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Abstract
Background/Aims: The multi-targeted kinase inhibitor pazopanib, a drug employed for 
the treatment of a wide variety of malignancies, has previously been shown to trigger 
apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal 
death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with 
phosphatidylserine translocation to the erythrocyte surface. Mechanisms involved in the 
triggering of eryptosis include Ca2+ entry, oxidative stress and ceramide. The present 
study explored, whether pazopanib induces eryptosis and, if so, whether it is effective 
by Ca2+ entry, oxidative stress and/or ceramide. Methods: Phosphatidylserine exposure 
at the cell surface was estimated from annexin-V-binding, cell volume from forward 
scatter, reactive oxygen species (ROS) formation from DCF dependent fluorescence, and 
ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human 
erythrocytes to pazopanib significantly increased the percentage of annexin-V-binding 
(≥ 25 µg/ml) and of shrunken erythrocytes (≥ 50 µg/ml). Pazopanib treatment further 
resulted in significant hemolysis (≥ 25 µg/ml). The effect of pazopanib on annexin-V-
binding was significantly blunted but not abolished by removal of extracellular Ca2+. 
Pazopanib significantly increased DCF fluorescence (50 µg/ml) and ceramide abundance 
(50 µg/ml). Conclusions: Pazopanib triggers eryptosis, an effect involving Ca2+ entry, 
oxidative stress and ceramide.

Introduction

Pazopanib, a multi-targeted inhibitor of tyrosine kinase [1-13], vascular endothelial 
growth factor receptor [4, 8, 14-17], and angiogenesis [2, 11, 18-21], is used for treatment 
of diverse malignancies [8], including renal cell carcinoma [1, 3-5, 7, 9, 13, 20, 22-38], soft 
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tissue sarcoma [2, 39-44], recurrent multiple CNS hemangioblastomas [45], epithelial 
ovarian cancer [46], gastroenteropancreatic neuroendocrine tumours  [47], malignant 
glioma [48], urothelial cancer [49], breast cancer [50], non small cell lung carcinoma [51] 
and medulloblastoma [52]. Untoward side effects of pazopanib include alopecia [53], 
hypertension [10, 21, 33, 49], fatigue [21, 49, 54], gastrointestinal events [10, 21, 33, 49, 55, 
56], liver toxicity [10, 33, 57] and hand-foot-skin reaction [6]. 

Pazopanib has been shown to stimulate apoptosis [51, 58-66], but may inhibit necroptosis 
[67]. Mechanisms involved in the stimulation of apoptosis include downregulation of the 
antiapoptotic proteins XIAP and MCL1 [63], as well as of HIF1α and ABCG2 genes [57], 
mammalian target of rapamycin [68], and poly(ADP-ribose) polymerase cleavage [63]. 
Mechanisms involved in the inhibition of necroptosis include receptor-interacting serine/
threonine-protein kinase 1 (RIPK1) and 3 (RIPK3) as well as transforming growth factor-β-
activated kinase 1 (TAK1) [67]. 

Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis [69], the 
suicidal death of erythrocytes characterized by cell shrinkage [70] and cell membrane 
scrambling apparent from phosphatidylserine translocation to the cell surface [69]. Eryptosis 
is triggered by Ca2+ entry [69], ceramide [71], oxidative stress [69], energy depletion [69], 
activated caspases [69, 72, 73], and activation of some kinases, such CK1α, JAK3, PKC, p38 
kinase and PAK2 kinase [69]. Eryptosis is further stimulated by genetic or pharmacological 
knockout of AMPK, cGMP-dependent protein kinase, and sorafenib/sunitinib sensitive 
kinases [69]. Eryptosis is stimulated by a variety of xenobiotics [69, 74-114]. 

The present study explored, whether pazopanib stimulates eryptosis. To this end, human 
erythrocytes from healthy volunteers were exposed to pazopanib and phosphatidylserine 
surface abundance, cell volume, formation of reactive oxygen species (ROS), and ceramide 
abundance quantified utilising flow cytometry. 

Materials and Methods 

Erythrocytes, solutions and chemicals
Fresh Li-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the 

University of Tübingen. The study is approved by the ethics committee of the University of Tübingen 
(184/2003 V). The blood was centrifuged at 120 g for 20 min at 21 °C and the platelets and leukocytes-
containing supernatant was disposed. Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer 
solution containing (in mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic 
acid (HEPES; pH 7.4), 5 glucose, 1 CaCl2, at 37°C for 48 hours. Where indicated, erythrocytes were exposed 
for 48 hours to pazopanib (MedChem Express, Princeton, USA). In order to estimate the impact of pazopanib 
on eryptosis due to high [Ca2+]i, erythrocytes were exposed for 1 hour to a combination of pazopanib and the 
Ca2+ ionophore ionomycin (Merck Millipore, Darmstadt, Germany). 

