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We introduce a set of effective Maxwell-Bloch equations for broad area semiconductor lasers, and study the

long-wavelength instability of the homogeneous solution. Unlike in two-level lasers, the presence of the

semiconductor a factor allows us to observe this pattern forming instability even in the frequency domain

where the homogeneous solution emission has the lower threshold.
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I. INTRODUCTION

A pattern forming long-wavelength instability for broad-

area two-level lasers was discovered in 1988 by Lugiato,

Oldano, and Narducci sLONd f1g. They demonstrated that the
nonzero homogeneous solution is unstable against any tilted

traveling wave with wave-vector K such that

K2 , 2D
m − mthr

m
, s1d

where D is the atomic detuning, m is the pump parameter,

and mthr is the laser threshold.

Later, it was recognized that the above instability belongs

to the class of long-wavelength instabilities that appear in the

context of the complex Ginzburg-Landau equation sCGLEd
f2,3g, and it reduces to the Benjamin-Feir instability when

the laser material variables are adiabatically eliminated and

the weak-field limit is assumed f4g. At the same time, how-
ever, it was pointed out that in a broad area laser the homo-

geneous solution is the first lasing solution only for D,0,

and under that condition the LON instability does not exist,

as shown by Eq. s1d. For D.0 the first lasing solution is a

tilted traveling wave with wave-vector ,ÎD, which is af-

fected by other kinds of instability f5g. Hence, the role of the
LON instability was confined to the rather unrealistic situa-

tion where the laser chooses the homogeneous solution for

D.0, although the traveling wave has a larger gain.

At the level of envelope equations, the laser dynamics

close to threshold can be caught by a CGLE only for D,0

f6–8g, and in that limit the LON instability does not exist.

For D.0 the diffusion terms in the CGLE becomes nega-

tive, leading to nonphysical antidiffusion. In that case a com-

plex Swift-Hoehnberg equation sCHSEd must be introduced,
which accounts for the mechanism that selects at threshold

the traveling wave with wave-vector ,ÎD f8–10g. The LON
instability was also analyzed in that framework, but just to

show that it is not the dominant pattern forming instability

f8g.
The above results were obtained for two-level lasers, but

sometimes they were applied to the interpretation of the spa-

tiotemporal dynamics of broad-area semiconductor lasers

f11,12g. In this paper we show that the transposition of the

results from two-level to semiconductor lasers may be not

appropriate, at least for what concerns the LON instability,

which in a semiconductor laser plays a much more important

role than in a two-level laser.

To that aim we introduce a suitable set of effective

Maxwell-Bloch equations sEMBEsd for a broad-area semi-

conductor laser. These equations are cast in a form as close

as possible to the two-level Maxwell-Bloch equations

sMBEsd to facilitate the comparison, but with an important

difference. While in the MBEs, nonlinear dispersion and the

mechanism of wave-vector selection at threshold are both

associated with the atomic detuning D, in the EMBEs two

different parameters appear: the linewidth enhancement fac-

tor a for nonlinear dispersion and an effective atomic detun-

ing, that will still be called D, for wave-vector selection at

threshold.

The stability analysis of the nonzero homogeneous solu-

tions in the EMBEs yields an instability condition which is

formally equivalent to Eq. s1d, but with the atomic detuning
replaced by the linewidth enhancement factor a, which

means that the instability is due to the combination of dif-

fraction and nonlinear dispersion. This apparently small dif-

ference has important consequences. In fact, since a in a

semiconductor laser is usually positive, the existence of the

long-wavelength instability is no longer confined, as it was

in two-level lasers, to the case D.0. For D,0 the homoge-

neous solution is the first lasing solution and it is destabilized

through the LON instability, which is therefore the main pat-

tern forming mechanism for that side of the detuning. More-

over, the numerical simulations show that even for D.0, the

traveling wave which is selected at threshold can soon be

destabilized in favor of the homogeneous solution as the

pump increases, and from that moment on the behavior of

the laser is very similar to that observed for D,0. Hence,

the LON instability plays a fundamental role in triggering the

spatiotemporal dynamics of a broad area semiconductor laser

for both signs of the detuning.

