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Abstract

Polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and 

surface seawater between 49° N and 25° S in the open Atlantic Ocean. Elevated 

concentrations of PAHs (Σ10 PAHs ~ 1.4-2.5 ng m-3 air, and 0.7-1 ng L-1 seawater) 

occurred in the Biscay Bay and off the north-west coast of Africa. The unexpectedly high 

concentrations off NW Africa were discussed assessing the possible contribution of the 

emerging oil industry along the African shore, the role of biomass burning and natural 

sources of PAHs. In the southern Atlantic, concentrations of PAHs were close to

detection limits (Σ10 PAHs ~ 0.02-0.5 ng m-3 air, and 0.06-0.5 ng L-1 seawater) and 

showed decreasing trends with increasing latitudes. Correlations of PAHs’ partial 

pressures versus inverse temperature were not significant, in contrast to results for 

polychlorinated biphenyls from the same transect. This could have been due to the 

importance of on-going primary sources and the shorter atmospheric life-times of PAHs. 

Air-water fugacity ratios (fa/fw) were calculated for selected compounds. They were close 

to 1 for fluoranthene and pyrene in remote open ocean areas suggesting air-water 

partitioning near equilibrium. Ratios for anthracene and phenanthrene were < 0.3 in the 

remote tropical Atlantic, suggesting net volatilization. 

Introduction

Global oceans represent a critical compartment affecting the distribution and 

environmental fate of persistent organic pollutants (POPs) (1). Oceans cover 70% of the 

planet surface. Due to their large volume, they can contain a large inventory of POPs (2). 

Oceanic water bodies can serve as a final sink of these pollutants after undergoing 

processes such as long-range atmospheric transport, deposition or gaseous exchanges 
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with water and scavenging to deep waters (1). However, it has been suggested that, as 

primary emission of POPs are decreasing, a re-balancing of the environmental burden of 

POPs would result from the rising influence of secondary sources, including a re-

arrangement of POPs through exchange between air and water (1). Model simulations 

have been used to illustrate how oceanic biogeochemical processes can control the global 

dynamics of POPs (1). So far, few studies are available on the global scale to test model 

predictions. One key factor is understanding the net air-water exchange over the open 

ocean, yet few data report simultaneous air and water measurements (2). Partitioning of 

POPs into the water column is also at the base of the accumulation of POPs in aquatic 

food webs (3), influencing residues in marine biota.

Polycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic pollutants resulting 

from incomplete combustion of carbonaceous materials (4). Although PAHs can have 

natural sources, anthropogenic combustion (motor vehicles, domestic burning, power 

generation via combustion of coal and oil, waste incineration, burning of natural gas) 

dominate their emission scenarios (e.g., 4). They are present in the atmosphere both in the 

gas phase and associated to particles (5-8) and can potentially travel long distances 

reaching remote areas. The main differences of PAHs from other classical POPs are their

shorter atmospheric half lives (range of hours to days) (9), their affinity to soot carbon (5-

7) and the influence of on-going primary sources on their distribution (4,10). These

characteristics make PAHs a complementary group of compounds for investigating the 

role of atmospheric persistence on the environmental partitioning mechanisms of POPs.

The present study follows two previous investigations conducted in 2001 (10) and 2004 

(11) along a north-south transect in the Atlantic Ocean, aimed to delineate atmospheric 

Page 3 of 28

ACS Paragon Plus Environment

Submitted to Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

trends for a range of POPs. This time, simultaneous measurements of PAHs were

performed in air and seawater along the same cruise track, while adopting measures to 

check for the occurrence of “ship-made” interferences (12). The main aims of the study 

were to evaluate concentrations and distributions of PAHs in air and surface sea water, 

and to assess their air-water exchange over the Atlantic Ocean.

