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We present a quantitative analysis of the reversibility properties of classically chaotic quantum motion. We
analyze the connection between reversibility and the rate at which a quantum state acquires a more and more
complicated structure in its time evolution. This complexity is characterized by the number Mstd of harmonics
of the finitially isotropic, i.e., Ms0d=0g Wigner function, which are generated during quantum evolution for
the time t. We show that, in contrast to the classical exponential increase, this number can grow not faster than
linearly and then relate this fact with the degree of reversibility of the quantum motion. To explore the
reversibility we reverse the quantum evolution at some moment T immediately after applying at this moment
an instant perturbation governed by a strength parameter j. It follows that there exists a critical perturbation
strength jc<Î2 /MsTd below which the initial state is well recovered, whereas reversibility disappears when
j*jcsTd. In the classical limit the number of harmonics proliferates exponentially with time and the motion
becomes practically irreversible. The above results are illustrated in the example of the kicked quartic oscillator
model.

DOI: 10.1103/PhysRevE.78.046212 PACS numberssd: 05.45.Mt, 03.65.Sq, 05.45.Pq

I. INTRODUCTION

Strong numerical evidence has been obtained that the
quantum evolution is very stable, in sharp contrast to the
extreme sensitivity to initial conditions and rapid loss of
memory which is the very essence of classical chaos. In
computer simulations the latter effect leads to practical irre-
versibility of classically chaotic dynamics. Indeed, even
though the exact equations of motion are reversible, any,
however small, imprecision such as computer round-off er-
rors, is magnified by the exponential instability of trajecto-
ries to the extent that any memory of the initial conditions is
effaced and reversibility is destroyed. In contrast, almost ex-
act reversion is observed in numerical simulations of the
quantum motion of classically chaotic systems, even in the
regime in which statistical phenomena such as deterministic
diffusion take place f1g.

It is intuitive that the physical reasons of this striking
difference between quantum and classical motion are rooted
in the quantization of the phase space in quantum mechanics.
If we consider classical chaotic evolution sgoverned by the
Liouville equationd of some phase space distribution, smaller
and smaller scales are explored exponentially fast with time.
These fine details of the density distribution are lost due to
finite accuracy sinevitable coarse-grainingd in numerical
simulations, and therefore the reversal of time evolution can-
not be carried out. On the other hand, in quantum mechanics
one expects that the structure of a quantal phase-space dis-
tribution, e.g., of the Wigner function, has resolution limited
by the size of the Planck’s cell. While the mean number of
Fourier components of the classical phase-space distribution
grows exponentially in time for chaotic motion, the number
of the components of the Wigner function at any given time
is related to the degree of excitation of the system fsee, for

example, Eq. s69d belowg and therefore unrestricted expo-
nential growth of this number is not physical f2–4g. This fact
implies substantially simpler phase space structure in the
case of quantum motion as compared with that of classical
chaotic dynamics. We demonstrate below that the mean num-
ber of Fourier harmonics is a simple relevant measure of
structural complexity which in turn is related to fundamental
properties such as decoherence and entanglement.

In spite of the above arguments, a rigorous link between
the intuitively expected different degree of reversibility of
quantum and classical motion and the structure developed by
the phase-space distributions during dynamical evolution has
never been established. The purpose of the present paper is
to clarify this problem.

Following the approach developed in Ref. f5g we consider
first the forward evolution

r̂std = Ûstdr̂s0dÛ†std s1d

of an initial sgenerally mixedd state r̂s0d up to some time t

=T. A perturbation P̂sjd is then applied at this time, with the
perturbation strength j. For our purposes, it will be sufficient

to consider unitary perturbations P̂sjd=e−ijV̂, where V̂ is a
Hermitian operator. The perturbed state

r̂̃sT,jd = P̂sjdr̂sTdP̂†sjd s2d

is then evolved backward for the time T, thus obtaining the
reversed state

r̂̃s0uT,jd = Û†sTdr̂̃sT,jdÛsTd = P̂sj,Tdr̂s0dP̂†sj,Td , s3d

where P̂sj ,Td;e−ijV̂sTd, with V̂sTd; Û†sTdV̂ÛsTd being the
Heisenberg evolution of the perturbation during the time T.
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Finally, we investigate the distance between the reversed
r̂̃s0 uT ,jd and the initial r̂s0d state, as measured by the Peres
fidelity f6g

Fsj;Td =
Trfr̂̃s0uT,jdr̂s0dg

Trfr̂2s0dg

= UTrfr̂̃st,jdr̂stdg

Trfr̂2stdg
U
t=T

= Fusj;tdut=T. s4d

This quantity is bounded in the interval f0,1g and the distance
between the initial and the time-reversed state is small when
Fsj ;Td is close to 1 f7–9g. In particular, Fsj ;Td=1 when the
two states coincide. The second line in Eq. s4d is a conse-
quence of the unitary time evolution and will allow us to
relate the distance between the initial and the reversed state
to the complexity of the state r̂std at the reversal time t=T.
This relation will play the key role in our further analysis.

As we have already mentioned above, we characterize the
complexity of a quantum state by the structure of its Wigner
function. The basic idea here is that a quantum state is com-
plex if this function has a rich phase space structure, which
can be naturally measured by the number Mstd of its Fourier
harmonics. We will show that the fidelity Fsj ;Td is a de-
creasing function of the complexity MsTd of the state r̂sTd.
We will prove further that, after the Ehrenfest time scale,
namely after a time logarithmically short in the effective
Planck constant of the system, the number Mstd of harmon-
ics increases not faster than linearly with time. On the other
hand, in classical chaotic dynamics the number of harmonics
Mcstd of the classical phase-space distribution function
grows exponentially in time. We will then ascertain that the
initial state is well recovered as long as the perturbation
strength j is much smaller than a critical perturbation
strength jcsTd,1 /MsTd. Therefore, jcsTd drops exponen-
tially with T in the classical case and not faster than linearly
for quantum evolution. This fact explains the much weaker
sensitivity of quantum dynamics to perturbations as com-
pared to the classical chaotic motion.

The paper is organized as follows. In Sec. II, we review
the main concepts and definitions of quantum mechanics in
phase space relevant for our work. In Sec. III, we discuss the
kicked quartic oscillator model, used in the remaining part of
the paper as a test bed to illustrate the stability properties of
classically chaotic quantum motion. In Sec. IV, the evolution
in time of the harmonics of the Wigner function is studied in
detail. In particular, the complexity of the quantum state r̂std
is quantified by looking at the sensitivity of the system to an
infinitesimal perturbation. In Sec. V, the degree of reversibil-
ity of quantum motion, as measured by the Peres fidelity, is
related to the number of harmonics developed by dynamics
at the reversal time t=T. A more detailed study of the revers-
ibility properties of motion is carried out in Sec. VI, where
we investigate the properties of the time-reversed state by
studying the harmonics of its Wigner function. Finally, the
main results of our paper are summarized in Sec. VI.

II. QUANTUM DYNAMICS IN THE PHASE SPACE

The phase-space representation of quantum mechanics is
a very enlightening approach which allows a direct compari-

son with classical mechanics f3,4g. In this section, we briefly
review the main aspects of the phase-space approach which
are relevant for our work.

A. The Wigner function

Let us consider a nonlinear system whose dynamics is

governed by the Hamiltonian operator Ĥ;Hsâ† , â ; td
=Hs0dsn̂= â†âd+Hs1dsâ† , â ; td with the time-independent un-

perturbed part Ĥs0d which has a discrete energy spectrum
bounded from below so that we can assume that all its ei-
genvalues En

s0dù0. Here â† , â are the bosonic, fâ , â†g=1,
creation-annihilation operators. We will use the method of
c-number a-phase space borrowed from the quantum optics
ssee, for example, Refs. f10,11gd. This method is equally
suitable for analyzing both the quantum and classical evolu-
tions. It is, basically, built upon the basis of the coherent
states ual. The latter are defined by the eigenvalue problem
âual= a

Î"
ual, where a is a complex variable independent of ".