In Sec. II we derive the EMBEs and discuss the connec-

tions with other similar sets of equations proposed in the past

for semiconductor lasers. In Sec. III we study analytically

and numerically the LON instability in a broad area semi-

conductor laser in the framework of the EMBEs, and com-

ment on the capability of reduced sets of equation to repro-

duce the same results. Finally, in Sec. IV we draw the

conclusions of our work.
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II. THE EFFECTIVE MAWELL-BLOCH EQUATIONS

Two different approaches can be followed to derive

EMBEs for semiconductor lasers. The first consists in start-

ing from the microscopic semiconductor Bloch equations

and, under determinate assumptions, derive from them two

equations for the macroscopic polarization and carrier den-

sity variables. From the equation for the macroscopic polar-

ization one can then derive an expression for a two-level-like

susceptibility, which, if the simplifying assumptions intro-

duced before are correct, will reproduce well the semicon-

ductor susceptibility calculated at the microscopic level f13g.
Alternatively, one can start from a two-level-like susceptibil-

ity that establishes a link between the Fourier components of

the electric field and of a macroscopic polarization. By Fou-

rier transforming that relation, a dynamical equation for the

macroscopic polarization is obtained, which is then coupled

with the equations for the electric field and carrier density.

The two-level-like susceptibility can be obtained by intro-

ducing some assumptions, such as that of zero temperature,

in the calculations based on the microscopic model f14g. An-
other possibility is to make a reasonable guess on the form of

the two-level-like susceptibility, which for example can be

written as a sum of Lorentzians f15g. If the proposed suscep-
tibility fits well a reference one calculated from first prin-

ciples, the initial guess is validated.

We follow this pragmatic approach, and assume that the

macroscopic susceptibility can be decomposed in the sum of

two parts, one depending only on the carrier density N and

the other depending also on the frequency v f15g

xsN,vd = x0sNd + x1sN,vd . s2d

We write the frequency dependent part as

x1sN,vd =
AsNd

BsNd − isv − D0d
, s3d

where AsNd and BsNd are in general complex functions. The
frequency shift D0 with respect to the reference frequency

v=0 sthe frequency of an empty cavity longitudinal moded is
introduced for later convenience. With respect to f15g, Eq.
s3d is more general because we allow AsNd to be a complex
function. At this level the only restriction we pose is ResBd
.0 which implies that x1sN ,vd is an analytic function of the
complex variable v in the upper half plane.

According to our assumptions on the susceptibility

xsN ,vd, with every component Esvd of the electric field en-
velope is associated a macroscopic polarization

PsN,vd = e0ebx0sNdEsvd + P1sN,vd , s4d

where eb is the background dielectric constant sn=Îeb is the
background refractive indexd, and

P1sN,vd = e0ebx1sN,vdEsvd . s5d

By Fourier transforming Eq. s5d and neglecting the slow time

dependence of N we obtain the dynamical equation for P1

Ṗ1 = e0ebAsNdE − BsNdP1 − iD0P1, s6d

which must be coupled with the equations for the electric

field and the carrier density f15g

Ė =
iv0Gc

2e0nng
P1 −

E

2tp
+
iv0nGcx0sNd

2ng
E , s7d

Ṅ =
I

qV
−
N

te
+

1

4"i
sE*P1 − EP1

*d +
e0eb

4"i
fx0sNd − x0sNd*guEu2.

s8d

In Eq. s7d, tp is the photon lifetime, ng is the group index,

and Gc is the confinement factor. In Eq. s8d, te is the inter-
band carrier relaxation time, I is the injected current, q is the

elementary charge, and V is the quantum-well volume.

