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We study the stability of quantum motion of classically regular systems in the presence of small perturba-
tions. On the basis of a uniform semiclassical theory we derive the fidelity decay which displays a quite
complex behavior, from Gaussian to power law decay t−a, with 1øaø2. Semiclassical estimates are given for
the time scales separating the different decaying regions, and numerical results are presented which confirm
our theoretical predictions.
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Stable manipulation of quantum states is of importance in
many research fields such as in quantum information pro-
cessing and in Bose-Einstein condensation. A measure of the
stability of quantum motion is the so-called fidelity or quan-
tum Loschmidt echo f1g, which characterizes the stability of
quantum dynamics under small perturbations of the Hamil-
tonian that may derive from static imperfections or from in-
teraction with an external environment. From a more general
point of view it is interesting to understand the behavior of
fidelity in relation to the dynamical properties of the system.

While fidelity decay in classically chaotic systems has
been extensively studied f2–11g, the situation in regular sys-
tems is much less clear f5,10–19g and only for the particular
case of vanishing time-average perturbations has a clear un-
derstanding been achieved f12g. Moreover, for a general per-
turbation and for a single initial Gaussian wave packet, a
Gaussian decay has been predicted in some time interval
which is not exactly specified f5g. On the other hand, nu-
merical investigations show a much richer behavior of the
fidelity decay, ranging from power law to exponential up to a
Gaussian decay, depending on initial conditions, perturbation
strength, and time interval f15g. In addition, a somehow un-
expected regime in which the fidelity decay in regular sys-
tems is faster than in classically chaotic systems has been
found in f5g. All of the above call for a theory which can
account for these diverse analytical and numerical findings.

We would like to draw the reader’s attention to the fact
that in the general theory of dynamical systems, integrability
is the exception rather than the rule and it is therefore ex-
tremely rare. However, the theory we present in this paper
applies also to integrable regimes of systems with divided
phase space in which both chaotic and integrable compo-
nents are present and this is indeed the typical situation.
Moreover, as shown in f20g, for a proper operability of a
quantum computer it is desirable to remain below the border
for transition to quantum chaos, a situation which is likely
to correspond to quasi-integrable behavior. Finally, some
quantum algorithm can have a phase space representation
and, in particular, the Grover algorithm can be interpreted as

a simple quantum map which turns out to be a regular map
f21g.

The above considerations have motivated our interest in
the stability of integrable motion. In this paper, we develop a
uniform semiclassical approach to the fidelity decay in regu-
lar systems and we provide a unified description together
with the corresponding time scales. Numerical computations
confirm our analytical estimates.

Quantitatively, the fidelity for an initial state uC0l is de-
fined as Mstd= umstdu2, where

mstd = kC0uexpsiHt/"dexps− iH0t/"duC0l . s1d

Here H0 and H=H0+eV are the unperturbed and perturbed
Hamiltonians, with e a small quantity and V a generic per-
turbing potential.

Consider an initial Gaussian wave packet in a
2d-dimensional phase space, centered at sr̃0 , p̃0d,

c0sr0d = spj2d−d/4 expfip̃0 · r0/" − sr0 − r̃0d
2/s2j2dg . s2d

For a sufficiently narrow, initial Gaussian packet, the semi-
classical approximation to the fidelity amplitude is

mscstd . spwp
2d−d/2E dp0 expF i

"
DS −

sp0 − p̃0d
2

wp
2 G , s3d

where wp=" /j and DS is the action difference between the
two nearby trajectories of the two systems H and H0 starting
at sp0 , r̃0d f7g. We mention that, for not very narrow initial
Gaussian packets, Eq. s3d may still hold with a redefinition
of wp f9g. For more general initial states, the fidelity ampli-
tude can be expressed in terms of the Wigner function of the
initial state in a uniform semiclassical approach f10g.