An arbitrary coherent state is obtained from the ground state

ual= D̂s a
Î"

du0l with the help of the unitary displacement op-

erator D̂sld=expslâ†−l*âd.
Using the displacement operator D̂ as a kernel, one can

represent any operator function Ĝstd;Gsâ† , â ; td in the form
of the operator Fourier transformation f11g

Gsâ†, â;td =
1

p
E d2hG̃sh*,h;tdD̂shd , s5d

where G̃sh* ,h ; td is a numerical function of two independent
complex variables h* ,h and the integration runs over the
complex h plane. The inverse transformation

G̃sh*,h;td = TrfGsâ†, â;tdD̂†shdg s6d

is immediately obtained with the help of the orthogonality
condition for the displacement operators

1

p
TrfD̂†sh8dD̂shdg = ds2dsh8 − hd . s7d

By using transformation s5d, the standard quantum-

mechanical formula kQl=Trfr̂stdQ̂g for the mean expectation
value kQl of a dynamical variable Q fQ is represented by the

operator Q̂=Qsâ† , âdg in a generally mixed state r̂std
=rsâ† , â ; td can be written in a way formally equivalent to
the classical phase space average

kQl =
1

p
E d2hr̃sh*,h;tdQ̃s− h*,− hd

=E d2aWsa*,a;tdQsa*,ad . s8d

The final form is readily obtained after defining the Wigner
function Wsa! ,a ; td and Qsa! ,ad as c-number Fourier trans-
formations of r̃sh! ,h ; td and Q̃sh! ,hd, respectively. The
Wigner function in the a-phase plane is connected to the
density operator r̂std as
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Wsa*,a;td =
1

p2"
E d2h expSh

a!

Î"
− h!

a

Î"
Dr̃sh!,h;td

=
1

p2"
E d2h expSh*

a

Î"
− h

a*

Î"
DTrfr̂stdD̂shdg

s9d

sthis corresponds to the Weyl’s ordering of the creation-
annihilation operatorsd. Similarly,

Qsa*,ad =
1

p
E d2h expSh

a!

Î"
− h!

a

Î"
DQ̃sh!,hd

=
1

p
E d2h expSh*

a

Î"
− h

a*

Î"
DTrfQ̂D̂shdg .

s10d

It follows from the definition s9d that the Wigner function
is normalized to unity

E d2aWsa*,a;td = Trr̂std = 1. s11d

The Wigner function is real but, unlike its classical counter-
part, is not in general positive definite.

With the help of the Wigner function the Peres fidelity s4d
can be expressed as

Fsj;Td =
E d2aWsa*,a;0dW̃sa*,a;0uT,jd

E d2aW2sa*,a;0d

=
E d2aWsa*,a;TdW̃sa*,a;T,jd

E d2aW2sa*,a;Td

. s12d

The important advantage of this representation is that it re-
mains valid in the classical case when the Wigner function
reduces to the classical distribution function Wscdsa* ,a ; td.

B. Harmonics of the Wigner function

We define the harmonic’s amplitudes WmsI ; td of the
Wigner function by the Fourier expansion

Wsa*,a;td =
1

p
o

m=−`

`

WmsI;tdeimu, s13d

where a=ÎIe−iu. Then the normalization condition simply
implies that e0

`dIW0sI ; td=1. There are no restrictions on Wm

when mÞ0.
The amplitudes Wm can be expressed in terms of the ma-

trix elements kn+mur̂unl along mth subdiagonal of the den-
sity matrix. Indeed, using the well-known f12g matrix ele-
ments of the displacement operator in the basis of the

eigenvectors unl of the unperturbed Hamiltonian Ĥs0d,

kn + muD̂shdunl =Î n!

sn + md!
hme−s1/2duhu2Ln

msuhu2d , s14d

sn ,mù0d where Ln
msxd is the Laguerre polynomial, the h

integration in the second line of Eq. s9d can be carried out
explicitly. We finally obtain

WmsI;td =
2

"
e−s2/"dIo

n=0

`

s− 1dnÎ n!

sn + md!
s4I/"dm/2Ln

ms4I/"d

3kn + mur̂stdunl s15d

when mù0 and W−m=Wmù0
! . With the help of the orthogo-

nality condition for the Laguerre polynomials s15d can be
inverted, thus obtaining

kn + mur̂stdunl = s− 1dn2Î n!

sn + md!E0
`

dIe−2sI/"d

3s4I/"dm/2Ln
ms4I/"dWmsI;td . s16d

C. Time evolution of the Wigner function

The Wigner function satisfies the evolution equation

i
]

]t
Wsa*,a;td = L̂qWsa*,a;td . s17d

Here L̂qis the Hermitian “quantum Liouville operator” L̂q

whose explicit form is obtained by mapping the standard
equation

i
]

]t
r̂std =

1

"
fĤ, r̂stdg s18d

onto the a-phase space. Supposing that the Hamiltonian can
be presented as a Hermitian sum sfinite or infinited of prod-
ucts of the creation-annihilation operators and using then the
definitions of the phase space images, Eqs. s9d and s10d, it is
possible to show that ssee Ref. f11gd

L̂q =
1

"
FHSa* −

"

2

]W

]a
,a +

"

2

]W

]a*
D

−HSa* +
"

2

]W

]a
,a −

"

2

]W

]a*
DG , s19d

where Hsa* ,ad is the phase-space image of the system’s
Hamiltonian. The arrows above the derivatives mean that
they act only on the arguments of the Wigner function but
ignore the sa* ,ad-dependence of the phase-space operator H

itself. In the classical limit "=0 the operator L̂q has the stan-
dard classical form

L̂c =
]Hcsa*,a;td

]a

]

]a*
−

]Hcsa*,a;td
]a*

]

]a
, s20d

where the classical Hamiltonian function coincides with the

diagonal matrix element, Hcsa* ,a ; td= kauĤsNdsâ† , âdual of

the normal form ĤsNd of the quantum Hamiltonian operator.
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In other words, this function is obtained from the quantum
Hamiltonian by substituting â→a /Î" , â†→a* /Î".

The outlined phase-space approach is quite general and
can be readily extended f10,11g to systems with arbitrary
number of degrees of freedom and is applicable to any sys-
tem whose Hamiltonian can be expressed in terms of a set of
the bosonic creation-annihilation operators f19g. In this ap-
proach, the classical distribution function as well as its quan-
tum counterpart are described in terms of the same phase-
space variables, thus allowing a straightforward comparison
of the two dynamics f3,4g.

III. THE MODEL

In order to discuss the reversibility and/or complexity
properties of quantum motion, we consider, as an illustrative
example, the kicked quartic oscillator model, described by
the Hamiltonian f2,13,14g

Ĥ = Hsâ†, âd = "v0n̂ + "2n̂2 − Î"gstdsâ + â†d , s21d

where gstd=g0osdst−sd, and n̂= â†â , fâ , â†g=1. In our units,
the time and parameters " ,v0 as well as the strength of the
driving force are dimensionless. The period of the driving
force gstd is set to one. The corresponding classical Hamil-
tonian function Hc can be expressed in terms of complex
canonical variables a , ia* which are related to the classical
action-angle variables I ,u via a=ÎIe−iu ,a*=ÎIeiu. It reads

Hc = v0uau2 + uau4 − gstdsa* + ad . s22d

Detailed analytical semiclassical analysis of the quantum
motion of the model s21d has been presented in f14,15g.

