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We investigate the nature of the ground state of the one-dimensional t-J model coupled to adiabatic phonons

by use of the Lanczos technique at quarter filling. Due to the interplay between electron-electron and electron-

phonon interactions, the model undergoes instabilities toward the formation of lattice and charge modulations.

Moderate on-site and intrasite electron-phonon couplings lead to a competition of different spin-Peierls and

dimerized states. In the former case two electrons belong to the unit cell and we expect a paramagnetic band

insulator state, while lattice dimerization leads to a Mott insulating state with squasid long range antiferromag-
netic order. The zero temperature phase diagram is obtained as a function of intrasite and intersite electron-

phonon couplings, analytically in the J→0 limit and numerically at finite J / t.
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I. INTRODUCTION

The coupling between electrons and lattice degrees of
freedom in strongly correlated systems has been the subject
of several experimental and theoretical investigations show-
ing that low-dimensional materials are prone to structural
distortions driven by electron-phonon interaction.1,2 The
most celebrated case is the Peierls instability, extensively

studied in weakly correlated models: the ground state of a

one-dimensional electron-phonon system is characterized by

a lattice distortion which opens a gap at the Fermi energy

and gives rise to a charge modulation. In a half filled band,

the density wave is commensurate to the lattice, the unit cell

doubles and the chain shows a spontaneous dimerized

ground state. When on site Coulomb repulsion cannot be

neglected, the system displays competition between a Mott

insulator state with strong antiferromagnetic correlations, fa-

vored by electron-electron interaction, and a paramagnetic

band insulator state stabilized by lattice effects.

Experimentally, there are indications for the importance

of both electron-electron and electron-phonon interactions in

quasi-one-dimensional systems. In particular there is a wide

class of low-dimensional materials, like the Bechgaard-Fabre

salts series, where the presence of these interactions leads to

several modulated phases such as: charge-density-wave

sCDWd, spin-Peierls sSPd, antiferromagnetic sAFd, spin-
density-wave sSDWd, and even a high temperature supercon-
ducting state.3

The physical mechanism which drives these different or-

derings is not fully understood yet. A satisfactory theory

should be able to explain the origin and the stability of dif-

ferent patterns, and the temperature scale at which they oc-

cur. In any case, the role of electron-phonon and electron-

electron interactions will be instrumental for the explanation

of the presence of bond and charge order.

By now, the physics of one-dimensional s1Dd electron
systems in a rigid lattice is well understood4 in terms of the

Luttinger liquid sLLd paradigm: a LL is a 1D paramagnetic
metal characterized by gapless excitations both in the spin

and in the charge channel. In spin isotropic models, the low

energy properties are determined by a single parameter de-

noted by Kr, in particular Kr,1 for repulsive interactions

and Kr.1 in the attractive regime. The former case is char-
acterized by strong antiferromagnetic correlations, while in

the latter dominant superconducting fluctuations are present.

Luttinger liquid theory is an invaluable tool for the study of

the effects of perturbations on an interacting 1D electron gas.

Within this theoretical framework, it has been shown that

electron-lattice coupling, impurities, and interchain interac-

tion can destabilize the LL behavior opening a gap in the

spin and/or charge excitation spectrum. A charge gap leads to

an insulating state whose properties depend whether the spin

sector remains gapless or not. A gapless spin spectrum leads

to a 1D Mott insulator with squasid antiferromagnetic order-
ing, while a gap in the spin channel corresponds to a band

insulator. In short range models, a spin gap with no charge

gap preludes to a squasid superconducting state.
Lattice effects in quasi-one-dimensional organic conduc-

tors have been mostly investigated on the basis of the Hub-

bard model with additional phonon couplings in adiabatic

approximation sPeierls-Hubbard modeld.5,6 Recent works ex-
tended the study to include quantum effects for the phonons.7

However, the role of phonon coupling in 1D models which

may display attractive interactions, like the t-J model, re-

ceived comparatively less attention.8,9 The simultaneous

presence of both bond and on-site sHolsteind phonons is
likely to be an essential ingredient for a faithful representa-

tion of quasi-1D organic materials. In this paper we explore

systematically the effect of adding electron-phonon interac-

tions to the t-J model by including intersite sbondd and on-
site sHolsteind phonon couplings in the adiabatic approxima-
tion. We aim at the understanding of the qualitative features

of the lattice periodicities which are stabilized and the se-

quence of modulations the model undergoes when the

strength of phonon couplings is varied.