Experimental section

Sampling: Sample collection occurred from 13th October to 13th November 2005 on 

board the RV Polarstern (Alfred Wegener Institute, Germany) during the Atlantic 

transect ANT XXIII. Sampling covered a latitudinal transect of  about 74° (~ 8230 km),

from 49° 20’ N (Bremerhaven, Germany) to 24° 50’ S (Cape Town, South-Africa). Air 

samples were collected using a high volume air sampler (Hi-Vol; Tisch Environmental

TE-PNY1123 ACCUVOL MODIFIED PUF SAMPLER, Factory Cleves, OH, USA) 

placed windward on the observation deck of the ship (20 m above sea level) to minimize 

contamination from the ship. The Hi-Vol operated at an average flow rate of 0.86 m3 min-

1. The total sampled air volume averaged 650 – 700 m3. The particulate phase was

collected on a glass fiber filter (GFF) (20 cm x 25 cm, Whatman 934-AH), previously 

baked overnight at 450°C, while the gaseous phase was trapped on two polyurethane 

foam plugs (PUF) (8.6 cm diameter, 7.5 cm length). Surface seawater samples were 

collected from a stainless steel pipe at 8 m depth using the ship’s intake system located in

the keel. The initial flow rate was set to 1.2 L min-1. Particle associated compounds were 

retained on a GFF (Whatman International Ltd, Maidstone-England, diameter 125 mm,  

nominal pore size 0.7 µm) (backed at 450° overnight) placed in a stainless steel filter 

holder. GFFs were substituted when the flow rate decreased below 0.8 L min-1 to avoid 
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cell breaking. A total of 2-5 GFFs were used to achieve the average sampled volume of 

650 L. A glass column (19 cm length, 3 cm i.d.) filled with 95 mL Amberlite XAD-2 

(Supelco, Bellefonte, PA, USA) was used to trap dissolved PAHs. It was connected to a 

filter holder through a glass/PTFE junction. Prior to the cruise, XAD columns were pre-

extracted with acetone, hexane and dichloromethane (DCM; all solvents Fisher Scientific 

GC-Resolve) and exchanged to pre-extracted milli-Ro water. 

Sample extraction and clean-up. 

Air samples: GFFs and PUFs were combined and Soxhlet-extracted for 12 hours using 

n-hexane. Results from an earlier cruise along the same transect showed that the particle 

associated fraction of PAHs was negligible compared to total concentrations (10).

Extracts were eluted in glass columns (9 mm i.d.) filled with 1 g alumina, 2 g silica gel 

and 1 g of sodium sulfate (baked at 450°C overnight). The extract was concentrated 

under a gentle stream of N2 until dryness and immediately re-diluted in 100 µL 

acetonitrile. Before analysis, the extract was filtered through a syringe filter (Millipore 4 

mm Millex-FH, pore size 0.45 µm).

Water samples: GFFs and XAD columns were analyzed separately. GFFs were Soxhlet 

extracted for 24 hours using hexane:acetone 9:1. Extracts were dried in a glass column 

(20 mm i.d.) filled with a 2 cm layer pre-rinsed NaSO4. The seawater was drained from 

the XAD under N2 pressure and discarded. XADs were extracted with 50 mL methanol 

followed by 50 mL DCM at a flow of 1 mL min-1. The organic phases were combined in 

a 500 mL separatory funnel, to which 50 mL of pre-extracted MilliQ water were added. 

After phase separation, DCM was added three times for manual liquid/liquid extraction. 

Page 5 of 28

ACS Paragon Plus Environment

Submitted to Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

Extracts were concentrated to ~ 500 µL and fractionated in a glass column (10 mm i.d.) 

packed with 3 g of activated silica (0.063-0.200 mm mesh, activated at 450°C for 16 hrs)

and eluted as follows: Fraction 1: 32.5 mL hexane; Fraction 2: 15 mL hexane:DCM 1:1. 

Fraction 2, containing the PAHs, was concentrated and filtered as above for the air 

sample extracts. 