The quantum Liouville operator for the model s21d can be
derived from Eq. s19d and reads

L̂q = L̂q
s0d + L̂

skickd,

L̂q
s0d = Sv0 − " −

1

2
"2 ]

2

]a*]a
+ 2uau2DSa*

]

]a*
− a

]

]a
D ,

L̂
skickd = − gstdS ]

]a*
−

]

]a
D . s23d

The essential difference between this operator and the corre-

sponding classical Liouville operator L̂c is the presence in
Eq. s23d of a term proportional to "2 which contains a second
derivative over the phase space variables. This term drasti-

cally changes the spectrum of the unperturbed part L̂q
s0d of

the Liouville operator and thereby modifies the evolution of
the Wigner distribution function W with respect to the clas-
sical distribution function Wc. Indeed, while in the classical
limit "=0 the factor v0+2uau2=v0+2I=vcsId is the continu-
ous frequency of the classical quartic oscillator, the quantum

operator K̂;− 1
2"2 ]

2

]a*]a
+2uau2 has a discrete spectrum: con-

sidering the real and imaginary parts sa1 ,a2d of the variable
a as Cartesian coordinates, we obtain

K̂ = −
"2

8
S ]

2

]a1
2 +

]
2

]a2
2D + 2sa1

2 + a2
2d . s24d

Therefore, the operator K̂ is formally equivalent to the
Hamiltonian operator of a two-dimensional isotropic oscilla-
tor, with the frequency n=1 and the mass m=4. After intro-
ducing the standard annihilation-creation operators

Â1,2 =Î2

"
a1,2 +

1
Î8"

]

]a1,2
,

Â1,2
† =Î2

"
a1,2 −

1
Î8"

]

]a1,2
, s25d

this operator transforms into K̂="N̂, where N̂= N̂1+ N̂2

=A1
†Â1+A2

†Â2 is the operator representing the total number of
fictitious quanta linearly polarized in the a plane. The opera-
tor

M̂ ; Sa*
]

]a*
− a

]

]a
D = − i

]

]u
s26d

is proportional to the angular momentum projection operator
along the axis orthogonal to the a plane and has the discrete
eigenvalue spectrum m=0,61,62, . . .. We can therefore
conclude that the spectrum of the operator

L̂q
s0d = sv0 + "N̂dM̂ s27d

is also discrete with eigenvalues sl0dn,m= sv0+"ndm. Since
the operators N̂ and M̂ commute, operator s27d is Hermitian.

The two linearly polarized quanta introduced above are
coupled to each other because the angular momentum opera-

tor "M̂= 1
i
sÂ1

†Â2− Â2
†Â1d is not diagonal in the chosen repre-

sentation. However, both the operators "N̂ and "M̂ are si-
multaneously diagonalized after introducing the operators

Â+ =
1
Î"

a +
Î"

2

]

]a*
, Â− =

1
Î"

a* +
Î"

2

]

]a
, s28d

which describe the circularly polarized quanta. In the new
representation

N̂ = N̂+ + N̂−, M̂ = sN̂+ − N̂−d , s29d

where N̂6= Â6
† Â6 are the operators representing the numbers

n6 of circularly polarized quanta. These new quanta are de-
coupled:

L̂q
s0d = sv0 + "N̂dM̂ = sL̂0d+ − sL̂0d−,

sL̂0d6 = v0N̂6 + "N̂6
2 . s30d

The eigenvalues sl0dn+,n−=
En+

s0d−En−
s0d

"
of the operator s30d are

determined by the distances between the unperturbed energy
levels En6

s0d="v0n6+"2n6
2 corresponding to the excitation

numbers n6=0,1 ,2 , . . .. The representation s30d is the most
convenient for numerical simulations.
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The driving perturbation also decouples in the chosen rep-
resentation

L̂
skickd = L̂+

skickd − L̂−
skickd,

L̂6
skickd = − gstd

1
Î"

sÂ6 + Â6
† d . s31d

It then immediately follows that the one-period unitary evo-

lution operator F̂ for the Wigner function gets factorized as

F̂ = F̂+F̂−
†, F̂6 = e−isL̂0d6D̂6Si g0Î"

D ,
D̂6Si g0Î"

D = expFi g0Î"
sÂ6 + Â6

† dG . s32d

The complete set of the eigenvectors un+n−l= un+lun−l of
the unperturbed operator L̂q

s0d constitutes the excitation num-
ber reference basis for the density matrix

r̂std = o
n+,n−

un+lrsn+,n−;tdkn−u ,

rsn+,n−;td = kn+ur̂stdun−l . s33d

The evolution from time t to time t+1 reads

rsn+,n−;t + 1d = kn+uÛ1r̂stdÛ1
†un−l

= o
n+8,n−8

kn+uF̂+un+8lrsn+8,n−8 ;tdkn−8uF̂−un−l*.

s34d

Here

Û1 ; Ûst = 1d = e−si/"dĤs0d
D̂Si g0Î"

D = e−isv0n̂+"n̂2deisg0/Î"dsâ+â†d

s35d

is the sFloquetd operator for our model, namely, the one-
period unitary evolution induced by the Hamiltonian s21d.

Our numerical simulations are based on the combined ap-
plication of Eqs. s4d, s9d, and s34d. We calculate numerically

the truncated Floquet matrix F̂nn8
in the excitation number

representation. Two different strategies have been used.
The first approach is based on Eq. s14d, which relates

matrix elements of the kick operator D̂si
g0
Î"

d to the Laguerre
polynomials. The free rotation operator e−si/"dĤs0d

is diagonal
and its calculation is trivial. Then the product of the matrices

e−si/"dĤs0d
and D̂ is truncated to a square matrix of a finite size

N. The main disadvantage of this approach is the violation of
unitarity of the Floquet operator: its norm is not conserved
when the size of a quantum state becomes of the order or
larger than N.

The second approach is based on the truncation of the

Hermitian matrix X̂nn8
= knu

g0
Î"

sâ+ â†dun8l. Then we numeri-

cally diagonalize this matrix, X̂= v̂X̂dv̂
†, with the aid of a

unitary matrix v̂. In such a way we obtain the truncated kick

matrix D̂si
g0
Î"

d= v̂ expsiX̂ddv̂† in the excitation number basis.
Multiplying it by the, diagonal in this basis, free rotation

matrix exps− i

"
Ĥs0dd struncated to the same size Nd and finally

diagonalizing the obtained unitary matrix, we arrive at a

truncated approximation F̂= V̂F̂dV̂
† of the Floquet operator

s35d in the excitation number representation. The price paid
is the artificial boundary condition at n=N which influences
the evolution when the size of a quantum state becomes
close to that of the truncated Floquet operator. Even though
the final diagonalization problem is, by itself, rather time
consuming the great advantage of this approach is that the
computation time does not depend on the considered dura-

tion of the evolution. This is due to the fact that Ûstd= F̂t

= V̂F̂d
t V̂† and therefore, independently of t, it is sufficient to

multiply three matrices to construct Ûstd.

IV. HARMONICS DYNAMICS

In this section, we study the time evolution of the har-
monics of the Wigner function for the kicked quartic oscil-
lator model. The Wigner function of the initial state is taken
to be isotropic, so that only the zero angular harmonic W0 of
the Wigner function is different than zero. In the course of
dynamical evolution the Wigner function becomes more and
more structured and this reflects in the excitation of a grow-
ing number of harmonics. The complexity of the Wigner
function at time t is measured by its sensitivity to an infini-
tesimal perturbation.

