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A smooth cutoff formulation of the hierarchical reference theory (HRT) is developed and applied to a

Yukawa fluid. The HRT equations are derived and numerically solved leading to the expected renormal-

ization group structure in the critical region, nonclassical critical exponents and scaling laws, a convex

free energy in the whole phase diagram (including the two-phase region), finite compressibility at

coexistence, together with a fully satisfactory comparison with available numerical simulations. This

theory, which also guarantees the correct short range behavior of two body correlations, represents a major

improvement over the existing liquid-state theories.
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Given that the physics of the liquid-vapor phase transi-

tion is a textbook topic in thermodynamics, it is disappoint-

ing that so far no liquid-state theory has been able to

describe it satisfactorily. In fact, when faced with phase

coexistence, mean-field approaches such as (generalized)

van der Waals theories give a nonconvex free energy, while

integral equations [1] fail to converge altogether in some

domain inside the coexistence region. In both cases, the

coexistence boundary must be recovered via the Maxwell

construction, namely, by imposing thermodynamic equi-

librium a posteriori. Aside from first-principles consider-

ations, it should also be noted that this procedure may turn

out to be cumbersome to implement, especially in the case

of integral equations, because of the need to circumvent the

forbidden domain and the ambiguities entailed by this

procedure for theories lacking thermodynamic consistency.

When dealing with mixtures of fluids, this becomes a

serious hindrance to the theoretical determination of the

phase diagram.

The approach that comes closest to a realistic descrip-

tion of the liquid-vapor transition is the hierarchical refer-

ence theory (HRT) of fluids [2], a genuine microscopic

approach that implements the renormalization group (RG)

method within the liquid-state framework. HRT is able to

reproduce nonclassical critical exponents, scaling laws,

and, what is most relevant for this discussion, a rigorously

convex free energy, so that flat isotherms at coexistence

naturally emerge from the theory, leading to accurate

predictions of phase boundaries. However, the implemen-

tation of HRT developed so far is plagued by an unphysical

divergence of the compressibility on the coexistence

boundary [3]. In liquid-state theory jargon, HRT forces

the spinodal and the binodal curve to coincide. If flat

isotherms are obtained at this price, one may have some

doubts about how reliable the description of the first-order

phase transition given by HRT really is. This also prevents

one from achieving any information on the possible occur-

rence of metastable pure phases that, in the usual ap-

proaches, are located between the binodal and the spinodal.

In this Letter we show that a novel implementation of

HRT based on a smooth cutoff procedure [4] is able to

reproduce correctly the physics at the phase boundary and

provide a criterion to discriminate between unstable and

metastable states, while also improving on the representa-

tion of short range correlations. This qualifies HRT as the

only liquid-state theory able to provide a satisfactory de-

scription of the liquid-vapor phase transition.

Following the lesson of the RG [5], HRT is based on the

gradual introduction of (density) fluctuations starting from

short wavelengths. The two body potential v�r� is first split

into the sum of a (repulsive) reference part vR�r� and a

(mostly attractive) tailw�r�. The properties of the reference

system, usually a hard sphere fluid, are assumed to be

known, and a sequence of intermediate systems is intro-

duced, labeled by a parameter t 2 �0;1� ‘‘interpolating’’

between the reference and the physical model. The inter-

action potential of the t system is vt�r� � vR�r� � wt�r�
where the Fourier components ~wt�k� of wt�r� are strongly

suppressed for wave vectors k & eÿt. The change in the

free energy of the system when the parameter t undergoes

an infinitesimal change can be evaluated exactly, leading to

the HRT differential equation.

The purpose of the procedure outlined above is to sup-

press the liquid-vapor transition throughout the whole

sequence of intermediate t systems, due to the long range

repulsive tail present in wt�r�. As in the RG, the long-

wavelength fluctuations that drive the phase transition must

be allowed to develop only in the t! 1 limit, when wt�r�
tends to the physical attractive interaction w�r�. The sharp

cutoff formulation of HRT, which has been successfully

applied to several model systems [6], fulfills this condition.

The sharp cutoff is defined by the choice ~wt�k� � ~w�k� for

k > eÿt while ~wt�k� � 0 for k < eÿt and gives rise to an

HRT equation which, close to the critical point and at long

wavelengths, reproduces the Wegner-Houghton RG

scheme [7]. When a simple, analytic closure for the corre-

lations is inserted into this equation, some flaws occur

close to the first-order boundary, where, as previously
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discussed, a diverging compressibility is predicted by the

sharp cutoff HRT. Remarkably, it has been recently shown,

in the framework of scalar field theories, that this unphys-

ical behavior can be eliminated by changing the cutoff

procedure, i.e., by modifying the definition of the inter-

mediate potentials wt�r� [8,9]. Whether this property sur-

vives in the framework of a liquid-state theory is not

known, and it is addressed here. In this Letter, we adopt

the following form:

 wt�r� � w�r� ÿ eÿdt �t�w�reÿt�; (1)

where d � 3 is the space dimensionality and  �t� is a

decreasing function of t with  �0� � 1 and asymptotic

behavior  �t� / eÿ2t for t! 1. The precise definition of

 �t� will be discussed later. Note the t dependence of the

range of the second (weakly repulsive) contribution to

wt�r�: in the large t limit, the amplitude of this term

decreases while its range grows.

