assumed P L,FWHM(L, FWHM) at given lmin,mmax, emax,
σ l, σ m and σ e, so that the number of simulated points matches the
number of observed objects. We then calculated the rms between
the observed and the simulated distributions. This operation was
repeated for all the possible combinations of the six parameters (in
a reduced phase space around the best-fitting values). The sextu-
ple which led to the minimum rms gave the so-called Monte Carlo
best-fitting parameters. This procedure was repeated a dozen times,
giving as many Monte Carlo best-fitting values for each parameter,
slightly different from one another, but fully consistent with the
previous determination. For each parameter, the standard deviation
of this set of best-fitting values was assumed as an estimate of its

uncertainty. This uncertainty is much larger than that corresponding
to 1χ 2 = 1.
In the first panel of Fig. 4, we compare the observed distribution

with one simulated best-fitting distribution for the lowest redshift
bin. It is apparent that the choice of three simple distributions in
luminosity, mass and Eddington ratios describes the data rather
closely, giving circumstantial support to the validity of the virial
hypothesis on which the theoretical assumptions are based.
Table 1 (first line) contains the best-fitting values of the six pa-

rameters with relative errors and the reduced χ 2 value (χ 2
ν). The

fact that the χ 2
ν is larger than 1 is interpreted as due to the choice of

an oversimplified distribution. This doesnot influence our results,
because our goal is to find a good way to quantify a parameter re-
lated to the BH mass (and one related to the Eddington ratio) such
that it is not affected by a Malmquist-type bias (i.e. disentangled of
the z-dependence of the luminosity instrumental limit). In fact, by
construction, mmax and emax depend neither on the quasar number
density nor on the survey flux limit (see next section for tests on
this statement).

Table 1. Best-fitting values of minimum luminosity, maximum mass, maximum Eddington ratio and widths of the corresponding
distributions, with errors and χ2ν . The number of degrees of freedom is ν = 594 in the first redshift bin (600 data points and six free
parameters) and ν = 595 in the others (600 data points and five free parameters).

Bin 〈 z〉 lmin σ l mmax σm emax σ e χ2ν

1st 0.62 44.30 ± 0.025 0.26 ± 0.008 9.18 ± 0.05 0.31 ± 0.003 −0.35 ± 0.02 0.22 ± 0.003 3.51
2nd 0.97 44.83 0.23 ± 0.007 9.35 ± 0.04 0.31 ± 0.006 −0.34 ± 0.02 0.23 ± 0.003 4.97
3rd 1.22 45.07 0.23 ± 0.005 9.42 ± 0.05 0.31 ± 0.004 −0.33 ± 0.02 0.23 ± 0.002 4.63
4th 1.42 45.24 0.23 ± 0.008 9.43 ± 0.05 0.32 ± 0.003 −0.34 ± 0.02 0.22 ± 0.001 5.11
5th 1.61 45.36 0.24 ± 0.006 9.52 ± 0.04 0.31 ± 0.003 −0.35 ± 0.01 0.22 ± 0.003 4.36
6th 1.80 45.51 0.22 ± 0.005 9.60 ± 0.05 0.32 ± 0.002 −0.34 ± 0.02 0.22 ± 0.004 8.44
7th 1.98 45.61 0.22 ± 0.005 9.67 ± 0.05 0.31 ± 0.003 −0.33 ± 0.02 0.22 ± 0.004 6.84
8th 2.15 45.67 0.24 ± 0.006 10.02 ± 0.05 0.30 ± 0.005 −0.34 ± 0.02 0.21 ± 0.003 7.21

Note. Data that come from a best-fitting procedure are displayed in bold.
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Figure 5. Same as Fig. 4 referred to a subsample of the lowest redshift bin
objects, selected according to the luminosity cut function of a higher redshift
bin (left-hand panel) or randomly selected with p = 0.3 (right-hand panel).
For comparison, green thin lines represent the whole low-redshift sample
and its best-fitting lmin, mmax and emax lines.

3.5 Bias analysis and robustness of the procedure

The effect of the luminosity cut on the results for mmax and emax can
be further tested by simulation. In order to show that our results
are not affected by the instrumental flux limit of the data set, we
selected a subsample from the lowest redshift bin applying the
probability function P̃l(l) (equation 5) with a higher luminosity cut,
i.e. assuming lmin and σ l derived for the third redshift bin in which
〈z〉 = 1.22 (see next section). This subsample consists of about
1/12 of the objects in the original lowest redshift sample. The fit
procedure presented in this paper has been performed again on this
subsample. Fig. 5 (left-hand panel) shows that the luminosity cut
of a higher redshift bin has negligible effects on the results, being
these values (mmax = 9.20 and emax = −0.36) consistent within
1σ with the best-fitting parameters derived for the whole sample
(mmax = 9.18 ± 0.05 and emax = −0.35 ± 0.02).
A similar test has been performed to show that mmax and emax do