A. Initial condition

We choose the initial state to be an isotropic mixture of
coherent states

r̂s0d =E d2åPsuåu2duålkåu = o
n=0

`

rnunlknu , s36d

where

rn =
p

n!
E
0

`

dI̊PsI̊de−I̊/"sI̊/"dn, I̊ = uåu2. s37d

Here and in the following, a circle above a dynamical vari-
able denotes its value at the time t=0. To simplify further
analytical considerations we suppose a Poissonian initial dis-
tribution rnn;rn=

"

D+"
s D

D+"
dn in the excitation number space,

which implies the exponential form PsI̊d= 1
pD

e−I̊/D of the dis-
tribution in the space of coherent states and, correspondingly,
the isotropic Gaussian initial Wigner function

Wsa*,a;0d =
1

D + "/2
e−uau2/sD+"/2d. s38d

In the particular case of the pure ground state D=0, the
Wigner function occupies the minimal quantum cell with the
area " /2. It is worth noting that this area would be twice as
much in the case of the normal ordering of the creation an-
nihilation operators sHusimi functiond f10,11g.
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For the initial conditions s36d the classical dynamics of
the model s21d becomes chaotic when the kick strength pa-
rameter g0 exceeds a critical value g0,c<1. The angular
phase correlations decay exponentially swe have checked
this fact numericallyd and the mean action grows diffusively
with the diffusion coefficient D=g0

2. Our numerical data pre-
sented in Fig. 1 demonstrate the corresponding “quantum
diffusion” phenomenon described in the following subsec-
tion: kIlt=D+g0

2t as in the classical case, until a time t! after
which the quantum to classical correspondence breaks down
f2,13g.

B. Zero-harmonic evolution and quantum diffusion

According to Eq. s10d, the zero amplitude W0sI ; td is de-
termined as

W0sI;td =
2

"
e−s2/"dIo

n=0

`

s− 1dnLns4I/"dknur̂stdunl s39d

by the diagonal matrix elements of the density operator. Our
numerical simulations ssee Fig. 2d show that these matrix
elements decay along the main diagonal on average expo-
nentially at any moment t after a short initial interval ssee
belowd. Neglecting fluctuations we therefore assume that

rnnstd = knur̂stdunl =E d2åPsuåu2duknuÛstduålu2

= o
n8=0

`

rn8
uknuÛstdun8lu2

= f1 − e−nstdge−nstdn, s40d

with a function nstd which depends on the system’s dynam-
ics. The approximation is similar to coarse graining of the
classical distribution function. Correspondingly,

W0sI;td =
2

"
tanhSn

2
DexpF− 2

"
tanhSn

2
DIG . s41d

The dependence on time of the mean value of a function

QsÎd of the action operator Î="n̂ is then computed with the
help of the formula

kQlt = E
0

`

dIQsIdW0sI;td , s42d

where the phase-space image of the operator Q̂ is calculated
similarly to the zero harmonic amplitude W0sI ; td of the
Wigner function fsee Eq. s10dg. For example, the image of
the operator Ĝskd=e−kÎ, which generates the moments of the
amplitude W0sI ; td is easily found to be

Gsk;Id =
ek"/2

coshsk"/2d
expF− 2 tanhsk"/2d

I

"
G . s43d

The mean value of the generating function of the action mo-
menta is readily obtained from Eq. s42d

kGsk;Idlt = ek"/2 sinhsn/2d
sinhsn/2 + k"/2d

. s44d

In particular, the mean action equals kIlt
= u−]kGsk ; Idlt /]kuk=0=

"

2 fcoths n

2 d−1g. This formula relates
the function nstd to the evolution of the action, e−nstd

= kIlt / skIlt+"d, and allows us to represent finally the coarse-
grained amplitude of the zero harmonic in the form

W0sI;td =
1

kIlt +
"

2

exp1− I

kIlt +
"

2
2 . s45d

The time dependence of the mean action kIlt is shown in Fig.
1

C. Evolution of nonzero momenta: Complexity of quantum

states

The paramount property of classical dynamical chaos is
the exponentially fast structuring of the system’s phase space

FIG. 1. Mean value skIlt−Dd /g0
2 as a function of time t. Squares

and triangles correspond to s" ,g0d= s1,2d and s2,3d, full and empty
symbols to D=0 and 50. The straight dashed line corresponds to the
classical diffusion law kIlt=D+g0

2t.

FIG. 2. sColor onlined Distribution of the diagonal elements
rnnstd of the density matrix versus n, at "=1, g0=2. Left panel sad:
mixed state sD=25d and, from bottom to top, t=10, 30, and 50
sthese curves are scaled by factors 0.01, 0.1 and 1, respectivelyd.
Right panel sbd: pure state sD=0d, t=10 sbottom, scaled by a factor
0.01d and t=50 stopd. Straight lines show exponential fits, corre-
sponding to the coarse-grained distribution s40d.
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on finer and finer scales. In particular, the number Mstd of
angular harmonics, that is the number of appreciably large
harmonic’s amplitudes Wscd

msI ; td in the Fourier expansion
s13d of the classical distribution function Wscdsa* ,a ; td grows
exponentially in time. Namely, Mstd~et/tc, where the char-
acteristic time tc goes to infinite when the classical
Lyapunov exponent vanishes. A simple consideration shows
that the exponential regime cannot last long in the case of
quantum dynamics. Indeed, in the terms of our auxiliary two-
dimensional linear oscillator where the functions eimu are the

eigenstates of the operator M̂ defined in Eq. s26d the mean
number of harmonics Mstd,kun+−n−ult& kNlt= kn++n−lt
,kIlt /". Therefore the exponential upgrowth is possible
only for et/tc, kIlt /", namely, for a time t& tE=tc ln

kIlt
"
.

Since the mean action increases only linearly in time, tE is
basically the Ehrenfest time f13g, logarithmically short in ".

In order to ascertain how complex the quantum state be-
came by the time t we use as a probe a phase plane rotation
by the angle du;j. Such a rotation is generated by the uni-

tary transformation P̂sjd=e−ijn̂ of the density matrix r̂std.
The effect of such perturbation, as mentioned above, is char-
acterized by the Peres fidelity s4d.

From the second line of Eq. s4d we obtain

Fsj;td = o
n,n8=0

`

cosfjsn8 − ndg
ukn8ur̂stdunlu2

o
k=0

`

kkur̂2stdukl

. s46d

The diagonal sn8=nd contribution

F0std = o
n=0

`
uknur̂stdunlu2

o
k=0

`

kkur̂2stdukl

s47d

does not depend on j. Taking into account that Fsj=0; td
=1, we relate this contribution to the nondiagonal part of the
density operator

F0std = 1 − 2 o
n8.n=0

`
ukn8ur̂stdunlu2

o
k=0

`

kkur̂2stdukl

. s48d

After substitution of this expression into Eq. s46d we obtain

Fsj;td = 1 − 2o
m=1

`

sin2sjm/2dWmstd , s49d

where

Wmstd = s2 − dm0do
n=0

`
ukn + mur̂stdunlu2

o
n8=0

`

kn8ur̂2stdun8l

. s50d

Since

o
n=0

`

knur̂2stdunl = o
n=0

`

knur̂stdunl2 + 2o
m=1

`

o
n=0

`

ukn + mur̂stdunlu2,

s51d

we can convert Eq. s50d into

Wmstd =

s2 − dm0do
n=0

`

ukn + mur̂stdunlu2Y o
n8=0

`

r
n8n8

2 std

1 + 2o
m=1

`

o
n=0

`

ukn + mur̂stdunlu2Y o
n8=0

`

r
n8n8

2 std

,

s52d

where rnnstd is a shorthand notation for knur̂stdunl.
Equivalently, one can express Wmstd in terms of the am-

plitudes s15d of the Wigner function

Wmstd =

s2 − dm0dE
0

`

dIuWmsI;tdu2YE
0

`

dIW0
2sI;td

1 + 2o
m=1

` E
0

`

dIuWmsI;tdu2YE
0

`

dIW0
2sI;td

.

s53d

The completeness condition

o
n=0

`
sn + md!

n!
Ln
ms4I/"dLn

ms4I8/"d =
"

4
s4I/"d−me4I/"dsI − I8d

s54d

has been taken into account in deriving formula s53d. Simi-
larly to Eq. s12d, expression s53d remains valid in the classi-
cal limit, provided that the harmonics of the classical distri-
bution function are used.