The action difference can be calculated in the first-order
classical perturbation theory:
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DS . eE
0

t

dt8Vfrst8d,pst8dg , s4d

with V evaluated along one of the two trajectories. Equations
s3d and s4d give quite accurate predictions even for relatively
long times, much more accurate than that usually expected
for a first-order perturbation treatment f7,8g. The reason for
the unexpected accuracy is explained in f10g by making use
of the shadowing theorem, the two trajectories for DS being
in fact the so-called shadowing trajectories of the two sys-
tems with slightly different initial conditions.

Equation s3d shows that the behavior of fidelity is mainly
determined by two factors: sid DS as a function of p0 and t

and siid the Gaussian term, which specifies an effective win-
dow in the p0 space with size wp. For simplicity, in what
follows, we consider kicked systems with d=1 and set the
domains of r and p to be f0,2pd.

For an integrable system or a regular region of a mixed
system, at least locally there exist action-angle variables
su , Id, connected to the variables sr ,pd by a canonical trans-
formation. The integrand in Eq. s4d can then be written as

Vt ; VfIstd,ustdg, with ustd = u0 + nt , s5d

Istd. I0, and n;]HsId /]I.
The main features of DS as a function of t and p0 can be

seen by substituting Eq. s5d into Eq. s4d, replacing nt by f
=nt, and noting the periodicity of the angle u. This gives

DS . esUIt + S fd, where UI ;
1

2p
E
0

2p

VsI,uddu , s6d

S f ;
1

n
FE

0

b

VsI,u0 + fddf − bUIG . s7d

Here b;nt−2pnt, where nt is the integer part of nt /2p.
Therefore, for a fixed p0, b is a sawtooth-type function of
time oscillating between 0 and 2p with a frequency n /2p.
As a result S f oscillates correspondingly; hence, DS oscillates
around its linearly increasing part eUIt. On the other hand,
for a fixed t, UI as a function of p0 changes almost linearly in
the neighborhood of p̃0 while S f oscillates with a frequency
ñ8t /2p, where n8;]n /]p0. Therefore the average slope of
DS with respect to p0 is eUI8t, where UI8;]UI /]p0. fWe use
a tilde above a quantity to indicate its value taken at the
center sr̃0 , p̃0d.g

We first study the fidelity decay for times t,t1, where t1
is the time scale before which the right-hand side of Eq. s3d
can be calculated by a linear approximation to DS with re-
spect to p0− p̃0. This gives

Msc1std . expF− 1

2
sswpk̃pd

2G, with kp ;
1

e

]DS

]p0
, s8d

where s=e /" is the strength of perturbation. The explicit
dependence of kp on time t can be calculated by using Eq.
s6d. The leading terms give

kp . sUI8 + Uudt, where Uu ;
1

t

]S f

]p0
. sVt − UId

n8

n
.

s9d

Since Uu oscillates in time around zero, the fidelity has, on
average, an initial Gaussian decay with a rate depending on
initial conditions, with larger values of uUI8u implying faster
decay.

To test the above predictions, we consider the kicked ro-
tator model H= 1

2p
2+k0 cos ron=0

` dst−nTd. The quantized
system has a finite Hilbert space with dimension N. We
take k0=kN /2p and T=2p /N, with k=k0T independent of N.
The classical limit corresponds to N→`. The one-period
quantum evolution is given by the Floquet operator U

=expf−ip̂2T /2gexpf−ik0 cossr̂dg and is numerically computed
by the method of fast Fourier transform. Here 2p /N serves
as an effective Planck constant. The inset of Fig. 1 shows an
example of DS vs p0, in which the values of uUI8u are large at
the borders while quite small in the central, oscillating region
of p0. In agreement with our theory, under the perturbation
k→k+e, the fidelity for initial states lying in the two regions
of p0 has a quite different decaying rate, as seen in Fig. 1.
The agreement with the theory is particularly good in the
case where the oscillations of DS are not too strong.