The differential equation expressing the change in the

free energy when the parameter t (and hence the interaction

vt) is changed follows from first-order perturbation theory

[10]:

 

dAt
dt

�
�2

2

Z

drgt�r�
d�t

dt
; (2)

where At is �ÿ�� times the Helmholtz free energy per unit

volume of the fluid interacting via vt�r� and gt�r� is the

corresponding radial distribution function, while �t�r� �
ÿ�wt�r�. This equation is formally exact but, as usual in

the HRT approach, it requires a closure relation expressing

the two body correlations in terms of the free energy.

Analogous to the standard implementation of the sharp

cutoff HRT [6], we adopt the following mean spherical

approximation (MSA)-like representation [10]:

 gt�r� � 0 for r < 1; (3)

 ct�r� � �t�r� � �t��r� for r > 1; (4)

where the direct correlation function ct�r� is related to gt�r�
by the usual Ornstein-Zernike (OZ) equation [10]. The key

feature of this closure is the presence of the �t parameter,

which is introduced in order to enforce the compressibility

sum rule:

 

@2At
@�2

� ÿ
1

�
�

Z

drct�r�: (5)

Equations (2)–(5) form, together with the definition (1), a

closed set of integrodifferential equations for the thermo-

dynamics and correlations of the model. The numerical

solution of this problem poses highly demanding computa-

tional tasks, which may, however, be simplified by choos-

ing a particularly favorable model system: the Yukawa

fluid, i.e., a hard sphere fluid with attractive tail

 ��r� � ÿ�w�r� �
1

T

eÿz�rÿ1�

r
; (6)

where T is the dimensionless temperature and z is the

inverse range. Lengths are normalized to the hard sphere

diameter. This one-parameter family of interaction poten-

tials actually represents one of the most studied systems in

liquid-state theory: because of the simple analytical form

of w�r� and the flexibility due to the tunable inverse range

parameter z, it provides a reasonable description of simple

fluids (for the celebrated choice z � 1:8) as well as colloi-

dal suspensions, where typically z� 1. A major advan-

tage of this particular form of the interaction follows from

the availability of an exact analytical solution of the OZ

integral equation with the ansatz (3) and (4) [11], which

provides the explicit expression of the radial distribution

function gt�r�. By use of this solution, the right-hand side

of the HRT Eq. (2) can be written in terms of �t or, by use

of Eq. (5), in terms of the free energy density At, leading to

a closed nonlinear partial differential equation.

It is apparent the similarity between the self-consistent

Ornstein-Zernike approximation (SCOZA) [12] and this

novel formulation of the HRT approach: both theories

satisfy Eqs. (3)–(5), and in both cases use is made of the

analytic solution of the OZ equation for a Yukawa poten-

tial. Moreover, the consistency condition at the basis of

SCOZA may be written in the form (2) for a specific choice

of the turning-on procedure of the attractive interaction: in

SCOZA the t parameter (often identified with the inverse

temperature) only affects the amplitude of w�r� without

changing its range. This seemingly minor difference has

profound implications on the behavior of the theory in the

critical region and close to the phase boundary.

The cutoff function  �t� in Eq. (1) has been chosen in

order to guarantee the numerical stability of the HRT

differential equation:  �t� � �1� zt=2�ÿ2 for t < t� and

 �t� � �cosht�ÿ2 for t > t�, where t� is defined by impos-

ing the continuity of  �t� [13]. Full details will be given in

a forthcoming publication.

Close to the critical point and in the t! 1 limit, the

HRT Eq. (2) simplifies and, when the thermodynamical

variables are properly rescaled, acquires a RG structure.

The precise form of the rescaled equation actually depends

on the specific form of the attractive part of the interaction

��r� (6), which in HRT plays the role of the smooth cutoff

of the RG approach. A fixed point analysis, similar to that

performed for a �4 theory [9], shows that the HRT equa-

TABLE I. HRT estimates of the critical exponents and com-

pressibility amplitude ratio in three dimensions for z � 1:8
compared to the exact values [14].

Exponent � � 
 � � U2 � C�=Cÿ

‘‘Exact’’ 0.110 0.327 1.237 4.789 0.036 4.76

HRT 0.01 0.332 1.328 5 0 4.16
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tion satisfies scaling and hyperscaling with the nonclassical

critical exponents shown in Table I. The numerical solution

of the full HRT Eq. (2) allows one to justify the fixed point

analysis on microscopic grounds: very close to the critical

point, the quantity

 �ÿ1
t � ÿ�

�
@2At
@�2

�  �t�
Z

dr��r�

�

; (7)

when multiplied by the rescaling factor e2t, falls into the

basin of attraction of the fixed point, as shown in Fig. 1.