Since the normalization condition omWmstd=1 holds, the
quantities Wmstd, mù0 give the probability distribution over
the harmonic’s numbers m. Now, in the spirit of the linear
response theory, we consider an infinitesimally small rotation
angle j→0 and hold only the linear term of the power ex-
pansion of the density operator. The Eq. s49d reduces then to

Fsj;td < 1 −
1

2
j2km2lt,

km2lt = − Ud2Fsj;td
dj2

U
j=0

= o
m=1

`

m2
Wmstd . s55d

Numerical simulations ssee Fig. 3d show that, apart from
small fluctuations, the distribution Wmstd decreases with m

monotonically and exponentially. Therefore the quantity
Îkm2lt gives an estimate of the number M of harmonics
developed up to time t and can be considered as a suitable
measure of complexity of the Wigner function at the time t.

According to the first line of Eq. s4d, the same fidelity can,
alternatively, be presented in the form
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Fsj,td = o
n,n8=0

`
rnrn8

o
k=0

`

rk
2

uknue−ijn̂stdun8lu2

= 1 − j2fx2std − 2fstdg + Osj4d , s56d

where the quantity

x2std = o
n

rn
2

o
n8

r
n8

2
fknun̂2stdunl − knun̂stdunl2g s57d

is the weighted-mean value of the standard deviation of the
excitation numbers at the moment t, whereas fstd is similar
weighted-mean value of the cumulative contribution

fnstd = o
m=1

`

s1 + "/Dd−mukn + mun̂stdunlu2 s58d

of the off-diagonal matrix elements. Comparing now the j2

terms in the both equivalent representations s55d and s56d of
the fidelity we arrive at the following significant exact rela-
tion between the time behavior of the mean number of har-
monics swhich characterizes the complexityd, on the one
hand, and of the excitation numbers, on the other hand,

km2lt = 2fx2std − 2fstdg . s59d

The negative second contribution which appears only in the
case of mixed initial states reduces the number of harmonics.

V. QUANTUM REVERSIBILITY: THE FIDELITY

To explore the reversibility of the quantum dynamics we
consider now the perturbation angle j as a free parameter
and investigate the differences between the initial and re-
versed states as a function of j. To this end we first analyze
the fidelity Fsj ; td at an arbitrary moment t as a function of j.

Using Eq. s49d, we can expand Fsj , td in terms of the even
moments km2kl sk=1,2 , . . . d of the probability distribution
s50d

Fsj,td = 1 − o
k=1

`

s− 1dk+1
j2k

s2kd!
km2klt. s60d

We remark that, due to the exponential decay sas a function
of md of the distribution Wmstd, all moments km2klt are finite.

On the other hand, the expansion of the general expres-
sion s56d over the parameter j contains on- and off-diagonal

matrix elements of the powers of the operator Îstd="n̂std and
therefore connect the Peres fidelity to the action evolution.
Both the equivalent representations s60d and s56d will be
exploited below.

A. Pure coherent initial state

The theoretical analysis is especially easy to carry out in
the simple case of the spured ground initial state rn=dn0. The
expression s56d reduces then to

Fsj,td = uk0uP̂sj,tdu0lu2 = uk0ue−ijn̂stdu0lu2. s61d

This specific initial state is the isotropic coherent state
uå=0l which corresponds to the distribution Psuåu2d
=ds2dsåd in Eq. s36d. After first few kicks, a state of practi-
cally general form is produced.

Making use of the cumulant expansion we obtain

Fsj;td = expF− 2o
l=1

`
s− 1dl−1

s2ld!
j2lx2lstdG , s62d

where the cumulants sconnected momentad are

x2std = k0usn̂std − k0un̂stdu0ld2u0l ,

x4std = k0usn̂std − k0un̂stdu0ld4u0l

− 3fk0usn̂std − k0un̂stdu0ld2u0lg2, s63d

and so on. Correspondingly, Lsj ; td;−ln Fsj ; td=j2x2std
− 1
12j4x4std+¯. At a given time t we can retain only the

lowest cumulant, Lsj ; td<j2x2std, as long as the perturbation
strength j&2Î3x2std /x4std. However, as shown in Fig. 4,
this approximation fails for larger values of j.

To go beyond such a restricted range of values of the
parameter j we observe that the amplitude fsj ; td
= k0ue−ijn̂stdu0l can be readily represented as

fsj;td = o
n=0

`

wnstde
−ijn, s64d

where wnstd;knur̂stdunl= uknuÛstdu0u2u is the excitation num-
ber probability distribution.

The probability wnstd exhibits larger fluctuations as a
function of n than those in the case of broad initial mixtures
fcompare the two panels of Fig. 2 obtained for pure srightd
and mixed sleftd initial distributionsg. However, at any given
time t larger than the Ehrenfest time wnstd decays, on aver-
age, exponentially. Assuming, similarly to Eq. s40d, the ex-
ponential ansatz wnstd<f1−e−lstdge−lstdn, we obtain

FIG. 3. Distribution of harmonics Wmstd as a function of m,
with parameter values as in Fig. 2.
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wnstd <
1

knlt + 1
F knlt

knlt + 1
Gn

, s65d

where knlt is the mean excitation number at the moment t.
The approximation s65d leads to the result

Fsj;td <
1

1 + 4knltsknlt + 1dsin2sj/2d

=
1

1 + 4x2stdsin
2sj/2d

<
1

1 + j2x2std
. s66d

In the second line we have taken into account that approxi-
mation s65d implies the following relation:

x2std ; kn2lt − knlt
2 < knltsknlt + 1d . s67d

sLet us remind the reader that in this connection that we have
chosen å=0.d Opposite to the exact relation x2std=

1
2 km2lt

fsee Eq. s59dg the relation s67d is valid only after the Ehren-
fest time tE. Notice that accordingly to the first line in Eq.
s66dFs2p ; td=Fs0; td=1, as expected since rotation by the
angle j=2p is just the identity operation.

Figure 4 shows that the fidelity decay is nicely described
by the analytical formula s66d. It is also clearly seen that the
fidelity almost vanishes already at very small values of the
parameter j, so that the approximation given in the second
line of Eq. s66d works quite well. We can therefore conclude
that in the considered case of the pure ground initial state
only the lowest cumulant x2 determines the overall decay of
the fidelity, whereas the higher ones are responsible for the
fluctuations in the decay law.

Using the above exponential ansatz, the expression s50d
for the probability distribution Wmstd simplifies to

Wmstd = s2 − dm0do
n=0

`

wn+mstdwnstd <
2 − dm0

2knlt + 1
F knlt

knlt + 1
Gm

,

s68d

so that this distribution decays with the same slope lstd as
the distribution of the excitation numbers s65d. Together with
Eq. s67d this yields the following relation:

km2lt = 2x2std < 2knltsknlt + 1d . s69d

Therefore, after an initial interval of order of the Ehrenfest
time, the number of harmonics of the Wigner function in-
creases with time in the same manner as the excitation num-
ber, not faster than linearly. Notice also that, as it should be,
substitution of the expression s68d in the general formula
s49d leads again to the same result s66d.