not depend on the quasar number density: we resampled from the
first redshift bin rejecting randomly 2/3 of the objects, in order to
obtain a smaller samplewith the same distribution. The fit procedure
was then performed on the reduced sample. Again, no significant
deviation in the determination of the best-fitting parameters was
observed (see Fig. 5, right-hand panel). Again, the derived values
(mmax = 9.20 and emax = −0.34) are consistent within 1σ with
the best-fitting parameters obtained for the whole sample. These
tests show that mmax and emax are independent of the quasar number
density and of the survey flux limits, and therefore indicate that our
procedure is not affected by a Malmquist-type bias.

4 EVO L UT I ON O F TH E QUASI -ST E L L AR

O B J E C T P O P U L AT I O N

4.1 Quasar BH mass and Eddington ratio dependence

on redshift

The fit procedure described above is applied to all the redshift bins,
in order to determine the best-fitting parameters and their uncertain-
ties as a function of redshift. In each redshift bin, we compared the
best-fitting minimum luminosity with the values inferred through
the z-dependence of the luminosity distance (see Fig. 6). It is appar-

Figure 6. Black dots represent the best-fitting parameters lmin versus z,
compared to the values expected from cosmology (solid line).

ent that the agreement is very good: apart from the highest redshift
bin, where the 3000 Å continuum is very close to the red edge of the
observed spectral range and the flux calibration may be unreliable,
all the data are consistent with the expectations within 1σ . This
gives further support to the assumed description of the object distri-
butions in the FWHM–luminosity panels and suggests to repeat the
entire procedure assuming that the value of lmin(z) is constrained by
cosmology.
The same fit procedure is then applied again to all the redshift

bins, but now the dependence on redshift of theminimum luminosity
is set by cosmology and lmin is no more treated as a free parameter.
In each bin, the χ 2

ν was evaluated and normalized to the χ 2
ν0 value

obtained in the first redshift bin, in order to compare the adequacy of
the best-fitting function in the eight panels. Fig. 7 shows that these
values are almost constant in each redshift bin. Again, Fig. 4 and
Table 1 show, respectively, the Monte Carlo simulated distributions
compared to the observed distributions of quasars and the best-
fitting values, their errors and relative χ 2 values.
Themaximummass and Eddington ratio values are plotted versus

redshift in Fig. 8. Note that the proposed MBH z-dependence refers

Figure 7. Normalized χ2ν values of the best-fitting function. Filled circles
refer to the fit procedure described in this work. Open triangles show the χ2ν
values that would be obtained assuming that the quasar BH mass is constant
with redshift, and open squares show the χ2ν values assuming that the BH
mass evolves with redshift as proposed by Fine et al. (2006).
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Figure 8. Upper panel: small dots are the virial BH masses of the Mg II
sample given by Shen et al. (2008); the dash–dotted line reports the cor-

responding mean values. Red circles are our estimates of log
MBH (max)
M⊙

and
the red solid line is the best fit reported in equation (11). The MBH versus
z-dependence proposed by Fine et al. (2006) is the dashed line. Lower panel:
small dots are the Eddington ratios for each source of the Mg II sample; the
dash–dotted line shows the corresponding average. Red circles are the max-
imum Eddington ratios and the red solid line is the best linear fit reported in
equation (12).

to the active BH population and not to the total supermassive BH
mass distribution. Of course, the average mass of the inactive BH
population must decrease with increasing redshift.
A linear fit to the maximum mass values (excluded the highest

redshift bin one) gives

log
MBH (max)

M⊙
= mmax = 0.34(±0.02)z + 8.99(±0.03); (11)

while the maximum Eddington ratio (∼0.45) is consistent with no
evolution with cosmic time
Lbol

LEdd
(max) = 10(emax) = 0.005(±0.006)z + 0.45(±0.01). (12)

Assuming that the shapes of MBH and Eddington ratio distribu-
tions do not change with redshift, which is suggested by the fact
that the value of σ m and σ e is independent of z (see Table 1),
equation (11) also describes the slope of the z-dependence of the
mean quasar BH mass, and not only of the maximum mass of the
quasar populations. Similarly, themean (and not only themaximum)
Eddington ratio is constant with redshift.