Instrumental Analysis: Analysis was performed using a Perkin Elmer HPLC system 

with LC250 binary pump, LS40 fluorescence detector and ISS200 autosampler. A PAH 

Spherisorb column 15 cm x 4.6 mm id (thermostatically controlled) was used to separate 

PAHs with an acetonitrile/water gradient at a flow rate of 1.5 mL min-1. Acenaphthene

(Ace), Phenanthrene (Phe), Anthracene (Ant), Fluoranthene (Fla), Pyrene (Pyr), 

Benzo[b]fluoranthene (B[b]F), Benzo[k]fluoranthene (B[k]F) Benzo[a]pyrene (B[a]P), 

Benzo[ghi]perylene (B[ghi]P] and Coronene (Cor), were routinely detected in samples 

and quantified. Quantification was performed using external calibration curves.

 Quality Assurance/Quality control (QA/QC) Handling and storage of air samples is 

described elsewhere (10). After water sampling, the GFFs were folded and placed in pre-

combusted glass tubes. Tubes were flame sealed and enveloped in solvent rinsed 

aluminum foils. GFF containing tubes and XAD column were placed in sealed plastic 

bags and stored at 4°C until extraction.

Sample handling and extraction were performed in a purpose-built clean laboratory at 

Lancaster University. Field blanks (pre-extracted PUF plugs, GFFs, and XAD columns, 1 

in 5 samples) and lab blanks (1 in 12) were routinely included. The limit of detection 

(LOD) was calculated as the mean plus 3 times the standard deviation of the field blanks.  

LODs varied between 1 to 9 pg/m3 for air samples (considering an average sampled 
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volume of 650 m3), and 1 to 20 pg/L for water samples (average sampled volume 650 L),

depending on the PAH. A breakthrough test was performed for the water sample 

collected at the equator by placing 2 GFFs and 2 XAD columns in series. For the particle 

associated fraction, retention on the first filter was between 60 to 70% of the total mass of 

compounds measured on both filters, while for the dissolved fraction, 95-97% of the 

compounds were retained by the first XAD column. Break through correction was 

performed for the particle associated phase when the amount of compound on the second 

filter was above the LOD.   

The quality of the analytical procedure was monitored by adding 1 ng of 

dibenzo[ah]anthracene just before extraction. Analytical response for 

dibenzo[ah]anthracene averaged 99±25% in air samples, and 82±13% and 80±18% for 

particle associated and dissolved phase water samples, respectively. Sample results were 

not corrected for blank values.

Passive air samplers (PUF disks) were deployed in protective shelters at different 

locations of the ship to measure potential ship-based contamination sources. A detailed 

description of the analytical method adopted for the PUF disks is reported in the 

supplementary information.

Ancillary data:

Organic carbon (OC) and elemental carbon (EC): OC and EC concentrations in the 

aerosol were obtained from samples collected onto pre-fired quartz fiber filters with a Hi-

Volume TSP sampler. Sampling was stopped when wind directions became unfavorable 
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and likely to bring ship contamination. Filter samples were analyzed for OC and EC by a

thermo-optical method (13).

Meteorological data: Meteorological data were obtained from PODAS (POlarstern DAta 

System) on board the vessel, an online management system that collects nautical and 

scientific parameters from a multitude of measuring devices installed on the vessel. Air 

and water temperature, wind speed and wind direction were averaged from the system 

every 5 minutes. NOAA's HYSPLIT model and the NCEP/NCAR Global Reanalysis 

dataset were used to calculate back trajectories and atmospheric mixing height. BTs were 

traced for 7 days with 1 h steps at 00:00 coordinated universal time (UTC) at 25 m above 

sea level, roughly corresponding to the height at which samples were collected. 