Annexin-V-binding and forward scatter 
After incubation under the respective experimental condition, a 100 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. The annexin-V-
abundance at the erythrocyte surface was subsequently determined on a FACS Calibur (BD, Heidelberg, 
Germany). Annexin-V-binding was measured with an excitation wavelength of 488 nm and an emission 
wavelength of 530 nm. A marker (M1) was placed to set an arbitrary threshold between annexin-V-binding 
cells and control cells. The same threshold was used for untreated and pazopanib treated erythrocytes. 
A dot plot of forward scatter (FSC) vs. side scatter (SSC) was set to linear scale for both parameters. The 
threshold of forward scatter was set at the default value of “52”.

Hemolysis 
For the determination of hemolysis, the samples were centrifuged (10 min at 2000 rpm, room 

temperature) after incubation under the respective experimental conditions and the supernatants 
were harvested. As a measure of hemolysis, the hemoglobin (Hb) concentration of the supernatant was 
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determined photometrically at 405 nm. The absorption of the supernatant of erythrocytes lysed in distilled 
water was defined as 100% hemolysis.

Fluo3-fluorescence
After incubation, erythrocytes were washed in Ringer solution and loaded with Fluo-3/AM (Biotium, 

Hayward, USA) in Ringer solution containing 5 µM Fluo-3/AM. The cells were incubated at 37°C for 30 
min. Ca2+-dependent fluorescence intensity was measured with an excitation wavelength of 488 nm and an 
emission wavelength of 530 nm on a FACS Calibur.

Reactive oxidant species (ROS) 
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein (DCF) diacetate. After 

incubation, a 100 µl suspension of erythrocytes was washed in Ringer solution and stained with DCF 
diacetate (Sigma, Schnelldorf, Germany) in Ringer solution containing DCF diacetate at a final concentration 
of 10 µM. Erythrocytes were incubated at 37°C for 30 min in the dark and washed two times in Ringer 
solution. The DCF-loaded erythrocytes were resuspended in 200 µl Ringer solution and ROS-dependent 
fluorescence intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 
530 nm on a FACS Calibur (BD).

Ceramide abundance
For the determination of ceramide, a monoclonal antibody-based assay was used. To this end, cells 

were stained for 1 hour at 37°C with 1 µg/ml anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, 
Germany) in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:10. The samples 
were washed twice with PBS-BSA. The cells were stained for 30 minutes with polyclonal fluorescein 
isothiocyanate (FITC) conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, 
Germany) diluted 1:50 in PBS-BSA. Unbound secondary antibody was removed by repeated washing with 
PBS-BSA. The samples were analyzed by flow cytometric analysis with an excitation wavelength of 488 nm 
and an emission wavelength of 530 nm. As a control, secondary antibody alone was used.

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis 

was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of 
different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments 
are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for 
control and experimental conditions.

Results

The present study explored whether the tyrosine kinase inhibitor pazopanib triggers 
eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine translocation 
to the cell surface and cell shrinkage. 

Phosphatidylserine at the erythrocyte surface was estimated from annexin-V-binding 
which was determined by flow cytometry. Prior to measurements, the erythrocytes were 
incubated for 48 hours in Ringer solution without or with pazopanib (10 – 50 µg/ml). 
As illustrated in Fig. 1, a 48 hours exposure to pazopanib increased the percentage of 
phosphatidylserine exposing erythrocytes, an effect reaching statistical significance at 25 
µg/ml pazopanib. 

Forward scatter determined by flow cytometry was taken as a measure of erythrocyte 
volume. Measurements were done in erythrocytes incubated for 48 hours in Ringer solution 
without or with pazopanib (10 – 50 µg/ml). The average erythrocyte forward scatter was 
similar without pazopanib treatment (497 ± 5.6, n = 16) and following treatment with 10 
µg/ml (511 ± 4.8, n = 16), 25 µg/ml (505 ± 5.0, n = 16), and 50 µg/ml (476 ± 7.0, n = 16) 
pazopanib. Moreover, the percentage of cells with forward scatter > 800 was similar without 
pazopanib treatment (96.4 ± 0.6, n = 16) and following treatment with 10 µg/ml (95.5 ± 0.5, 
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n = 16), 25 µg/ml (95.1 ± 0.6, n = 16), and 50 µg/ml (94.9 ± 0.7, n = 16) pazopanib. However, 
pazopanib increased the percentage of severely shrunken erythrocytes (Fig. 2A,B), an effect 
reaching statistical significance at 50 µg/ml pazopanib concentration. Dot blots of annexin-
V-binding versus forward scatter reveal that shrunken cells coincide with annexin-V-binding 
cells (Fig. 2C,D). 