The relatively slow dependence of Fsj ; td and the number
of harmonics Mstd=Îkm2lt on time, which follows from ex-
pressions s66d and s69d should be juxtaposed with the clas-
sical behavior dictated by the exponential instability of the
classical dynamics. The latter manifests itself, in particular,
in the exponential growth of the number of harmonics of the
classical phase-space distribution function Wscdsa* ,a ; td. To
accomplish such a comparison we solve the classical Liou-
ville equation with the initial phase space distribution
Wscdsa* ,a ;0d= 1

de
−(uau2/d) of size d which coincides, for a

given value of ", with the size " /2 of the Wigner function
corresponding to the initial quantum ground state r̂s0d
= u0lk0u. The quantum to classical transition is explored by
keeping d constant and considering, for smaller and smaller
values of ", initial incoherent mixtures s38d of size d=D
+" /2. A numerical illustration of such a procedure is pre-
sented in Fig. 5. The exponential increase of km2lt up to the
Ehrenfest time is clearly seen. After that time, a much slower
power-law increase follows, in accordance, for pure states,
with the relation s69d. Such a behavior is consistent with the
findings reported in the Refs. f3,4g.

The first relation in Eq. s69d allows us to directly connect
the Peres fidelity after the Ehrenfest time with the, character-

FIG. 4. sColor onlined Fidelity Fsj , td versus perturbation
strength j, at "=0.25, g0=2 at three different times: t=5,Îx2std
=80 ssquaresd; t=25, Îx2std=384 scirclesd; t=75, Îx2std=1010 stri-
anglesd. The dotted and dashed curves show decay of the right-hand
side in Eq. s62d with, respectively, only the lowest and the two
lowest terms of the cumulant expansion being kept. The full curve
corresponds to the theoretical prediction of the second line in Eq.
s66d.

FIG. 5. sColor onlined km2lt versus t, at g0=1.5, d=0.5. Squares,
diamonds, and triangles correspond to "=0.01, 0.1, and 1. In this
latter case, the initial condition corresponds to the ground state,
r̂s0d= u0lk0u. Empty circles refer to classical dynamics and the
dashed line is an exponential fit to these data, km2lt=expsa+btd,
with a<−2.9 and b<4.4.
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ized by the mean number Îkm2lt of harmonics, complexity of
the Wigner function at time t:

Fsj;td <
1

1 +
1

2
j2km2lt

= 1 − o
k=1

`

s− 1dk+1j2kskm2ltd
k.

s70d

More than that, comparing the terms of the two expansions
s60d and s70d, the former of which is exact for any time
including times shorter or of the order of the Ehrenfest time,
we see that also the latter would be always correct if

km2klt =
s2kd!
2k

skm2ltd
k. s71d

Such a relation is characteristic of the exponentially decay-
ing distribution. Numerical data presented in Fig. 6 support
such a conjecture. It follows then that in accordance with the
different growth of the number of harmonics before and after
the Ehrenfest time ssee Fig. 5d, the slope of the m depen-
dence of the distribution Wmstd is drastically different inside
and outside the Ehrenfest time scale. This slope decreases
exponentially with t in the first case and not faster than lin-
early in the second.

VI. QUANTUM REVERSIBILITY: THE TIME-REVERSED

STATE

In this section, we study in detail the phase-space struc-
ture of the time-reversed state characterized by the harmon-
ics content of the Wigner function in dependence on the per-
turbation strength j and the reversal time T. Generally, the
Peres fidelity Fsj ;Td, as it appears in the first line of Eq.
s12d, is sensitive only to the distortion of the zero harmonic
of the reversed Wigner function or, equivalently, to the redis-
tribution of the excitation numbers. Utilizing the first line of
Eq. s4d we obtain in the terms of the density matrix

Fsj;Td = o
n=0

`
rn

o
n8=0

`

r
n8

2

knur̂̃s0uT,jdunl

< 2o
n=0

`

e−s"/Ddnknur̂̃s0uT,jdunl, sD @ "d , s72d

where only the diagonal matrix elements

knur̂̃s0uT,jdunl = o
n8=0

`

rn8
uknuP̂sj,Tdun8lu2

= rnuknuP̂sj,Tdunlu2

+ o
n8=0

`

s1 − dnn8
drn8

uknusP̂sj,Td − 1dun8lu2

s73d

of the reversed density matrix are present. Only the term
which stays in the second line of this equation remains in the
limit j→0. This limit is shown with the dotted line in the
Fig. 8.

The effect of perturbation shows up first in the second
order with respect to the perturbation parameter j. Expand-

ing in Eq. s73d the operator P̂sj ,Td=e−ijn̂sTd up to the correc-
tion of this order we find

knur̂̃s0uT,jdunl < rnf1 − j2sknun̂2sTdunl − knun̂sTdunl2dg

+ j2 o
n8Þn

rn8
ukn8un̂sTdunlu2 s74d

which leads to Eq. s56d again.
The fidelity s72d consists of two different contributions

Fnsj ;Tdsnd+Fsmdsj ;Td one of which

Fnsj;Tdsnd ; o
n=0

`
rn
2

o
k=0

`

rk
2

uknuP̂sj,Tdunlu2 s75d

is the weighted mean of pure state fidelities, whereas the
off-diagonal contribution

Fsmdsj;Td = 2o
n=0

`
rn
2

o
k=0

`

rk
2

o
m=1

`

e−s"/Ddmukn + muP̂sj,Tdunlu2

s76d

is specific for mixed initial states.
However, the important information on the harmonics that

survived the backward evolution is absent in the fidelity s72d.
To find their number and the corresponding distribution

W̃ms0 uj ;Td we perturb the reversed density matrix r̂̃s0 uT ,jd
by means of the probing operation P̂sj8d=e−ij8n̂, with a new
infinitesimally small rotation angle j8. In the same manner as
in Sec. IV C we obtain fcompare with Eq. s55dg

FIG. 6. Distribution Wm of harmonics at times smaller than the
Ehrenfest time, for parameter values "=0.01, g0=1.5. Data at t=1
and t=3 are scaled by a factor 0.1.
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km̃2sj;Tdl = o
m=1

`

m2
W̃ms0uj;Td , s77d

where

W̃ms0uj;Td = s2 − dm0do
n=0

`
ukn + mur̂̃s0dunlu2

o
k=0

`

kkur̂̃2s0dukl

=

s2 − dm0do
n=0

`

ukn + mur̂̃s0dunlu2Yo
k=0

`

r̃kk
2 s0d

1 + 2o
m=1

`

o
n=0

`

ukn + mur̃s0dunlu2Yo
k=0

`

r̃kk
2 s0d

=

s2 − dm0dE
0

`

dIuW̃msI;0du2YE
0

`

dIW̃0
2sI;0d

1 + 2o
m=1

` E
0

`

dIuW̃msI;0du2YE
0

`

dIW̃0
2sI;0d

.

s78d

We have used the shorthands r̂̃s0 uT ,jd⇒ r̂̃s0d and

W̃msI ;0 uT ,jd⇒W̃msI ;0d in these formulas.

A. Pure initial state

We note now that, according to the first line of the relation
s70d, in the special case of a pure initial state the crossover

Fsj,Td < 5 1 if j ! jcsTd ,
2

j2km2lT
if j @ jcsTd 6 s79d

from good to poor reversibility takes place near the critical
value jcsTd;Î2 / km2lT of the strength j of the perturbation.
The validity of the formula s70d for pure initial states is
illustrated by the numerical data plotted in Fig. 7.