Equations s7d and s8d are formally equivalent to those

derived in f15g. With a suitable rescaling of variables and

parameters they can be shown also to be equivalent to those

written in f16g. What makes the difference between f15,16g,
and those models and ours, are the assumptions made on the

functions x0sNd, AsNd, and BsNd. In f15g AsNd was assumed
to be a real function, which implies that the gain curve is a

Lorentzian. In f16g it was assumed that x0 is a complex

constant, whose value is determined by the requirement of

having no gain in absence of injected carriers. Here, we as-

sume that x0 is a real constant. One advantage of that choice

is straightforward: if x0 is real the last term in Eq. s8d van-
ishes. Moreover, the last term in Eq. s7d becomes a simple
oscillating term, exactly as the last term in Eq. s6d. We can

eliminate both setting D0=−v0nGcx0 /2ng and changing the

reference frequency from v=0 to v=D0. The new dynamical

equations are

Ė =
iv0Gc

2e0nng
P1 −

E

2tp
, s9d

Ṗ1 = e0ebAsNdE − BsNdP1, s10d

Ṅ =
I

qV
−
N

te
+

1

4"i
sE*P1 − EP1

*d . s11d

The assumption of x0 real and constant allows to greatly

simplify the EMBEs and write them in a form very close to

the MBEs. The price to pay is that the two-level-like suscep-

tibility, which after the change of reference frequency reads

xsN,vd = x0 +
AsNd

BsNd − iv
, s12d

is real for large frequencies, where the contribution of the

second term becomes negligible. Hence, it is not able to

account for the transition from gain to absorption that occurs

normally for large frequencies in real semiconductor materi-

als. However, it must be kept in mind that any set of EMBEs

is based on the quasiequilibrium approximation, which limits

the validity of the model to a band of width not larger than

,1 THz. As we shall see, the approximated susceptibility

reproduces well the real one in a band of that width around
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the maximum gain. What happens for larger frequencies is

not relevant.

The EMBEs s9d–s11d formally coincide with those de-

rived in f13g, starting from the microscopic semiconductor

Bloch equations. However, with respect to f13g, we express
the functions AsNd and BsNd in terms of important param-

eters such as the linewidth enhancement factor a, the trans-
parency carrier density N0, the gain width GsNd and the de-
tuning dsNd between the gain peak and the reference

frequency. An N-independent linewidth factor a calculated at

the reference frequency can be introduced assuming that both

the real and the imaginary part of xsN ,0d=x0+AsNd /BsNd
depend linearly on N. If we write

AsNd

BsNd
= − f0sa + idS N

N0

− 1D , s13d

where f0 is a real constant, a agrees with the usual definition.

The gain width GsNd and the detuning dsNd are defined by

BsNd = fGsNds1 − iad + 2idsNdg/td, s14d

where td is the dephasing time of the dipoles. In order for

GsNd and dsNd to have the meaning introduced above, it

must be udsNdu!GsNd. The requirement ResBd.0 amounts

to the condition GsNd.0.

The susceptibility defined by Eqs. s12d–s14d was used to

fit a susceptibility calculated with the microscopic theory

including many-body effects f17g, as shown in Fig. 1. With

the additional assumption that GsNd and dsNd vary linearly

with N according to GsNd=G0+G1N /N0 and dsNd=d0
+d1N /N0, the fitting parameters are f0, N0, G0, G1, d0, d1, a,
and x0. The calculated values are reported in the figure cap-

tion. The relative error is smaller than 10% in a band of

frequencies represented by the vertical dotted lines, whose

width is close to 2td
−1 / s2pd, that is about 3 THz if td

=100 fs.

The final form of the EMBEs, suitable to study the spa-

tiotemporal dynamics of a broad area semiconductor laser

are obtained by including diffraction and carrier diffusion by

means of the transverse Laplacian ¹
2 f18–20g, which is de-

fined in terms of transverse coordinates scaled to the diffrac-

tion length

Ḟ = ssP − F + i¹2Fd , s15d

Ṗ = fGsDds1 − iad + 2idsDdgfs1 − iadFD − Pg , s16d

Ḋ = bFm − D −
1

2
sF*P + FP*d + d¹

2DG . s17d

The new adimensional variables are related to the old ones

by

F = h1Ee
iD0t, P = h2P1e

iD0t, D = h3S N

N0

− 1D ,
with h1

2= f0e0ebte / s2"N0d, h2= iv0Gctph1 / se0nngd, and h3

= f0v0Gctpn /ng. The parameter m=h3fsIted / sqVN0d−1g de-

scribes the pump; d is the diffusion coefficient. Time is

scaled to td, and s=td / s2tpd, b=td /te. We assume s

=0.025 and b=0.0001, which means tp=2 ps and te=1 ns.
In order to pass from GsNd and dsNd to GsDd and dsDd a