II. THE MODEL

The t-J Hamiltonian provides one of the simplest models

able to capture the essential low energy physics of doped

antiferromagnets. The electron dynamics is governed by a

competition between two terms: the kinetic contribution

which describes hopping between adjacent sites and the near-
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est neighbor Heisenberg interaction, which favors antiferro-

magnetic alignment of spins. An infinite on-site repulsion is

also included in the model by means of a constraint. The

phase diagram of the pure t-J model has been numerically

determined10 while analytic solutions are known only in the

J→0 limit11 and at the supersymmetric point J / t=2.12,13 At

half filling the model reduces to the Heisenberg chain and

when it is adiabatically coupled to the lattice via an arbi-

trarily weak perturbation, the system undergoes spontaneous

dimerization sspin-Peierls instabilityd leading to a lattice dis-
tortion with wave vector q=2kF: adjacent spins are paired in

a singlet state and a spin gap in the excitation spectrum

shows up. For electron density n,1 the pure t-J model en-
ters the Luttinger liquid phase and, at larger J / t, phase sepa-

ration sets in.10

The one-dimensional t-J model coupled with adiabatic

phonons is defined by the Hamiltonian

H = −o
i

s1 − didsc̃i,s
†
c̃i+1,s + H.c.d

+ Jo
i

s1 − gdidSSi · Si+1 −
1

4
nini+1D + Vo

i

nini+1

+o
i

nivi +
1

2
KBo

i

di
2 +
1

2
KHo

i

vi
2, s1d

where Si are spin-1 /2 operators at the site i, c̃i,s
† =ci,s

† s1
−ni,−sd are electron Gutzwiller-projected creation operators
and ni=osci,s

† ci,s is the local electron density. We have also

set the bare hopping integral t to unity thereby fixing the

energy scale. Hamiltonian s1d includes both nearest neighbor
superexchange coupling J and Coulomb repulsion V. The

Hamiltonian parametrically depends on the classical vari-

ables di and vi which identify the bond distortion and the

amplitude of the internal site vibration, respectively. The

bond distortions are defined as di= sui−ui−1d, where ui is the
displacement of the i site from the equilibrium position,

while the on-site displacement vi corresponds to an effective

parameter which combines several processes. Clearly, the

physical range where the Hamiltonian s1d may be used is
restricted to udiu!1. The first three terms correspond to the
usual t-J-V model coupled with adiabatic bond phonons, the

next one is the Holstein type interaction between the par-

ticles and the lattice, while the last two terms describe the

elastic deformation energy, KB and KH being the spring con-

stants.

The t-J model s1d can be regarded as the strong coupling
limit of the extended Hubbard model when U→`. This
leads to a definite relationship between the Hubbard and

t-J couplings: J=4/ sU−Vd and g=2.8 However, it is

known14 that the t-J model can be also considered as an

effective one band Hamiltonian unrelated to the Hubbard

model. In this case, the superexchange coupling J takes into

account electronic processes involving other degrees of free-

dom slike the oxygen orbitals in copper oxide materials and
in manganites15d. The study of the effects of phonon cou-
pling in the t-J model allows us to analyze the role of mag-

netic interactions in stabilizing lattice distortions in itinerant

electron models. By varying the J parameter we can explic-

itly tune the strength of antiferromagnetic coupling in the
system: the comparison between the sanalyticald J→0 limit
and the snumericald finite J results will contribute to the un-
derstanding of the physical mechanisms leading to the ob-
served periodicities. In the following we will therefore con-
sider J, V, and g as free parameters in the t-J Hamiltonian
s1d.
The calculations have been performed at quarter filling

n=1/2, which is an appropriate choice to mimic the behavior
of the organic compounds. By use of Lanczos diagonaliza-
tions, we found the lattice distortions providing the lowest
energy, without any assumption on the periodicity of the bro-
ken symmetry ground state. The extremum condition defin-
ing the optimal modulation can be formally expressed as

]kHl

]di

= 0,
]kHl

]vi

= 0. s2d

The sum rule oidi=0 reflecting the ring geometry of the
model has been implemented by use of a Lagrange multi-
plier, while no constraint on hvij has been imposed. Here
k¯l is the ground-state expectation value obtained by exact
diagonalization using the Lanczos algorithm. In order to find
the bond length configuration which minimizes the total en-
ergy Eshdij , hvijd, at fixed spring constants sKB ,KHd, we iter-
ate the set of equations s2d until convergence is reached.
Following a previous investigation9 we chose open shell

boundary conditions in order to mimic the gapless behavior
of the spured t-J model in the thermodynamic limit when
studying a small size chain sNø16d.