Fig. 1. Effect of pazopanib on phosphatidylserine exposure. A. Original histogram of annexin-V-binding of 
erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) 
presence of 50 µg/ml pazopanib. B. Arithmetic means ± SEM (n = 16) of erythrocyte annexin-V-binding fol-
lowing incubation for 48 hours to Ringer solution without (white bar) or with (black bars) pazopanib (10 
- 50 µg/ml). ***(p<0.001) indicates significant difference from the absence of pazopanib (ANOVA).

Fig. 2. Effect of pazopanib on erythrocyte forward scatter. A. Original histogram of forward scatter of eryth-
rocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) pres-
ence of 50 µg/ml pazopanib. B. Arithmetic means ± SEM (n = 16) of the percentage erythrocytes with for-
ward scatter (FSC) < 200 following incubation for 48 hours to Ringer solution without (white bar) or with 
(black bars) pazopanib (10 - 50 µg/ml). C,D. Original dot plots of forward scatter vs annexin V abundance 
without (C) and with (D) prior treatment with 50 µg/ml pazopanib. ***(p<0.001) indicates significant dif-
ference from the absence of pazopanib (ANOVA).
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In order to estimate the impact of pazopanib on hemolysis, the percentage of haemolytic 
erythrocytes was estimated from the hemoglobin concentration in the supernatant. As 
illustrated in Fig. 3, pazopanib increased the percentage of haemolytic erythrocytes, an effect 
reaching statistical significance at 25 µg/ml pazopanib. 

Fluo3-fluorescence was taken as a measure of cytosolic Ca2+ activity ([Ca2+]i). As a result, 
following a 48 hours incubation the Fluo3-fluorescence was lower in the presence of 50 
µg/ml pazopanib (17.8 ± 2.7 a.u., n = 12) than in the absence of pazopanib (20.1 ± 3.6 a.u., 
n = 12). Additional experiments were performed in order to elucidate whether pazopanib 
affects Fluo3-fluorescence of erythrocytes treated with the Ca2+ ionophore ionomycin (1 µM) 
and thus containing saturating [Ca2+]i. As a result, 50 µg/ml pazopanib treatment decreased 
the Fluo3-fluorescence from 23.1 ± 1.4 a.u. (n = 5) to 16.5 ± 0.6 a.u. (n = 5) in the absence 
of ionomycin and from 46.1 ± 3.5 a.u. (n = 5) to 33.3 ± 1.7 a.u. (n = 5) in the presence of 
ionomycin. This observation suggests that pazopanib interferes with Fluo3-fluorescence by 
mechanisms other than decreasing [Ca2+]i, such as quenching of the Fluo3-fluorescence or 
leakage of dye thus reducing Fluo3-fluorescence.   

A next series of experiments explored whether the pazopanib-induced translocation 
of phosphatidylserine to the erythrocyte surface required entry of extracellular Ca2+. To 
this end, erythrocytes were incubated for 48 hours in the absence or presence of 50 µg/
ml pazopanib in the presence or nominal absence of extracellular Ca2+. As illustrated in Fig. 
4, removal of extracellular Ca2+ significantly blunted the effect of pazopanib on annexin-V-
binding. However, even in the absence of extracellular Ca2+, pazopanib significantly increased 
the percentage of annexin-V-binding erythrocytes. Thus, pazopanib-induced cell membrane 
scrambling was in part but not fully dependent on entry of extracellular Ca2+.

Fig. 3. Effect of pazopanib on hemolysis. Arithme-
tic means ± SEM (n = 8) of the percentage hemolytic 
erythrocytes following incubation for 48 hours to 
Ringer solution without (white bar) or with (black 
bars) pazopanib (10 - 50 µg/ml). ***(p<0.001) indi-
cates significant difference from the absence of pa-
zopanib (ANOVA).

Fig. 4. Ca2+ sensitivity of pazopanib -induced phosphatidylserine exposure. A,B. Original histogram of an-
nexin-V-binding of erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and 
with (black line) pazopanib (50 µg/ml) in the presence (A) and absence (B) of extracellular Ca2+. C. Arith-
metic means ± SEM (n = 8) of annexin-V-binding of erythrocytes after a 48 hours treatment with Ringer 
solution without (white bars) or with (black bars) pazopanib (50 µg/ml) in the presence (left bars, +Ca2+) 
and absence (right bars, -Ca2+) of Ca2+. ***(p<0.001) indicates significant difference from the absence of pa-
zopanib, #(p<0.05) indicates significant difference from the presence of Ca2+ (ANOVA).
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Eryptosis is further stimulated by oxidative stress. Reactive oxygen species (ROS) were 
thus quantified utilizing 2′,7′-dichlorodihydrofluorescein (DCF) diacetate. As illustrated in 
Fig. 5, pazopanib increased the DCF fluorescence in erythrocytes, an effect reaching statistical 
significance at 50 µg/ml pazopanib. 