Results and discussion 

Atmospheric concentration trends

The sum of atmospheric concentrations of 10 PAHs (Σ10[PAHs]atm) over the Atlantic 

Ocean were highly variable (23 - 2560 pg m-3; Figure 1a and Table SI 1). Atmospheric 

trends and Σ10[PAHs]atm measured during this campaign were consistent with previously 

reported data (10). Highest Σ10[PAHs]atm were measured close to Europe (Biscay Bay, 

and Galician coast) and between 20°N and 10°N in proximity of Mauritania, Senegal,

Cape Verde, Guinea Bissau and Guinea. Σ10[PAHs]atm were comparable to those reported 

for rural areas in Europe (14-16). Lowest Σ10[PAHs]atm were recorded between 42° and 

27° N and in the Southern Hemisphere (SH), when the air masses came from the open 

ocean. [PAHs]atm were close to the LOD at the southern latitudes (0° N to 25° S).
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9

The relationship between [PAHs]atm and temperature (T) was investigated and 

compared between the north and south Atlantic by plotting the natural logarithm of the

PAHs’ partial pressure ln P (Pa) versus 1/T. A significant correlation between ln PPAH

and 1/T indicates conditions close to air-water equilibrium, i.e. that the exchange between 

atmosphere and surface water controls atmospheric concentrations (17, 18). Increasing P

with increasing T were observed in the SH, but even for the more volatile PAHs (Phe, 

Ant, Fla) the regressions were not significant at 95% (Figure SI_1). Significant 

relationships were observed on this cruise for polychlorinated biphenyls (PCBs) in the 

SH (19). The different behavior of the PAHs may be explained by their shorter 

atmospheric life-times and the on-going importance of primary sources. In the NH, no 

trends were observed even when the high concentrations measured along the NW African 

coast were excluded. This may be evidence that [PAHs]atm over the NH Atlantic are 

mainly controlled by advection from primary emissions, while in SH air-water 

partitioning may have greater influence on the air concentrations. The observed behavior

and concentration differences showed that the inter-tropical convergence zone (ITCZ) 

prevented an efficient exchange of PAHs between the two hemispheres across the 

Atlantic, thus reducing the exposure of the SH ecosystem to NH emissions. 

Water concentration trends

PAH concentrations in seawater Σ10[PAHs]wat ranged from 58 - 1070 pg L-1 (Table 

SI_2). Most of the PAHs were found in the dissolved phase (Figure SI_2), which was 

dominated by Phe, Fla and Pyr. Highest concentrations in bulk water were observed in 

the NH, close to NW African shores (Figure 1b). In these hotspots, PAH concentrations 
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10

and profiles were consistent with those observed in the atmosphere, suggesting that 

atmospheric deposition/ air-water exchange exerts a strong influence on [PAHs]wat.

[PAHs]wat in the SH decreased going south, as was observed for [PAHs]atm.. 

Concentrations measured in the SH were comparable or lower than previously reported 

for remote sub-arctic areas (20). Elevated concentrations of higher molecular weight

(HMW) PAHs, such as B(k)F, B(a)P, B(ghi)P and Cor (8.2 - 33.4 pg L-1) were measured 

in the particle phase in the Biscay Bay (Sample 1). The % PAHs bound to particles was 

typically < 20% of the total PAHs in the bulk water, but was about 41 % in Biscay Bay. 

This may be related to higher productivity of this area. The Biscay Bay receives a 

considerable input of suspended matter and nutrients from several estuaries (21). B(k)F, 

B(a)P, B(ghi)P and Cor were also detected in the particle phase close to the African 

hotspot. This area is recognized as an important upwelling region (22). In all the other 

samples, the HMW PAHs were close to or below the LODs.

Comments on the high concentrations of North-Western Africa

Higher Σ10[PAHs]atm measured close to west Africa were similar to those observed 

close to Europe, but the PAH profile differed. Off Africa, the HMW PAHs were close to 

the LOD (Figure 2), while the more volatile Ace, Fla, Pyr and in particular Phe 

dominated Σ10[PAHs]atm. During this part of the cruise sampling conditions were not 

ideal: the relative wind speed was low (5 m s-1) and the relative wind direction was ~

230°, which could have added ship-based emissions to the sampler (12). However, in the 

following we review the evidence suggesting that the elevated [PAHs]atm were real. 