However, at very long wavelength (i.e., for t! 1), the

small deviations from the critical point drive the system

either to the ‘‘infinite temperature’’ or to the ‘‘zero tem-

perature’’ fixed point. The physical meaning of �ÿ1
t is

apparent from its definition: it is proportional to the inverse

compressibility (5) supplemented by the mean-field con-

tribution associated with the residual part of the potential

w�r� ÿ wt�r�. In order to understand how the singularity

associated with the first-order liquid-vapor transition de-

velops within HRT, it is instructive to follow the ‘‘evolu-

tion’’ of the inverse compressibility �ÿ1
t for a fixed

temperature below the critical point and different values

of t (see Fig. 2). Long-wavelength fluctuations force the

inverse compressibility to vanish identically in the t! 1
limit inside the binodal, as customary in the HRT approach

[3]. The novel feature displayed by the smooth cutoff

formulation, and clearly visible in Fig. 2, is the jump of

�ÿ1
1 across the phase boundary. A closer inspection of the t

evolution of �ÿ1 at coexistence reveals that the approach

toward zero proceeds differently deep inside the binodal,

where �ÿ1 remains negative throughout the evolution, and

close to the phase boundary, where long-wavelength fluc-

tuations first drive the system towards stability (�ÿ1 > 0)

and then push the inverse compressibility to zero. It is

FIG. 1. Rescaled inverse compressibility for z � 1:8 during

the t evolution at the critical density and reduced temperatures

�T ÿ Tc�=Tc � 1:1� 10ÿ5, 2:6� 10ÿ6, ÿ1:4� 10ÿ5 from top

to bottom. The dotted line is the fixed point critical value and the

dashed line is the ‘‘zero temperature’’ fixed point obtained by a

RG analysis of the HRT equation.

FIG. 2. Snapshots of the inverse compressibility along the

density axis for z � 1:8 and T � 1:1 at three different values

of the parameter t: t � 0 (dotted line), t � 0:2 (dashed line), t �
2:6 (dot-dashed line), and t! 1 (solid line).

FIG. 3. Log-log plot of the inverse compressibility as a func-

tion of the reduced temperature above (circles) and below the

critical temperature along the low-density (triangles) and the

high-density (squares) branch of the binodal for z � 1:8. Solid

lines show the expected power law behavior defined by the

exponent of Table I (
 � 1:328).

FIG. 4. Coexistence curve as obtained by HRT (open circles),

SCOZA (solid line) and Monte Carlo data (bars) for z � 5

(upper panel) [17] and z � 1:8 (lower panel) [12]. The HRT

spinodals are also shown (full circles).
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tempting to identify the boundary between these two re-

gimes as the boundary of metastability, i.e., the spinodal

curve. A power law fit of the compressibility in the critical

region �� CjT ÿ Tcj
ÿ
, shown in Fig. 3, is fully consis-

tent with the critical exponent 
 reported in Table I both

above and below the critical temperature. The amplitude

ratio C�=Cÿ, also shown in Table I, agrees well with the

field theoretical expectation. The phase diagram of a

Yukawa fluid with z � 1:8 and z � 5 is compared with

Monte Carlo simulations and SCOZA results in Fig. 4. The

constant volume specific heat can be obtained by differen-

tiation of the free energy density at convergence A1��; T�.
In Fig. 5 we plot the specific heat per particle Cv along the

critical isochore: the data below the critical temperature are

obtained by use of the free energy inside the coexistence

curve, which is directly accessible in HRT. A typical radial

distribution function of a z � 1:8 Yukawa liquid as ob-

tained by HRT is shown in Fig. 5. The core condition is

exactly fulfilled due to Eq. (3) and the use of the analytical

solution of the OZ equation. However, the linear depen-

dence of c�r� on the attractive interaction w�r� implied by

the MSA-like closure (4) limits the accuracy of HRT for

the description of the local structure of the fluid, particu-

larly at low density. Nevertheless, the accurate treatment of

the physics underlying the first-order transition has impor-

tant consequences on the form of g�r� inside the binodal. In

the two-phase region, density correlations are linear com-

binations of those of the two stable phases (liquid L and

vapor V). This implies the exact relation limr!1�
2g�r� �

���V � �L� ÿ �V�L, which is satisfied by the numerical

solution of the smooth cutoff HRT equation, as displayed in

Fig. 5.

In summary, we have shown how a smooth cutoff for-

mulation of HRT provides a consistent picture of the

equilibrium thermodynamics of a fluid, including the com-

plex, singular behavior at first- and second-order phase

transitions, a distinction between unstable and metastable

states, and quantitative predictions for the coexistence

curve, equation of state, and specific heat. The present

formulation of the theory is specific to a single Yukawa

interaction, but the available analytical solution of the OZ

equation for a sum of an arbitrary number of Yukawa

potentials foreshadows possible generalizations. A better

representation of correlations may also be achieved within

the HRT framework, either by adopting parametrizations

more elaborate than Eqs. (3) and (4) or by closing the

hierarchy at the level of the second equation, which em-

bodies the effects of density fluctuations on the structure of

the fluid [6]. Applications to binary mixtures [15] and

nonuniform fluids [16] are also possible.
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points: Monte Carlo simulations [12]. Upper-right panel: r! 1
limit of �2g�r� inside the coexistence curve for z � 1:8 and

T � 1.
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