4.2 Dependence of the results on the rBLR −λLλ calibration

We tested whether a variation of the luminosity exponent of the
virial calibration may affect the relative evolution in mmax and emax

Figure 9. BH maximum masses (upper panel) and maximum Eddington
ratios (lower panel) as a function of redshift for different values of the
luminosity exponent in equation (1).

derived in this paper. TheL − rBLR relation assumed in equation (1)
(McLure & Dunlop 2004) is quite steep, although still consistent
with the canonical rBLR ∝ λL b

λ with b = 0.5 which is often assumed
for idealized photoionization. In order to quantify the effects that this
has on the relative evolution in the maximum mass and Eddington
ratio, we reproduced the analysis assuming the exponent on the
luminosity term is b = 0.5 or 0.4, both of which are consistent to
within 2σ with the McLure & Dunlop (2004) calibration in which
b = 0.62 ± 0.14.
Fig. 9 (upper panel) shows that the smaller is the luminosity

exponent in the virial calibration, the flatter is the dependence on
redshift of the BH masses. The results are only slightly affected
by the choice of the L − rBLR relation, since the z-evolution deter-
mined assuming an exponent of 0.5 is consistent within 1σ with the
previous determination, obtained assuming the McLure & Dunlop
(2004) virial calibration. In Table 2, we give the best linear fit to the
maximum mass as a function of redshift for b = 0.5, 0.4 and, for
comparison, b = 0.62.
On the other hand, with regards to the dependence on redshift

of the Eddington ratio, the picture is more delicate. This parameter
appears to increase significantly with z assuming a flatter L − rBLR
relation, while it was found to be constant with redshift within the
assumed virial calibration (equation 1; see Fig. 9, lower panel).
In Table 2, the parameters of the best linear fit to the maximum
Eddington ratio as a function of redshift are given for various values
of the luminosity exponent (b = 0.5, 0.4 and, for comparison, b =
0.62).
Note that the assumption of a flatter L − rBLR relation leads to an

increase of the residuals between the best-fitting probability density
(equation 4) and the observed quasar distribution. In Table 2, the
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Table 2. Best linear fit to the maximummass and to the maximum Eddington ratio as a function of redshift
for various values of the luminosity exponent in equation (1) (b = 0.62, 0.5 and 0.4). For each value of b,
the average value over all the redshift bins of the χ2ν of the best-fitting probability density (equation 4) is
also given.

log
MBH (max)
M⊙

= αz + β
Lbol
LEdd

(max) = αz + β

b α β α β 〈χ2ν〉z

0.62 0.34 ± 0.02 8.99 ± 0.03 0.005 ± 0.006 0.45 ± 0.01 5.6
0.5 0.28 ± 0.05 9.07 ± 0.08 0.06 ± 0.02 0.37 ± 0.03 5.8
0.4 0.19 ± 0.05 9.19 ± 0.07 0.13 ± 0.01 0.25 ± 0.02 7.5

χ 2
ν values averaged over z of the best-fitting probability density are
given for b = 0.62, 0.5 and 0.4. It is apparent that the χ 2

ν is minimum
for b = 0.62, giving a circumstantial independent support to the
index proposed by McLure & Dunlop (2004, see equation 1) and,
hence, to equations (11) and (12).

4.3 Comparison with previous results

We now compare our results with those obtained by McLure &
Dunlop (2004), Fine et al. (2006) and Shen et al. (2008), focusing
just on the slope of the MBH and Eddington ratio evolution.
Fine et al. (2006), in order to reduce the effects of the Malmquist

bias, concentrated on a subsample of the 2dF quasars with luminos-
ity around L∗(z) at each redshift. They observe a significant depen-
dence of the quasar BH mass on redshift [MBH ∝ (1 + z)3.3±1.1],
but conclude that their result cannot directly be interpreted as evi-
dence for antihierarchical ‘downsizing’ because the z-dependence
they found is strongly dominated by the dependence on redshift of
L∗. For comparison, we repeated the entire fit procedure described
above imposing that MBH(max)(z) varied as proposed by Fine et al.
(2006). Fig. 7 shows the relative χ 2

ν values in each redshift bin: the
fit appears inadequate if we assume their results. Note however that
the error given for the evolution of the average BH mass of QSOs
by Fine et al. (2006) is quite large, so that their results are consistent
with those given here within 1σ .
McLure & Dunlop (2004) proposed that the observed increase of

the quasar BH mass with redshift is entirely as expected due to the
effective flux limit of the sample. To further test the possibility that
the mean BHmass is independent of redshift, we again repeated the
fit procedure described above assuming that MBH(max) is constant
over all the redshift bins. In Fig. 7, we plot the relative χ 2

ν , and
again the fit is inconsistent with the data, giving further evidence
for an evolution of quasar populations with z.
McLure & Dunlop (2004) and Shen et al. (2008), studying the