III. ANALYTICAL RESULTS

In the special limit J→0 sand V=0d the problem can be
solved analytically even in the thermodynamic limit because
the charge and spin degrees of freedom exactly factorize at
all length scales.11 By setting J=0 in Eq. s1d the Hamiltonian
reduces to the pure kinetic contribution. In 1D the single
occupancy constraint of the t-J model can be explicitly taken
into account by promoting the spinful electron to spinless
fermions. The original electron problem at quarter filling
then maps into the adiabatic Su-Schrieffer-Heeger sSSHd
model16 for spinless fermions at half filling with an addi-
tional local potential vi and elastic deformation energies.
Being at half filling, the Hamiltonian s1d is unstable to-

ward dimerization and a gap in the energy spectrum opens
for arbitrarily weak electron phonon coupling. In the SSH
adiabatic case svi=0d a dimerized lattice distortion pattern
with uniform charge is stabilized and gives rise to a bond
ordered wave sBOWd. In the pure Holstein case sdi=0d the
lattice is undistorted and a CDW forms. A competition be-
tween BOW and CDW dimerizations is expected in the gen-
eral case. By assuming a dimerization pattern of the form
di= s−1did and vi= s−1div−v0, the Hamiltonian s1d for J→0

becomes

H = −o
i

s1 − ds− 1didsci,s
†
ci+1,s + H.c.d + vo

i

s− 1dini

+
N

2
KBd2 +

N

2
KHv

2 − v0Ne +
N

2
KHv0

2, s3d

where N is the number of sites and Ne=N /2 is the number of

particles.
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In this case the Hamiltonian can be easily diagonalized by

canonical transformations and the total energy, in the ther-

modynamic limit, has the form

E = − NE
−p/2

p/2
dq

2p
f4scos2 q + d2sin2 qd + v

2g1/2 +
N

2
KBd2

+
N

2
KHv

2 −
N

8KH

. s4d

The minima of the energy E as a function of the dimerization

parameters d and v always correspond to pure BOW sv=0d
or pure CDW sd=0d according to the values of the elastic
constants. The two modulations are respectively given by the

equations

KB = E
−p/2

p/2
dq

2p
2 sin2 qscos2 q + d2sin2 qd−1/2,

KH = E
−p/2

p/2
dq

2p
s4 cos2 q + v

2d−1/2. s5d

Finally, the BOW/CDW phase boundary is obtained by

equating the energies of the two distortions. The result is

shown in Fig. 1: the asymptotic form of the transition line for

large elastic constants si.e., for weak distortionsd is given
analytically by KB=4KH−2/p. We observe that at small KH

a charge dimerization in the undistorted lattice f4kF CDW
state: see Fig. 2sddg prevails, while in the rest of the phase
diagram a dimerized lattice with uniform charge f4kF BOW
state: see Fig. 2sadg is stabilized. In both cases a gap in the
charge excitation spectrum is present and the system is there-

fore an insulator.

In order to characterize the electronic ground state of the

model we observe that even in the presence of adiabatic

phonons the spin-charge factorization11 holds and therefore,

following the analysis carried out for the strong coupling

limit of the one-dimensional Hubbard model,17 the spin cor-

relations can be expressed as a convolution9

kSr · S0l =o
j=2

r+1

PSF
r sjdSHsj − 1d , s6d

where PSF
r sjd is the probability of finding j particles in s0,rd

with one particle in 0 and another in r, evaluated in the

ground state of the dimerized spinless Fermi gas. If we set

Nr=oi=0
r ni, the probability PSF

r sjd can be formally expressed
as PSF

r sjd= knonrdsNr− jdl.
The asymptotic decay of Eq. s6d, in the presence of lattice

dimerization and uniform charge fFig. 2sadg has been previ-
ously evaluated in Ref. 9

kSr · S0l ~

cosS2kFr − p

4
D

r
s7d

and shows antiferromagnetic quasi long range order. Here

the Fermi wave vector is given by kF=np /2=p /4. An analo-
gous scenario is expected in the CDW phase, where the lat-

tice is uniform but the charge is dimerized fsee Fig. 2sddg. In
this case the spin-spin correlation function is not translation-