The numerical results presented in Fig. 5 imply that the
fidelity Fsj ,Td decays as a function of the reversal time T the
faster sapproaching the exponential decay typical of the clas-
sical chaotic dynamics f16gd the closer the motion is to the

semiclassical region. Within the interval T& the Ehrenfest
time the decay is exponential with the rate 1 /tc which de-
scribes the classical exponential proliferation of the number
of harmonics and does not depend on the perturbation con-
stant j.

With regard to the number of harmonics of the time-
reversed state, expression s78d reduces, for a pure initial state
fcompare with Eq. s68dg, to

W̃ms0uj;Td = s2 − dm0do
n=0

`

w̃n+msj;Tdw̃nsj;Td , s80d

where

w̃nsj;Td ; r̃nns0uT,jd = uknue−ijn̂sTdu0lu2. s81d

In particular w̃0sj ;Td=Fsj ;Td fsee Eq. s61dg.
We expect again an overall exponential decay of the ex-

citation number probability distribution w̃nù1sj ;Td
<Asj ;Tde−ñsTdn. This assumption is well confirmed by nu-
merical simulations, examples of which are presented in
Figs. 8 and 9, where exponential decays of both the n and m

distributions w̃nù1sj ;Td, W̃ms0 uj ;Td is demonstrated in
agreement with Eq. s80d. It is clearly seen that the decay rate
ñsTd does not depend on the perturbation strength j. The
normalization condition on=0

` w̃n=1 defines the normalization
constant Asj ;Td thus connecting the n distribution with the
fidelity

w̃nù1sj;Td = f1 − Fsj;TdgseñsTd − 1de−ñsTdn. s82d

A simple although a bit lengthy calculation connects,
quite similarly to the relation expressed by Eqs. s67d and
s69d, the second moment of the distribution s80d to the fluc-
tuations of the excitation numbers

km̃2sj;Tdl = 2fkñ2sj;Tdl − kñsj;Tdl2g

= 2
f1 − Fsj;TdgfFsj;Td + e−ñsTdg

s1 − e−ñsTdd2
. s83d

Notice that the ratio of the first two moments of the distri-
bution s80d calculated with the help of the parametrization
s82d

(b)(a)

FIG. 7. sColor onlined Fidelity Fsj ;Td versus the scaled variable j /jcsTd. Data correspond to sid "=1, g0=2; light pluses: T=10, D=0;
light and black crosses: T=50, D=0 and 25; siid "=0.1, g0=1.5, D=0.45, and T=20; sblack open circlesd; siiid "=0.01, g0=1.5, D=0.5, and
T=2 sblack open squaresd. The curves show the theoretical prediction of Eq. s70d.

COMPLEXITY OF QUANTUM STATES AND… PHYSICAL REVIEW E 78, 046212 s2008d

046212-11



LsTd ;
km̃sj;Tdl

km̃2sj;Tdl
=

kñsj;Tdl

kñ2sj;Tdl
=
1 − e−ñsTd

1 + e−ñsTd s84d

does not depend on j and is small if the reversal time T is not
too small. In this case ñsTd<2LsTd!1.

When the perturbation parameter j!jcsTd so that the
Peres fidelity s70d is close to 1, we obtain from Eq. s83d the
ratio

Rsj,Td ;
km̃2sj;Tdl

km2lT
<

1

2
S j

LsTd
D2 = 1

2
S jcsTd

LsTd
D2S j

jcsTd
D2,
s85d

which characterizes the residual complexity of the reversed
state. This ratio remains small and therefore the motion re-
mains practically reversible as long as j!LsTd. For the pa-
rameters fixed in the top panel of Fig. 8 the ratio
jcsTd /Î2LsTd<1.44 so that the condition of reversibility
looks as j,0.69jcsTd in reasonable agreement with the con-
dition obtained above with the help of fidelity.

B. Incoherent initial mixture

When the evolution starts with a mixed initial state the j2

correction in the expansion s56d of the Peres fidelity contains
along with the negative contribution defined by the
weighted-mean value of the lowest cumulant x2sTd fcompare
with Eq. s67dg an additional positive one. Still, the condition
j&jcsTd holds as the criterion for the Peres fidelity to be
close to one.

Contrary to the diagonal matrix elements s74d, the off-
diagonal elements of the density matrix are distorted already
in the first order approximation

kn + mur̂̃s0uT,jdunl < rndm0 + ijkn + mun̂sTdunlrnS1 − rn+m

rn

D .
s86d

As long as j is small enough only the probability of zero

harmonic W̃0 is close to unity whereas the probabilities of
other harmonics are small as j2:

W̃mù1s0uj;Td < j2q̃ms0u0,Td ,

W̃0s0uj;Td < 1 − j2q̃0s0u0,Td , s87d

where

q̃mù1s0u0,Td = F1 − S D

D + "
DmG2o

n=0

`
rn
2

o
k=0

`

rk
2

ukn + mun̂sTdunlu2

; dm 3 r̃ms0u0,Td s88d

and

q̃0s0u0,Td = o
m=1

`

q̃ms0u0,Td . s89d

(b)(a)

FIG. 8. sColor onlined Decay of r̃nns0 uj ,Td as a function of n, at "=1, g0=2, and T=50, for sad pure sD=0d and sbd mixed sD=5d initial
states. Curves from bottom to top correspond to different values of perturbation parameter j=jc32l/2, l=−9, −6, −3, 0, and 3. The dotted
line corresponds to the initial distribution rnns0d= "

D+"
s D

D+"
dn.

(b)(a)

FIG. 9. sColor onlined Decay of W̃ms0 uj ,Td as a function of m, with D=0 and the other parameter values as in Fig. 8.
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If the initial mixture is wide, D@", the prefactor dm
<s1−e−s"/Ddmd2 is small for all m&D /". This explains the
dip seen in Fig. 10sad. At the same time, Fig. 10sbd shows
that the second factor r̃ms0 u0,Td is very well described by an
exponential. Therefore we suppose that

q̃ms0u0,Td =
q̃0s0u0,Td
zsmd

dme
−msTdm,

zsmd = o
m=1

`

dme
−mm. s90d

To fix the two unknown functions q̃0s0 u0,Td and msTd we
calculate the moments

m̃
skdsTd = o

m=1

`

mkq̃ms0u0,Td = q̃0s0u0;Td
1

zsmd
S− d

dm
Dkzsmd .

s91d

Then

q̃0s0u0;Td = − m̃
s1dsTd

zsmd
z8smd

,

q̃ms0u0;Td = −
m̃

s1dsTd
z8smd

dme
−mm, s92d

where the prime denotes differentiation with respect to the
parameter m. In addition, we obtain the connection

LsTd ;
m̃

s1dsTd
m̃

s2dsTd
= −

z8smd
z9smd

, s93d

which expresses the function msTd in the terms of the two
lowest momenta. Under the condition L!1, which is well
justified by our numerical simulations, Eq. s93d can be
solved analytically resulting in msTd<2LsTd. Thus the two
lowest moments entirely fix the probability distribution W̃m.

When the ratio j /jcsTd exceeds the unity, the dip in the

probability distribution W̃ms0 uj ;Td disappears and the fol-
lowing exponential fit works well for all nonzero harmonics
ssee Fig. 11d:

W̃mù1 = s1 − W̃0dse
m − 1de−mm. s94d

As above we can express W̃0 and m in terms of two moments

km̃kl=om=0
` mkW̃m, k=1,2. Now we easily find that

W̃0 = 1 − km̃l
2L

1 + L
< 1 − 2km̃lL ,

W̃mù1 = km̃l
4L2

1 − L2S1 − L

1 + L
Dm < 4km̃lL2e−2Lm, s95d

where LsTd= km̃l
km̃2l .