value must be assigned to the parameter h3. This parameter

is also related to the ratio Nthr /N0 of the threshold to the

transparency carrier density. In fact, since at threshold D

<1, we have Nthr /N0=1+1/h3. We chose h3=1, which

means that the threshold carrier density is twice the transpar-

ency carrier density. With that choice and with the fit param-

eters written in the caption of Fig. 1 we obtain GsDd=
−0.07+2.80D and dsDd=−1.58+1.51D+d8.

The parameter d8 has been introduced to put in evidence

that the actual value of dsDd depends on the relative position
of the reference frequency, which is the empty cavity fre-

quency shifted by the amount D0, with respect to the gain

peak. If d8=0 the reference frequency v=0 is placed exactly

in between the minima of the two curves of Im x calculated

with the smallest and the largest values of N, as in Fig. 1. If

d8 is positive snegatived the reference frequency is shifted to
the dashed sfrom the solidd. This degree of freedom will be

used in the next section to study the two situations of posi-

tive and negative effective atomic detuning.

Equations s15d–s17d differ from the two-level MBEs only

in the equation for P, where the multiplicative term GsDd
3s1− iad+2idsDd has been introduced. That term is enough

to account for the main features of the semiconductor sus-

ceptibility. If dsDd=aGsDd and G is independent from D, the

EMBEs are formally equivalent to the two-level MBEs.

With the addition of a term which describes a field in-

jected in the cavity, Eqs. s15d–s17d have been already used to
study cavity solitons in a driven VCSEL above threshold

f21g. They were particularly useful in that context for two

reasons. On one hand, for what concerns the homogeneous

-2 0 2 4
-0.02

0.00

0.02

0.04

Im χ

Re χ

N

N

ω τ
d

FIG. 1. The real and imaginary parts of the susceptibility calcu-

lated with the microscopic theory sdashed linesd for a 6 nm thick

GaAs/Al0.2Ga0.8As quantum well are represented together with the

fitting function xsN ,vd ssolid linesd. The carrier density N grows in

the direction of the arrow, and it takes the values 1.75, 2.0, 2.25,

2.531024 m−3. The fitting parameters are f0=1.24310−2, N0

=1.0531024 m−3, G0=−2.87, G1=2.80, d0=−3.09, d1=1.51, a

=1.08, and x0=3.71310−2.
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stationary state and the Turing instability they are equivalent

to the rate equations already applied to the VCSEL below

threshold, and this allows for a straightforward extension of

the results from below to above threshold. On the other hand,

since they account for the finite bandwith of the gain, they

remove the nonphysical short-wavelength instability that af-

fects the rate equations in the above threshold case below the

injection locking point.

III. THE LON INSTABILITY IN SEMICONDUCTOR

LASERS

The most general stationary solutions of Eqs. s15d–s17d
are tilted traveling waves with transverse wave vector K of

the form

E = Ese
isK·x−Vtd, P = Pse

isK·x−Vtd, D = Ds.

A useful approximation in the study of these solution and of

their stability consists in assuming GsDd=Gs1d and dsDd
=ds1d, which is well justified because D in the stationary

state is clamped to the threshold value D<1. Moreover, the

smallness of s allows to get simple approximated expres-

sions of the relevant quantities. If we write the detuning ds1d
as

ds1d = ssD + ad , s18d

with D of order unity, we obtain for the laser threshold mthr

and frequency V

mthr = 1 + s2
sK2 + adsK2 − a − 2Dd

s1 + a2dG2s1d
+Oss3d ,

V = ssK2 + ad +Oss2d . s19d

The parameter D plays the same role as the atomic detuning

in two-level lasers in the selection of the wave vector at

threshold. If D.0 the threshold is minimum for K2.D, and
the laser frequency V coincides with the gain peak ds1d, as
expected. If D,0 the threshold is minimum for K=0. The

two behaviors can be seen in Fig. 2, where we plotted mthr as

a function of K2 for two opposite values of D.