ally invariant and decays as

kSr · S0l ~
coss2kFrd

r
s8d

within each sublattice. This asymptotic result, valid for any

charge dimerization, can be obtained in a simple way in the

limiting case where the electron density is zero in one sub-

lattice si.e., when v→`d. In this case PSF
r sjd=d j,r/2+1 which

leads to s8d via Eq. s6d. Therefore in both the BOW and

CDW case, the t-J model is characterized by a charge gap

together with a 1/r decay of spin correlations and diverging

antiferromagnetic susceptibility, as in the 1D Heisenberg

model. Such a scenario strongly suggests that, even for J

→0, lattice coupling favors antiferromagnetism, which will

FIG. 1. Zero temperature phase diagram of the t-J model

coupled to adiabatic phonons in the J→0 limit.

FIG. 2. Pictorial representations of the competing density waves

in the ground state of the t-J model. sad 4kF BOW two different

bonds and uniform charge, sbd 2kF BCDW tetramerized phase sI-S-
I-Wd three different bonds and two different charges, scd 4kF
CDW-SP sW-W-S-Sd two different bonds and three different

charges, sdd 4kF CDW uniform bond and two different charges.

COMPETITIVE DENSITY WAVES IN QUASI-ONE-¼ PHYSICAL REVIEW B 73, 195108 s2006d

195108-3



be eventually stabilized when the interchain coupling,

present in the three-dimensional systems, is taken into ac-

count.

Interestingly, this solution directly applies to the strong

coupling limit of the Hubbard model via the correspondence

J=4/U. Therefore we expect that the phase diagram of Fig.

1 faithfully represents the behavior of the U→` Hubbard

model when only the on-site Coulomb repulsion is consid-

ered si.e., V=0d. The presence of finite range interactions is
likely to play an important role in stabilizing other periodici-

ties.

IV. LANCZOS DIAGONALIZATIONS

We now turn to the analysis of the full Hamiltonian s1d
including the super-exchange term J and both Holstein and

Peierls lattice couplings. Unfortunately for finite values of J

it is not possible to derive exact results in the thermodynamic

limit and then we investigate this model at quarter filling and

vanishing magnetization. Results are given for a fixed value

of magnetic and magnetoelastic couplings sJ=1.4, V=0, and
g=1d in order to discuss the interplay between bond and
charge distortions in the presence of antiferromagnetic inter-

actions. We note that, due to strong finite size effects, a large

value of the magnetic coupling J is necessary to stabilize the

possible symmetry broken phases. Otherwise, lattice and

charge modulations are present only for exceedingly small

elastic constants. However, we believe that the qualitative

features of the phase diagram at realistic values of J are well

reproduced by our small cluster calculations, while we ex-

pect that the position of the phase boundaries and the ampli-

tude of the lattice distortions will be severely renormalized in

the thermodynamic limit.

In the ground state we observe only two competing peri-

odicities: tetramerization sq=2kFd and dimerization sq
=4kFd. In the former case two electrons per unit cell are
present and then the system will probably be a paramagnetic

band insulator with both charge and spin gap. This regime

corresponds to the spin-Peierls phase experimentally found

in the Fabre and Bechgaard salts series.3 When a q=4kF
modulation is stabilized, two sites belong to the unit cell

thereby accommodating a single electron: the umklapp scat-

tering opens a charge gap and the system behaves like a Mott

insulator.

In Fig. 3 we present a schematic ground state phase dia-

gram in the 1/KH-1 /KB plane, showing the regions where

the various broken symmetries dominate. Note that, as soon

as both phonon couplings are significant, mixed CDW-BOW

ground states are stabilized.

All numerical results have been obtained by Lanczos di-

agonalization with no assumption on the supercell structure

or on the periodicity of the ground state. This limits the

investigated cluster sizes to the range Nø16. In all cases the
results do not depend on the starting bond configuration nor

on the convergence requirement of the adopted iterative

method.9 At large KH, the numerical data show a narrow

region where the ground state is a 4kF BOW, as we found in

the J→0 limit. However, we suspect that in the thermody-

namic limit this phase disappears at finite J: our evidence for

this comes from few Lanczos diagonalizations carried out in
a N=20 site chain18 showing that the stability region of the
4kF BOW phase is considerably reduced, while the other
phase boundaries hardly move. Therefore we can conclude,
as already suggested for the Peierls-extended Hubbard
model,5 that the 4kF BOW ground state phase could be an
artifact of the limited size chain.
Few calculations have also been performed for different