i) Passive air samplers. PAHs profiles obtained from the PUF disks deployed on 
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the back of the ship, and affected by the ship’s emissions were completely 

different from those placed on the observation deck (close to the high volume 

sampler) (for details, see the SI). The hi-vol sampled elevated concentrations of

Ace, Fla, Pyr, Phe but not of HMW PAHs, which were close to the LOD in this 

area. PUF disks analysis showed that the ship stack is a source of HMW PAHs, 

which were low in these samples. On the other hand, if the ship was a source of 

PAHs from fuel evaporation (a potential source of more volatile PAHs), this 

should have also been reflected by the PUF disks deployed on the back of the 

ship. Instead these displayed relatively low concentrations of Phe (28 times 

lower than High Vol-based results off NW Africa), Ant, Fluor, Pyr (6-8 times) 

Ace and Flu (not detected).  

ii) Other samples Sample 29 was affected by unfavorable wind conditions for a 

short while (ca. 7 % of the sampling time). It was collected while the ship was

leaving the high concentration area off Africa; concentrations were only a factor

2 lower than the maximum. If ship-contamination had been the cause of the 

high concentrations observed, this sample would have recorded much lower 

concentrations.

iii) PAHs in the surface ocean Water concentrations (see above) also showed 

relatively high levels in this region for Phe, Fla and Pyr, presumably reflecting 

elevated atmospheric concentrations (Figure 1b). 

iv) Air mass origin Back trajectory analysis (23) showed that while RV Polarstern

was cruising across the hotspot area, the air came from N-NE, moving over the 

African coasts before reaching the ship. Then, after crossing the 8° N parallel, 
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their provenance changed quickly to the S and low atmospheric concentrations 

were re-established (Figure SI_4).

Based on the above, it seems most likely that there is a strong PAH source, probably 

land-based. The high levels measured there are also in agreement with recent 

measurements along two E-W Atlantic transects at 26° and 21° N (24). PAH profiles

were dominated by Phe. [PAHs]atm for individual compounds were 2-4 times higher than 

those measured in this study.

Estimating the African emission strength

In the following we estimate the necessary strength of a hypothetical source located on 

the African coast. The “hotspot” area covered a 1500 km long N-S transect as the ship 

traveled at an average distance of ca. 400 km from the coast. The Atmospheric Boundary 

Layer (ABL) was about 200 m during this cruise track (23).  The wind speed in the area

was between 4 and 8 m s-1. Considering the back trajectories (Figure SI 3) and wind 

direction, we estimate an average atmospheric residence time of 36-96 h in the volume 

delimited by the coast line, the cruise track and the ABL (120,000 km3). For Phe, the 

most abundant PAH, average concentrations were 1600 pg m-3. Considering the North-

South wind direction, the advective flux of Phe out of the southern section area 

(delimited by the distance from the coast and the ABL (~ 80 Km2)), was 1.8 – 3.6 Kg h-1. 

Net air-to-water exchange was calculated as 129 and 332 ng m-2 d-1 for an average wind 

speed of 4 and 8 m s-1, respectively. This implies a flux of Phe into the water of 1.3 – 4.3

Kg h-1. It is estimated that OH-radical reaction would have depleted a further 0.8 - 2.2 Kg 

h-1 (averaged over 24 h). In total, a hypothetical coast-based source would need to emit 4
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- 10 Kg h-1 of Phe, a value comparable to mean emission rates of Phe for the UK (25) or 

Minnesota (26).  

Of the coastal African countries only Senegal, with a population of about 11 million 

inhabitants, has some developed industry including oil extraction. Around 50 extractive 

offshore platforms are documented for Senegal, resulting in an intense international trade 

of crude oil, land base refineries and chemical industries (27). The abundance of more 

volatile PAHs is consistent with the atmospheric fingerprint measured in areas where un-

combusted fuel, oil spills and potentially gas flaring represent the main source to the 

atmosphere (16, 28, 29). Other ships sailing along this route might have added to the 

atmospheric PAHs measured. Biomass burning and natural fires could also have 

contributed to the observed concentrations. September - October are periods of peak fire 

activity in sub-Saharan and Central Africa (30, 31). Our observed PAH profiles match 

those from wood burning, suggesting that biomass burning could have added to the 

observed plume (32). 