The stability analysis of the homogeneous solution K=0

reveals that a real eigenvalue is positive if the perturbation is

modulated with wave-vector K such that

K2 , 2a
m − 1

m
, s20d

which coincides with Eq. s1d with a instead of D, and mthr

=1. Unlike Eq. s1d however, condition s20d is approximated,
because it was obtained neglecting terms of order s and

carrier diffusion sd=0d.
We notice that, according to condition s20d, the unstable

wave vectors are limited to the band 0,K2,2a. In a device
of size L the wave vectors take the discrete values Kn

=2pn /L, n=0, ±1, ±2. . . and the LON instability can be ob-

served only if K1
2,2a, which means that L must exceed the

minimum value Lmin=pÎ2/a. With a=1.08 as in Fig. 1, and
assuming that the diffraction length, which is the space unit

in the model, is 4–5 mm, we obtain, Lmin<20 mm. For L
.Lmin the instability threshold mi is

mi = S1 − K1
2

2a
D−1. s21d

Summarizing, for D,0 the homogeneous solution is se-

lected at threshold, but it is stable only up to mi. In a broad

device, where K1
2!2a, the stability domain could be very

small, and the instability threshold very close to the laser

threshold.

This is in sharp contrast with the predictions of MBEs, for

which the LON instability does not exist for D,0. Instead,

the EMBEs agree well with the results of the experiments,

where dynamical patterns close to threshold are invariably

observed for both signs of the detuning f11,12,22,23g. If the
MBEs are invoked to explain the experimental findings, the

instability of the homogeneous solution cannot be explained

for negative detuning. In the past the instability was ascribed

to boundary conditions, that alter the nature of the homog-

enous laser solution, introducing a spatial modulation of the

phase f23g. Here we show that the homogeneous solution in

a semiconductor laser for D,0 is intrinsically unstable, in-

dpendently from the boundary conditions.

In Fig. 3sad we show the evolution of the intensity spec-

FIG. 2. Laser threshold for s=0.025, a=1.08, and Gs1d=2.73.
The threshold is minimum at K2=0 for D=−2 supper curved and at
K2.D for D=2 slower curved.

FIG. 3. Intensity spectrum as a function of m. Same parameters

as in Fig. 2, with sad D=−2 and sbd D=2. A logarithmic scale is

used for the intensity.
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trum sfar fieldd emitted by a one-dimensional device with
K1=0.5 sL<50 mmd and D=−2 as the pump is varied con-

tinuously from slightly below the laser threshold to m=1.15
in 153107 time units s15 msd. As expected, the homoge-

neous solution K=0 is stable up to the LON instability

threshold mi=1.131. For larger pump values a complex mul-

timode dynamics arise, but the dominant mode is always K

=0, which means that a low-divergence dynamical pattern is

produced. This behavior also agrees with the experimental

observations and with the numerical simulations performed

using a model similar to that of f15g but which incorporates
plasma and lattice heating f24g.

The numerical simulations show that the role of the LON

instability is not confined to the case D,0, where the homo-

geneous solution is the first lasing solution. Figure 3sbd was
obtained with the same parameters as Fig. 3sad, but D=2. As

expected, the first lasing solution is the traveling wave with

K=−1.5, which is the one closest to −ÎD. However, this
solution becomes unstable almost immediately, and at m
=1.1 the homogeneous solution already prevails. Increasing

the pump further, the laser behaves almost exactly as with

negative D. The fact that for D.0 the tilted traveling wave

in a semiconductor laser is unstable almost immediately

above threshold has been reported also in numerical simula-

tions based on a model where a CSHE for the field is

coupled with a mean flow equation for the carrier density

f25g. The instability was attributed to the factor a and, in

agreement with our simulations, it led to a low divergence

turbulent dynamics. A similarity of dynamical behaviors for

the two signs of D was also reported in some experiments

f12g.
To better understand what happens at the LON instability

threshold we studied the evolution of the laser in the interval

1.13,m,1.14 varying m ten times slower than in Fig. 3, to

remove transients. Figure 4sad shows the intensity spectrum

and Fig. 4sbd the corresponding spatial profile of the inten-

sity. These results have been obtained with D=2, but they do

not differ substantially from those obtained with the opposite

value of D.
As predicted by the theory, the instability is triggered by

the first modes with K= ±0.5, but their amplitude is so small

that no structures can be seen in Fig. 4sbd. Soon higher order
modes come into play. In the first stage the dominant modes