parameter values. In all cases we observed the same se-

quence of states shown in the phase diagram of Fig. 3 while

only the phase boundaries are sensibly affected by the pre-

cise values of the couplings: When J is reduced, a uniform

phase appears at large values of KH and the stability domains

of the BOW phase get larger. Remarkably, the qualitative

appearance of the phase diagram remains unaltered by tuning

the magnetoelastic coupling g and most of the changes can

be absorbed into a renormalization of the couplings, the ef-

fective J being reduced when g is increased. Similarly, by

including the nearest neighbor Coulomb repulsion V.0 the
rigidity of the system is enhanced and the effective elastic

constants get larger. However, no qualitatively different be-

haviors appear.

For the investigated value of the super-exchange term J,

all the various charge and bond modulations can be stabi-

lized by tuning the Holstein coupling at fixed KB. Moving

from weak to strong on-site coupling si.e., by lowering KHd
three different types of structures are found: a 4kF CDW, a

4kF CDW-SP, and a 2kF BCDW. In all these phases, the bond

and charge density pattern can be simply parameterized as

knil =
1

2
+ A4kF

cosspid + A2kF cosSp

2
i + fcD ,

FIG. 3. Phase diagram of the t-J model coupled to adiabatic

phonons s1d obtained by numerical diagonalization of a Nø16 site

chain. The boundaries of the dimerized bond order 4kF BOW, the

tetramerized 2kF BCDW, the 4kF CDW, and uniform bond order,

the 4kF CDW-SP tetramerized bond-charge order are schematically

shown. The dashed line represents a crossover between two differ-

ent metastable states, as discussed in the text.
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di = B4kF
cosspid + B2kF cosSp

2
i + fbD . s9d

At small on-site coupling sKH→`d 4kF CDW instability pre-

vails, while bonds remain uniform fsee Fig. 2sddg. In this
phase, the only nonvanishing amplitude in Eq. s9d is A4kF.
Note that a previous investigation of the t-J model without

Holstein phonons9 showed no evidence in favor of the 4kF
CDW-SP and 4kF CDW phases. By lowering KH, a tetramer-

ized phase denoted 4kF CDW-SP is obtained in the region of

intermediate phonon couplings fsee Fig. 2scdg: the charge
ordering is characterized by a superposition of a 2kF and a

4kF density wave, while the lattice modulation contains only

a strong 2kF component. This regime corresponds to the

W-W-S-S bond sequence, where S and W respectively rep-

resent a weak sWd and strong sSd bond. The charges order
according to the sequence 1-0-1-0, where 1 s0d identifies a
local density higher slowerd than the average sn=1/2d. Note
that, as shown in Fig. 2scd, the two low density s“0”d sites
inside the unit cell have different densities. The bond modu-

lation is reproduced by setting B2kF
Þ0, B4kF

.0, and fb

=p /4 in Eq. s9d, while the charge pattern requires A2kFÞ0,

A4kF
Þ0, and fc=0. At small KH the ground state is charac-

terized by a mixed 2kF and 4kF lattice order accompanied by

a strong 2kF charge modulation sBCDW phased. The bond
sequence is of the form I-S-I-W swhere I stands for interme-
diate, i.e., a moderately strong bondd and the charge order is
the type of 0-1-1-0 fsee Fig. 2sbdg. The site centered BOW
corresponds to both B4kF

Þ0 and B2kF
Þ0 with fb=0, and

the 2kF bond centered CDW is parameterized by A2kF
Þ0,

A4kF
.0, and fc=p /4. Notice that while the strong sSd and

weak sWd bonds are affected by the strength of the on-site
and bond couplings, the intermediate sId bonds remain
roughly constant throughout the BCDW region. By compar-

ing these patterns to those obtained in the absence of Hol-

stein phonons9 we see that in the BCDW phase the S-W-

S-W8 bond sequence is never stabilized sexcept in a narrow
region close to the phase boundaryd. However, by reducing
the antiferromagnetic coupling or by including a nearest