Natural sources could also contribute to the elevated [PAHs]atm. Microbial activity in 

tropical soils, especially the anaerobic degradation of organic matter containing pigments, 

represents a natural source of PAHs such as Perylene, Phe and Naphtalene (33, 34). The

PAHs could therefore have been transported to the region by atmospheric transport 

following volatilization from soils or via run-off and riverine transport of terrestrial 

matter. Further work is needed to identify the source(s) of those elevated concentration.

Biogeochemical processes
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Simultaneous air and water sampling was performed in 15 selected areas along the 

transect to assess the air-water exchange of PAHs. This is one of the main processes 

transferring pollutants between air and water (35, 36). Air-water fugacity ratios (37) were 

calculated for PAHs that were routinely detected in both phases as follows:

fa / fw = (Ca RT) / (CwH) 1)

where Ca is the gaseous concentration (mol m-3), Cw is the dissolved aqueous 

concentration (mol m-3), R is the gas constant (J K-1 mol-1) and H is the Henry’s law 

constant (Pa m3 mol-1). Values of H and their temperature dependence were taken from 

Bamford et al. (38) and Shiu and Ma (39) and were corrected for salinity using the 

Setshenow equation. Ratios > 1 were observed for Phe, Fla and Pyr in the Biscay Bay

and in the NW African hotspot suggesting net deposition (Figure 3). Fla and Pyr 

appeared to be close to equilibrium in all other areas. Ratios < 1 were observed for Phe 

and Ant in all locations characterized by low atmospheric concentrations. The calculation 

of the fugacity ratios was performed taking into consideration the uncertainty factors 

reported by McLeod et al. (40). The uncertainty of air-water exchange is dominated by 

accurately knowing H (95% confidence within a factor ~ 3), minimizing the impact of 

analytical uncertainties (ca. 30% each for PAHs in atmosphere and water) (41). fa / fw for 

Phe and Ant ranged in those areas between 0.04 and 0.36, suggesting the occurrence of 

net (re-)volatilization.

The following section assesses the factors/processes which could have contributed to 

the volatilization of PAHs.
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Net diffusive air-water flux Fa-w (ng m-2 d-1) was calculated for Ant and Phe in regions 

where the average fa / fw < 0.3. This threshold reflects the uncertainty of around 3 in 

knowing the exact fa / fw (40). Fluxes were estimated using a two resistance model (1, 2):

)(
H

RTC
CkF a

wolwa −=− 2)

where kol (m d-1) is the overall mass transfer coefficient estimated as described 

elsewhere (42). Volatilization fluxes were 70-210 and 3-70 ng m-2d-1 for Phe and Ant 

respectively (Figure 4). kol is known within a factor of 3 (40), rendering the uncertainty of 

Fa-w to be at worst an order of magnitude.

Atmospheric degradation plays a key role in the environmental fate of PAHs and 

competes with air-water exchange. Atmospheric degradation is mainly due to OH-radical 

reactions. The degradation flux Fdeg can be estimated as:

aOHOH CCkhF ⋅=deg 3)

where h (m) is the height of sampling a.s.l., kOH (cm3 molecules-1 d-1) is the degradation 

rate constant, and COH (molecules cm-3)  is the concentration of OH radicals. These were 

calculated as follows: h was set to 20 m, the height at which the samplers were 

positioned; kOH values were taken from Brubaker and Hites (43); COH was estimated from 

T (44). OH-radical depletion fluxes were 7-120 and 9-50 ng m-2d-1 for Phe and Ant,

respectively (Figure 4). The confidence of the estimated Fdeg is an order of magnitude, 

dominated by the uncertainty of knowing OH concentrations. OH radical depletion fluxes

were comparable in magnitude to the water-to-air fluxes, presumably causing the 
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continuous volatilization of PAHs from the water. This raises questions about the 

processes which could have supplied sufficient amounts of PAHs to the surface ocean.