A further stimulator of eryptosis is ceramide. Ceramide abundance at the erythrocyte 
surface was thus quantified utilizing specific antibodies. As illustrated in Fig. 6, 50 µg/ml 
pazopanib significantly increased the ceramide abundance at the erythrocyte surface. 

Discussion

The present observations reveal a novel effect of pazopanib, i.e. the stimulation of suicidal 
erythrocyte death or eryptosis. Exposure of human erythrocytes to pazopanib is followed by 
increase of the percentage shrunken and phosphatidylserine exposing erythrocytes. The 
pazopanib concentrations required for triggering of eryptosis are in the range of the plasma 
concentrations under pazopanib treatment [115, 116].

Fig. 6. Effect of pazopanib on ceramide abundance at the erythrocyte surface. A. Original histogram of ce-
ramide abundance in erythrocytes following exposure for 48 hours to Ringer solution without (grey area) 
and with (black line) presence of 50 µg/ml pazopanib. B. Arithmetic means ± SEM (n = 8) of the ceramide 
abundance (arbitrary units) in erythrocytes exposed for 48 hours to Ringer solution without (white bar) 
or with (black bar) presence of 50 µg/ml pazopanib. ***(p<0.001) indicates significant difference from the 
absence of pazopanib (ANOVA).

Fig. 5. Effect of pazopanib on ROS formation. A. Original histogram of DCF fluorescence in erythrocytes 
following exposure for 48 hours to Ringer solution without (grey area) and with (black line) presence of 
pazopanib (50 µg/ml). B. Arithmetic means ± SEM (n = 12) of the DCF fluorescence (arbitrary units) in 
erythrocytes exposed for 48 hours to Ringer solution without (white bar) or with (black bars) pazopanib 
(10 - 50 µg/ml). **(p<0.01) indicates significant difference from the absence of pazopanib (ANOVA).
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The effect of pazopanib on cell membrane scrambling was blunted by removal of 
extracellular Ca2+, an observation suggestive for dependence on Ca2+ entry from the extracellular 
space. Surprisingly, Fluo3-fluorescence decreased following pazopanib treatment. As a control, 
erythrocytes pretreated without or with pazopanib were exposed to the Ca2+ ionophore 
ionomycin in order to enhance cytosolic Ca2+ concentrations to values fully saturating the 
fluorescent dye. As a result, pazopanib treatment still decreased Fluo3-fluorescence indicating 
that the substance either interacts with Fluo3-fluorescence or with dye loading. Thus, Fluo3-
fluorescence did not yield reliable data on cytosolic Ca2+ activity.  In any case, the effect of 
pazopanib on cell membrane scrambling in erythrocytes was partially, but not completely 
dependent on extracellular Ca2+. Thus additional mechanisms must be involved in the stimulation 
of cell membrane scrambling by pazopanib. According to the present observations, pazopanib 
induces oxidative stress and ceramide, both well-known triggers of eryptosis [69].	 
	    Pazopanib did not significantly modify the average forward scatter but was followed by 
severe shrinkage of a small subpopulation of erythrocytes. The shrinkage could have been due 
to activation of  K+ channels, K+ exit, cell membrane hyperpolarization, Cl- exit and thus cellular 
loss of KCl with water [69]. 

Besides triggering eryptosis, pazopanib stimulates hemolysis. In vivo, eryptosis serves 
to clear defective erythrocytes from circulating blood prior to hemolysis [69]. Hemolysis is 
followed by release of hemoglobin which may pass the renal glomerular filter, precipitate 
in the acidic lumen of renal tubules, occlude nephrons and thus trigger renal failure [117]. 

Enhanced eryptosis may lead to anemia, as phosphatidylserine exposing erythrocytes 
are rapidly cleared from circulating blood [69]. Moreover, phosphatidylserine exposing 
erythrocytes adhere to the vascular wall [118], trigger blood clotting and thus induce 
thrombosis [119-121]. Eryptotic erythrocytes thus impair microcirculation [71, 119, 122-
125]. 

The effect of pazopanib treatment on eryptosis may be particularly relevant in clinical 
conditions with enhanced eryptosis, such as dehydration [126], hyperphosphatemia [127], 
chronic kidney disease (CKD) [128-131], hemolytic-uremic syndrome [132], diabetes [133], 
hepatic failure [134], malignancy  [69], sepsis [135], sickle-cell disease [69], beta-thalassemia 
[69], Hb-C and G6PD-deficiency [69], as well as Wilsons disease [136]. 

In conclusion, pazopanib triggers eryptosis with cell shrinkage and cell membrane 
scrambling, an effect apparently in part dependent on Ca2+ entry, oxidative stress and ceramide.  
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