neighbor Coulomb term V, a small BCDW region character-

ized by the S-W-S-W8 sequence does appear, as already no-

ticed in a previous investigation.9 This suggests that in the

small J limit, where the t-J model reduces to the strong cou-

pling regime of the Hubbard model, the S-W-S-W8 bond

pattern shows up.6,19

The sequence of modulations displayed in the phase dia-

gram of Fig. 3 does not change qualitatively with KB and is

maintained even at small bond phonon coupling, i.e., in the

limit KB→`, where the amplitude of the bond distortions
becomes vanishingly small sdi→0d. Contrary to the Hubbard
model, the quantitative values of the site charge density wave

knil in the 4kF CDW-SP and 4kF CDW state are quite small,

whereas in the BCDW state they are considerably larger. We

could not stabilize, in our calculations, any 4kF CDW-SP or

4kF CDW states with large values of knil, nor any BCDW
state with small knil. In Fig. 4 we show a typical trend of the
site charge density wave knil. The various points at each KB

provide the independent density values inside the unit cell of

the superlattice generated by the phonon distortions. Both the

4kF CDW-SP and the 4kF CDW regime are characterized by

a substantially KB independent value of the highest density.

Instead, the lower density of the 4kF CDW state splits into

two branches in the 4kF CDW-SP phase: the splitting in-

creases continuously even through the BCDW phase bound-

ary. Similarly, by varying KH at fixed KB the size of the bond

modulation and its periodicities are shown in Fig. 5 in the

different regions of the phase diagram.

Whenever lattice tetramerization is stabilized, two elec-

trons belong to the unit cell and then the chain behaves as a

paramagnetic band insulator, like in the spin-Peierls phase.

We believe that, because of the presence of both charge and

spin gap, this phase is stable toward three-dimensional s3Dd
interchain coupling. While for lattice dimerization one elec-

tron belongs to the unit cell, electron repulsive interactions

drive the system toward a Mott insulator phase and, if 3D

coupling is allowed, antiferromagnetic order is favored.

Our numerical study has been limited to investigate the

ground state properties of the Hamiltonian s1d. However a
finite temperature analysis is relevant in order to apply the

results of our model to real materials. Some preliminary in-

formation about the temperature dependence can be inferred

by evaluating, via Lanczos diagonalizations, the energies of

the lowest metastable state of the Hamiltonian s1d obtained
by imposing a given periodicity of the bond/charge modula-

tion. More precisely, let us consider a point of the phase

diagram corresponding to a 2kF modulation of the ground

state, either of the BCDW or of the 4kF CDW-SP type: We

FIG. 4. Local densities in the unit cell as a function of KB at the

given value KH=1.

FIG. 5. Bond strengths in the unit cell as a function of KH for

KB=3.
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performed a self-consistent Lanczos diagonalization by im-

posing the further constraint of 4kF periodicity, i.e., of a two

site unitary cell. In this way, the calculation cannot converge

to the actual ground state swhich is characterized by a four
site unitary celld but instead it selects a metastable state iden-
tified as the lowest energy state with two site periodicity. The

nature of this metastable state changes throughout the phase

diagram of Fig. 3: it is of the 4kF CDW type fFig. 2sddg in
the whole 4kF CDW-SP region and to the right of the dashed

line in the BCDW phase, while it is of the 4kF BOW type

fFig. 2sadg in the remaining part of the BCDW region. The

picture of the underlying energy landscape and the evalua-

tion of the energy barrier separating the symmetry broken

states can be also obtained by Lanczos diagonalizations.

Starting from a W-W-S-S configuration fFig. 2scdg we gradu-
ally changed the difference dS-dW between the two strong

and the two weak lattice distortions in the unitary cell, while

letting the self-consistent Lanczos algorithm optimize the vi-

brational parameters vi. A typical plot of the energy as a

function of the bond asymmetry is shown in Fig. 6 slower
paneld. The broken symmetry 4kF CDW-SP ground states
correspond to the energy minima at nonvanishing bond

asymmetry, while the 4kF CDW metastable state with uni-

form bonds is the central maximum. When the thermal en-

ergy kBT is higher than the energy barrier DE we expect that
thermal fluctuations will restore the full symmetry among the

bonds in the unitary cell stabilizing a 4kF CDW state. Analo-

gous calculation can be performed in the other regimes. In

Fig. 6 supper paneld the energy landscape corresponding to
the BCDW phase I-S-I-W is shown. Here, dS-dW identifies

the difference between the strongest sSd and the weakest sWd
bond, while the two other bonds sof equal strengthd are kept
constant. The overall picture is quite similar to the previous