A large number ,1 /2LsTd of harmonics have in this case
similar noticeable probabilities. In Fig. 12 the ratio Rsj ,Td
= km̃sj ,Td2l / km2lT is plotted as a function of the parameter
j /jcsTd. When this parameter is small the ratio is also small
and proportional to j2. Since the fidelity Fsj ;Td which de-
scribes the redistribution of the excitation numbers after the
backward evolution is close to one under this condition, we
conclude that the initial state is recovered with good accu-
racy and the motion is well reversible. On the contrary, when
the perturbation strength j exceeds the critical value jcsTd
the fidelity becomes small and the residual number of har-
monics gets even larger than the number of harmonics devel-
oped during the forward evolution. Therefore the evolution
becomes irreversible.

(b)(a)

FIG. 10. sColor onlined Distribution q̃m sad and exponential decay of the factor r̃m sbd, for reversal times T=50 sbottom curvesd and T

=100 stop curvesd, at "=1, g0=2, D=200. Straight lines correspond to exps−2Lmd fsee Eq. s93dg.

FIG. 11. sColor onlined Same as in Fig. 9 but starting from a
mixed state with D=200.
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More precisely, for any reversal time T, there exists an
interval 0,j,jcsTd of the perturbation strength j, within
which the quantum dynamics is approximately reversible.
This interval, is defined by the rate of proliferation of the
number of harmonics. In particular, this interval diminishes
exponentially fast when the semiclassical domain is ap-
proached.

At last the detailed temporal pattern is presented in Fig.
13 of the backward evolution for both the excitation number
fpanel sadg as well as the number of harmonics fpanel sbdg. It
is clearly seen that the time interval Dt during which the
system passes in reversed order approximately the same se-
quence of the states, which it does while evolving forward,
decreases as a function of the ratio j /jcsTd. The existence of
minimal deviation sor the time of maximal returnd during the
backward evolution has been stressed first in Ref. f17,18g.

VII. SUMMARY

In this paper we have investigated the degree of stability
and reversibility of the quantum dynamics of classically cha-
otic systems beyond the semiclassical domain. As a measure
of complexity we have used the number Mstd=Îkm2lt of
angular harmonics of the sinitially isotropicd Wigner function
WsI ,u ; td, developed during the evolution for the time t. This
number describes the system’s response to instantaneous ro-
tation at that moment by an infinitesimal angle j→0. The

number Mstd is found by calculating the distance between
the perturbed srotatedd and unperturbed quantum distribu-
tions. We show that, in contrast to the classical chaotic mo-
tion where the number of harmonics grows exponentially,
Mcstd,et/tc swith the rate 1 /tc increasing together with the
Lyapunov exponentd, the number of harmonics of the quan-
tum Wigner function increases, after the Ehrenfest time, not
faster than linearly. This reveals much weaker sensitivity of
the quantum dynamics to perturbations than it is in the case
of the classical dynamics.

The relatively weak response of quantum systems to ex-
ternal perturbations makes the quantum dynamics, to some
extent, reversible unlike the practically irreversible classical
chaotic dynamics. To quantify this statement we have ana-
lyzed the degree of recovery of the initial, generally incoher-
ent, mixed state after the backward evolution of the quantum
distribution WsI ,u ; td, rotated by a finite angle j at some
reversal moment of time t=T. The lack of the perfect revers-
ibility of the dynamics manifests itself by means of a redis-

tribution of the excitation numbers and by the number M̃s0d
of harmonics of the Wigner function, which remains after the
backward evolution. Whereas the first effect is directly de-
scribed by the Peres fidelity the second one is, in general,
revealed with the help of an additional infinitesimal rotation
of the reversed state. We have shown that there exists a criti-
cal value jcsTd=Î2 /MsTd of the perturbation strength j
such that the initial state is well recovered if j!jcsTd. Re-
versibility disappears when the perturbation angle exceeds
this value. The interval of reversibility 0,j,jcsTd expo-
nentially shrinks while approaching the semiclassical do-
main. Thus our analysis establishes a direct quantitative con-
nection between the complexity of quantum phase-space
distribution, reduced in comparison to the classical dynam-
ics, and the degree of reversibility of the quantum dynamics.
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FIG. 12. Ratio Rsj ,Rd as a function of the parameter j /jcsTd, at
"=2, g0

2=6, D=50, and T=50.

(b)(a)

FIG. 13. sColor onlined Reversibility properties of quantum dynamics, displayed by sad kIlt and sbd Mstd=Îkm2lt, for different values of
the perturbation parameter: from bottom to top, j=jc3expsl /2d, l=−8, . . . ,−1, l=0 sthick black curve marked by the closed circled and l

=1, . . . ,6, at "=1, g0=2, D=1. Circles indicate positions of the minima on the curves.

SOKOLOV et al. PHYSICAL REVIEW E 78, 046212 s2008d

046212-14



f1g D. L. Shepelyansky, Physica D 8, 208 s1983d; G. Casati, B. V.
Chirikov, I. Guarneri, and D. L. Shepelyansky, Phys. Rev.
Lett. 56, 2437 s1986d.

f2g B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Sov.
Sci. Rev., Sect. C, Math. Phys. Rev. 2, 209 s1981d.

f3g Y. Gu, Phys. Lett. A 149, 95 s1990d.
f4g A. K. Pattanayak and P. Brumer, Phys. Rev. E 56, 5174

s1997d; J. Gong and P. Brumer, Phys. Rev. A 68, 062103
s2003d.

f5g K. S. Ikeda, in Quantum Chaos: Between Order and Disorder,
edited by G. Casati and B. V. Chirikov sCambridge University
Press, Cambridge, 1995d.

f6g A. Peres, Phys. Rev. A 30, 1610 s1984d.
f7g Quantity s4d has been widely investigated in studies of the

so-called quantum Loschmidt echo f8g. However, we would
like to note that, similarly to Ref. f9g and in contrast to other
previous studies f8g, the backward evolution proceeds with the
same Hamiltonian as the forward evolution and the perturba-
tion acts instantaneously only at the reversal time T.

f8g A review on the quantum Loschmidt echo is provided by T.
Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič, Phys. Rep.
435, 33 s2006d; Ph. Jacquod and C. Petitjean, e-print
arXiv:0806.0987v1.

f9g C. Petitjean, D. V. Bevilaqua, E. J. Heller, and Ph. Jacquod,
Phys. Rev. Lett. 98, 164101 s2007d.

f10g R. J. Glauber, Phys. Rev. 131, 2766 s1963d.
f11g G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 s1970d; 2,

2187 s1970d.
f12g J. Schwinger, Phys. Rev. 91, 728 s1953d.
f13g G. P. Berman and G. M. Zaslavsky, Physica A 91, 450 s1978d;

97, 367 s1979d.
f14g V. V. Sokolov, Nonlinear Resonance of a Quantum Oscillator

sInstitute of Nuclear Physics, Siberia, 1978d; Teor. Mat. Fiz.
61, 128 s1984d; fTheor. Math. Phys. 61, 104 s1985dg.

f15g V. V. Sokolov, G. Benenti, and G. Casati, Phys. Rev. E 75,
026213 s2007d.

f16g G. Benenti and G. Casati, Phys. Rev. E 65, 066205 s2002d; G.
Benenti, G. Casati, and G. Veble, ibid. 67, 055202sRd s2003d.

f17g T. Kottos and D. Cohen, Europhys. Lett. 61, 431 s2003d.
f18g Moritz Hiller, Tsampikos Kottos, Doron Cohen, and Theo Gei-

sel, Phys. Rev. Lett. 92, 010402 s2004d.
f19g For instance, this approach can be used for systems such as the

kicked rotor model, with the motion confined to a ring geom-
etry

COMPLEXITY OF QUANTUM STATES AND… PHYSICAL REVIEW E 78, 046212 s2008d

046212-15