Atmospheric deposition PAH deposition on aerosols was assessed by estimating the 

particle bound concentration (Cp, pg m-3 of air) from OC and EC concentrations (6) 

details are given in Text SI_2). The dry deposition flux (ng m-2d-1) was calculated as:

DpDD CF ν= 4)

where Dν (m d-1) is the particles’ deposition velocity. Values of Dν were taken from Del 

Vento and Dachs (24), using on-board measurements from a different cruise. FDDs for

Phe and Ant were 0.002-0.120 and 0.006-0.340 ng m-2 d-1 respectively; 3 - 4 orders of 

magnitude lower than Fa-w and Fdeg (Figure 4), ruling out a significant contribution to the 

relatively high fugacity of surface water, even considering an uncertainty of 1 order of 

magnitude. Wet deposition, finally, does not appear to significantly contribute in adding 

PAHs to the surface ocean either in this region. Jurado et al. (35) showed that wet 

deposition fluxes are important during the rain event itself but they lose their importance 

over longer time scales. During the cruise, especially in the SH, no significant rain events 

were recorded. 

The lowest fugacity ratios were observed in tropical/ subtropical latitudes. These regions 

have no marked seasonality, so changes in T, water productivity etc. should not affect the 

fugacity ratio in this area much. In any case, biological productivity would affect PAHs 

with higher KOW values, such as Fla and Pyr, which were close to equilibrium. It is also 

unlikely that short time scale fluctuations (days-weeks) in the advective fluxes could 

generate the observed behavior, given the distance from the land and the constant pattern 

of the air masses coming from the open ocean. This was confirmed through back 
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trajectory analysis (23), at least for all the sites in the SH, by following their air mass 

origin during the week before the sampling.

Taken together, atmospheric deposition alone cannot account for the observed net 

volatilization flux of PAHs, suggesting that there is an additional source of PAHs in the 

surface water. One hypothesis could be the existence of natural sources for Phe and Ant 

in the water column, following what was observed in tropical soils (33, 34). The fast 

turnover of organic matter and the rapid degradation of pigments carrying aromatic 

structures could be the driving process. Elevated water temperature and the scarcity of 

nutrients, typical of the NH and SH gyres, promote the rapid recycling of almost all Fe, C 

and N early in the surface waters (45). This, together with the absence of significant

vertical removal processes (low export rate (1)), would enhance PAH fugacity in water, 

supporting their net volatilization. If they exist, such sources would also release PAHs in 

other regions, such as the NW African hot spot, contributing to the high concentrations 

measured there in both water and air. If present, natural PAH sources in the oceans could 

be more easily detected in remote and oligotrophic areas such as the northern and 

southern gyres, under stable conditions removed from anthropogenic sources. This 

hypothesis needs further investigation, since anthropogenic sources are generally 

considered to dominate the regional/global inventories of PAHs.
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Supporting Information

Additional figures and tables detailing sample concentrations and conditions, estimated 

particle fractions and passive sampler results. This information is available free of charge 

via the Internet at http://pubs.acs.org.
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Figure 1. Latitudinal distribution of Σ10PAHs in a: Air, b: Water (grey represents the 

dissolved fraction and black the particle associated fraction). 
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Figure 2. Comparison of the average atmospheric PAH profile in the Biscay Bay and in 

N-W Africa. Error bars represent 1 standard deviation.
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Figure 3: Fugacity ratios of selected PAHs. The grey area shows the uncertainty of air-

water equilibrium; ratios outside suggest PAHs not at air-water equilibrium.  
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Figure 4. Calculated inter-compartmental fluxes of phenanthrene and anthracene in areas 

with fa/fw < 0.3
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