The time scale t1 can be estimated by the time at which
the second-order term in the Taylor expansion of DS /" is

order of 1 at the point p0= p̃0+wp—i.e., swp
2 u k̃ppstd u ,1 for

t=t1, where

FIG. 1. sColor onlined Comparison between the numerically
computed fidelity decay sblack circles and open squaresd and the
semiclassical prediction Msc1std in Eq. s8d, in the kicked rotator
model with k=0.3,s=1.5, N=217, and j2=" /20. Centers of the
initial Gaussian packets are sr̃0 , p̃0d= s1.2p ,0.6pd for the circles and
s1.2p ,0.2pd for the squares. The solid and dashed curves represent
the semiclassical predictions, respectively, with kp evaluated nu-
merically in the classical systems. Inset: DS /2p vs p0 /2p, for r0
=1.2p at t=20. The average slope of DS in the monotonically in-
creasing part is much larger than that in the central part; therefore,
the fidelity decay at p̃0=0.2p is faster than that at p̃0=0.6p. The
oscillations of DS in the central region imply larger second- and
higher-order terms in the expansion of DS around p̃0=0.6p, hence
larger deviations of the fidelity from Msc1std.
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kppstd ;
]kp

]p0
=

sn8d2

n

]V

]u
t2 + Ostd . s10d

A numerical check of this prediction is presented in Fig. 2.
When the t2 term dominates, t1~Î1/swp

2.
Beyond t1, a direct analytical computation of the fidelity

is difficult since higher- and higher-order terms in the Taylor
expansion of DS with respect to p0− p̃0 need to be consid-
ered. We take therefore the following approach: we divide
the domain of p0 into segments separated by points p0j swith
p00= p̃0d, in such a way that S f completes one oscillation
period within each segment. sWe will use the subscript j to
indicate quantities taken at the point p0j.d It is easy to see that
sp0j+1−p0jdn j8t.2p and therefore the number of segments
increases linearly with time t. The quantity mscstd in Eq. s3d
can now be written as a sum of contributions m jstd of differ-
ent segments: namely, mscstd=o jm jstd.

Let us introduce the time scale ts, at which S f completes
one oscillation within the window Wp= sp̃0−wp , p̃0+wpd.
From Eq. s7d, ts<p / sñ8wpd. For t@ts, there are many seg-
ments within Wp; hence, within each segment, the variation
of the Gaussian term on the right-hand side of Eq. s3d is
negligible. Therefore one may write

m jstd .
e−sp0j − p̃0d2/wp

2

Îpwpn j8t
eiDSj/"Fstd , s11d

Fstd = E
0

2p

df expH is

ñ
E

ũstd

ũstd+f

VsĨ,u8ddu8J . s12d

Indeed for p0j not far from p̃0, Fstd is independent of j, and
since uFstdu does not decay with time, we will not consider it
further.

First we notice that Eq. s11d predicts a plateau in the
fidelity decay when the change of DS j /" within the window

Wp is negligible. The plateau disappears when swpŨI8t,p.

If, for example, UI=0 for the system H0, then UI~e for the
system H, and the plateau will end at a time proportional to
"1/2e−2 for j~"1/2 in agreement with the result of f12g.

Due to the Gaussian term on the right-hand side of Eq.
s11d, the main contribution to mscstd comes from p0j not far
from p̃0. For these p0j, n j8 is almost a constant, as well as the
value of S f; hence, apart from a common phase, DS j in Eq.
s11d can be approximated by eUIjt. For a sufficiently large
number of segments, the sum o jm jstd can be replaced by an
integral over p0. Then, setting q=p0− p̃0, we have

mscstd .
Fstd

2pÎpwp

E
−`

`

dqe−q
2/wp

2
eistUI. s13d

Expanding UI to the second-order terms in q, we have

Msc2std .
2c

Î4 + swp
2sŨI9td

2
expF − 2swpsŨI8td

2

4 + swp
2sŨI9td

2
G , s14d

where UI9;]UI8 /]p0 and c is a constant with c<1 for suffi-
ciently small s.