case, although the energy barrier is considerably higher. The

metastable state at dS=dW now corresponds to a dimerized

sBOWd configuration with uniform charge: such a phase is

then expected to represent the intermediate temperature re-

gime in this region of the phase diagram. At higher tempera-

tures a metallic uniform state is stabilized. The two scenarios

discussed here are schematically shown in Fig. 7. Interest-

ingly, the former case fpanel sadg corresponds to the ground
state sequence experimentally found in the Fabre salt series

by increasing the temperature.3

V. CONCLUSIONS

We have investigated the t-J Hamiltonian including both

adiabatic Holstein and Peierls lattice couplings, with ampli-

tudes defined by the two independent parameters 1 /KH and

1/KB, respectively. Exact analytical treatment of the J→0

limit together with the implementation of a numerical

method based on Lanczos technique allowed us to determine

the ground state phase diagram as a function of the elastic

constants at fixed value of the superexchange interaction J

=1.4. For a weak on-site sHolsteind coupling si.e., KH→`d,
two different dimerized regimes are stabilized: a 4kF BOW

and a 4kF CDW which display the typical features of a Mott

insulator and suggest antiferromagnetic order in three-

dimensional samples. In the former case the charge distribu-

tion remains uniform while the lattice is dimerized; in the

latter case the bond is uniform with dimerized charge. When

KH gets smaller, tetramerized phases appear displaying the

typical behavior of the spin-Peierls regime: the 4kF CDW-SP

phase, for intermediate coupling, and the 2kF BCDW for

strong coupling. The SP phase with 1-0-1-0 charge order has

two kinds of bond and three distinct charges, the bond dis-

tortion pattern is W-W-S-S and the distortion makes the

charges on the sites labeled “0” unequal s4kF CDW-SPd. In
contrast, the SP phase with 0-1-1-0 charge order is a BCDW

phase, with two different charges and three different bond

order, the bond distortion pattern is I-S-I-W. In the tetramer-

ized phases two electrons belong to the unit cell and then we

expect a paramagnetic band insulator, and we believe that

because of the presence of both charge and spin gap, these

two SP phases are stable toward 3D coupling and faithfully

represent the low temperature phases of the model. The SP

regimes give rise to two different scenarios at higher tem-

perature: by increasing the temperature, the system will ex-

FIG. 6. Energy landscapes obtained by varying the bond length

difference dS-dW ssee textd for KB=2, KH=2 supper paneld and KB

=5, KH=1 slower paneld.

FIG. 7. Schematic expected sequences of phases obtained from

a SP ground state seither BCDW or 4kF CDW-SPd by increasing the
temperature.
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plore metastable configurations corresponding to different
bond/charge pattern before entering a paramagnetic undis-
torted phase. By examining the metastable states of our
Hamiltonian we found two possibilities, one of them, the
sequence shown in Fig. 7sad, corresponds to the experimental
phase diagram of Fabre salts in the temperature-pressure
plane.1,3 Our study predicts that another sequence of phases,
shown in Fig. 7sbd, should be possible in quasi-one-
dimensional materials characterized by larger KH.
The effects of charge and bond ordering have been exten-

sively investigated in the extended Hubbard model19,20 adia-

batically coupled with the lattice. A ground state phase dia-

gram obtained as a function of the electron-phonon

interaction shows the same periodicities that we found in our

model, with the exception of the BCDW regime whose bond

pattern follows the S-W-S-W8 sequence. By lowering J or

by adding the nearest neighbor Coulomb repulsion V, the

S-W-S-W8 is recovered in a small window close to the

BCDW phase boundary.

This analytical and numerical study represents an attempt

to investigate the interplay of bond and Holstein phonons in

the one-dimensional t-J model. The results show an overall

similarity with respect to previous studies for the Hubbard

model. However, even when the bond pattern is similar, the

corresponding charge density wave displays different fea-

tures between the two models due to the presence of a finite

range attraction, of magnetic origin, in the t-J systems. A

nearest neighbor attraction smears the strong charge oscilla-

tions present, for instance, in the 4kF CDW phase of the

Hubbard model.5 A direct measure of charge and bond pat-

terns in organic conductors will help in understanding the

role of direct magnetic coupling in real materials. Finally,

another remarkable result which emerges from this work is

the counterintuitive suppression of antiferromagnetic squasid
long range order in strongly correlated models when J is

increased, due to the coupling to the lattice which drives a

2kF instability, leading to a spin-Peierls state.
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