are K=0 and K=1.5, which give rise to a dynamical pattern

with three traveling rolls. A further increase of the pump

causes this solution to become unstable and a more complex

dynamical pattern appears, where mode K=−2 is also impor-

tant. Hence, although the LON instability is associated with a

real eigenvalue, no stationary patterns are observed above mi.

The LON instability in reduced models

In two-level lasers the LON instability exists also in the

limit in which the material variables are adiabatically elimi-

nated and the model is reduced to a single equation for the

complex electric field f1g. One could wonder if the same is

true for semiconductor lasers.

In fact, even in the standard rate equation limit of Eqs.

s15d–s17d the LON instability can be found. However, those

equations, which neglect the frequency dependence of gain,

do not describe correctly the multimode dynamics beyond

the instability threshold. Moreover they do not account for

the mechanism of wave-vector selection at threshold.

A careful analysis of the generalized rate equation model

of f26g, which include the frequency dependence of gain,

would probably reveal that the LON instability is correctly

described also within that model. But the parameter a does

not appear explicitly there, and this makes less straightfor-

ward the derivation of the instability condition. Moreover, in

f26g the frequency dependence in the complex susceptibility
is introduced through the numerical calculated instantaneous

frequency of the electric field, and it is not clear whether

such a method allows to follow the complex multimode dy-

namics exhibited by the laser beyond the instability thresh-

old.

The model of f25,27g consists of a CSHE for the electric

field coupled with an equation for the carrier density. As its

two-level analogous f9,10g, the semiconductor CSHE ac-

counts for wave-vector selection at threshold through an ef-

fective atomic detuning parameter. A nonlinear dispersion

term proportional to the linewidth enhancement factor a also

appears. Hence, the main ingredients present in our EMBEs

are contained in that reduced model. Yet, since the model is

valid only in the limit of laser very close to threshold, it

gives just an approximated instability condition

K2 , 2asm − 1d , s22d

which coincides with Eq. s20d only in the limit m<1. Cor-

respondingly, the instability threshold according to the CHSE

is

mi,CSHE = 1 +
K1
2

2a
, s23d

and, again, there is a good agreement with Eq. s21d only in

the limit of very broad devices, for which K1
2!2a and the

instability threshold is very close to the laser threshold. For

smaller devices mi,CSHE and mi can differ appreciably. More-

over, in the semiconductor CHSE the description of the sus-

ceptibility is oversimplified, because the dependence on the

carrier density is lost and the gain is symmetric.

FIG. 4. sad Intensity spectrum and sbd spatial profile of the in-
tensity in a small region around the LON instability threshold for

the same parameters as in Fig. 3sbd.
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IV. CONCLUSIONS

In this paper we have shown that the LON instability,
discovered in the context of two-level lasers, manifests fully
its relevance with semiconductor lasers. For these lasers, in
fact, it exists for both signs of the effective atomic detuning
D. For D,0 it is the fundamental mechanism that destabi-
lizes the homogeneous solution which is selected at laser
threshold. For D.0 numerical simulations have shown that
the tilted traveling wave selected at threshold can lose its
stability in favor of the homogeneous solution, and then also
in that case the transition to complex spatiotemporal dynam-
ics is governed by the LON instability.

The analysis was based on a set of equations which are
very close to the MBEs of two-level lasers, but mimic very

well the semiconductor susceptibility in a sufficiently wide

range of frequencies. We believe that the LON instability and

the complex spatiotemporal dynamics that arise from it can

be captured by a generalized rate equations model which

goes beyond the limitations of the existing ones. The deriva-

tion of such a model would allow to extend the numerical

analysis to two-dimensional systems for which the complete

EMBEs require extremely long computation times.
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