SDSS DR1 and DR5 samples, found that there is a clear upper mass
limit of ∼1010M⊙ for active BHs at z > 2, decreasing at lower
redshift. This trend is in good agreement with our results and can be
explained assuming that the quasar number density peaks at a certain
zpeak ∼ 2–2.5 and then flattens out (see e.g. Richards et al. 2006a).
Around zpeak, both the high- and the low-mass end of the quasar
BH mass distribution are more populated, so that the observation
of very massive objects is likely (while low-mass quasars cannot be
observed due to the instrumental flux limit). Therefore, the slope of
the ‘unbiassed’ dependence on redshift of the maximumBHmass is
raised below zpeak and it is flattened above. This effect translates in
evidence for a limiting BHmass for active BHs at z > 2, decreasing
at lower redshift, that is apparent in all large samples of quasars.
McLure & Dunlop (2004) observed a substantial increase of

Eddington ratios with redshift and a similar trend is apparent from
the sample of 2dF L∗ quasars of Fine et al. (2006) after correcting

their data for the offset between the Mg II and C IV virial mass
calibrations (see e.g. Shen et al. 2008).We suggest that the observed
z-dependence of Eddington ratios is spurious, and that it is entirely
dominated by the dependence on redshift of the average quasar
luminosity due to the Malmquist bias.

4.4 Discussion of the results

Studying a sample of∼50 000 SDSS quasars with 0.35< z < 2.25,
we obtained that the maximum mass of the quasar populations
increases with z, while the maximum Eddington ratio is practically
independent of redshift.
These results are unaffected by the Malmquist bias and may be

interpreted as evidence for evolution of the active BH population
with redshift. Quasar samples at lower redshift are increasingly
dominated by lower mass BHs, i.e. most massive BHs start quasar
activity before less massive ones. This is indicative of antihierar-
chical ‘downsizing’ of active BHs, and it is in agreement with re-
cent theoretical predictions by e.g. Merloni, Rudnick & Di Matteo
(2008).
Our findings may have implications for the study of the co-

evolution of supermassive BHs and their host galaxies, even if
they cannot be directly interpreted as evidence for evolution of the
MBH − Mbulge scale relation. There is observational evidence that
quasar host galaxies are already fully formed massive ellipticals at
z ∼ 2.5 and then passively fade in luminosity to the present epoch
(e.g. Kotilainen et al. 2007, 2009; Falomo et al. 2008). Within this
scenario, our results can be interpreted as an evolution with redshift
of the parameter Ŵ ≡ MBH/Mbulge, which would be four to five
times larger at z ∼ 2 than today.
This is in good agreement with the results of Peng et al. (2006),

who found that Ŵ is ∼4 times larger at z ∼ 1.7 than today in a
sample of 11 lensed quasar hosts. Our results are also consistent
with Salviander et al. (2007), who examined a sample of SDSS
quasars finding that galaxies of a given dispersion at z ∼ 1 have BH
masses that are larger by 1logMBH ∼ 0.2 than at z ∼ 0 (see Lauer
et al. 2007 for a detailed discussion on the selection bias which may
affect these results).

5 SU M M A RY A N D C O N C L U S I O N S

Starting from the SDSS DR5 quasar catalogue, we focused on the
∼50 000 objects for which Mg II line widths and 3000 Åmonochro-
matic luminosities were available. This sample (0.35 < z < 2.25)
was divided in eight redshift bins. In each bin, the object distri-
bution in the FWHM–luminosity plane was described in terms of
a minimum luminosity limit (due to the instrumental flux limit),
a maximum mass and a maximum Eddington ratio. The assumed
probability density was compared to the observed distribution of
objects in order to determine the free parameters with a best-fitting

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 396, 1537–1544



1544 M. Labita et al.

procedure in each redshift bin. Errors on the best-fitting parameters
were determined with Monte Carlo simulations.
We tested the robustness of the procedure through some sim-

ulations, and showed that the maximum mass and the maximum
Eddington ratio determined in each redshift bin depend neither on
the quasar number density nor on the survey flux limit (which is
responsible for giving rise to a Malmquist-type bias in the observed
dependence on redshift of the mean quasar BH masses).
We then studied the dependence on redshift of the maximum

quasar BH mass and of the maximum Eddington ratio and found
clear evidence for evolution of the active BH population with
redshift. Over the redshift range studied, we obtained that the
maximum mass of the quasar population depends on redshift as
log [MBH(max)/M⊙] = 0.34z + 8.99, while the maximum Edding-
ton ratio is found to be practically independent of redshift.
This means that QSO samples at lower redshift are increasingly

dominated by lower mass BHs, i.e. the more massive a BH is, the
earlier it starts quasar activity. Within a scenario in which quasar
host galaxies are already fully formed massive ellipticals at z ∼ 2.5,
our results can also be interpreted as an evolution with redshift of
the parameter Ŵ ≡ MBH/Mbulge, which would be four to five times
larger at z ∼ 2 than today.
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