From Eq. s14d it is seen that for swp
2sŨI9td

2!4, the fidelity

has a Gaussian decay e−swpsŨI8td
2/2, which agrees with the one

given in f5g for weak perturbations. On the other hand, if

swp
2sŨI9td

2@4—i.e., for larger time t—Msc2std in Eq. s14d
has a power law decay 1/ t. In the transition region between
the two decays, the fidelity may have an approximate expo-
nential decay ssee Fig. 3d which can explain the exponential-
like decay found numerically in f15g.

With further increasing time t, higher-order terms in the
Taylor expansion of UI will become important and will
modify the 1/ t decay. In order to evaluate the effect of
higher-order terms, we divide the interval Wp into subinter-
vals labeled by l, in such a way that inside each of them the
linear approximation of UI can be used. Thus their width

FIG. 2. sColor onlined The time scale t1 versus p̃0, for the same
parameters as in Fig. 1. The circles give the values of t1 calculated
by the first time at which ufMstd−Msc1stdg /Mstdu.0.1 fsee Eq. s8dg.
The solid curve is the semiclassical estimate given by

swp
2uk̃ppst1du=1, with k̃ppstd numerically computed in the corre-

sponding classical system.

FIG. 3. sColor onlined Solid curve: fidelity decay for s=0.2,
N=212, k=0.3, j2=" /20, and sr̃0 , p̃0d= s1.2p ,0.8pd. Dashed curve:

the prediction of Eq. s14d with c=1 and ŨI8<−0.019, ŨI9<0.042
numerically computed from the classical system. Dotted curve: the

Gaussian decay e−swpsŨI8td
2/2. fFor small values of s, the difference

between this decay and Msc1 in Eq. s8d is small before t1.g The
dash-dotted line shows the approximate, intermediate, exponential
decay. Inset: long time decay for the same case with r̃0=0.6p sev-
ery 500 steps shownd. The dashed line gives the 1/ t1.1 decay.
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must be of the order dq.1/ÎuUI9 ust and their number in the
region Wp is lm~Îst. For sufficiently long time t, lm@1 and
the width of each subinterval is much smaller than Wp. As a
result, the Gaussian term in Eq. s13d can be regarded as
constant within each subinterval. Then, the integral s13d re-
duces to mscstd.olmlstd=olcle

iflstd /st, with some coeffi-
cients cl and phases flstd. The detailed behavior of this sum
depends on the properties of the function UI. However, one
can give estimates in some limiting cases: sid Since
uolcle

iflstduøoluclu~ sstd1/2, the slowest decay is 1 /Îst. siid
The fastest decay is obtained when uolcle

iflstdu is a constant
swhich may happen due to mutual cancellation of phases fld.
In this case, msc,1/st. siiid In the case of random phases fl,
one has uolcle

iflstdu~ sstd1/4, then msc,1/ sstd3/4, which coin-
cides with the result given in Ref. f13g for averaged fidelity.
(For an analysis of Gaussian and power law decay of fidelity,
which is based on statistics of action difference, see Ref.
f10scdg).

Therefore, in general, the decay of Mstd has the power
law dependence set /"d−a with 1øaø2. This is in agree-
ment with numerical results in f15g, as well as with our ex-
tensive numerical simulations ssee, e.g., Fig. 4 and the inset
of Fig. 3d. The cases of a.1 or 2 have been found to be
quite rare in our simulations.

It is important to remark that, contrary to chaotic systems
for which the decay rate depends on the strength but not on
the shape of the perturbation, integrable systems lack of such
generic behavior. This is typical in the general theory of
dynamical systems, and it is due to the peculiarity of inte-
grability. In the present case the numerical value of a de-
pends on the particular shape of UI.

Our approach can also explain an interesting feature of
fidelity decay in regular systems observed numerically in
f15g, that is the fact that, in some cases, the decay rate may
decrease with increasing the perturbation strength s. First we
note that Eq. s14d is valid only when uDS j+1−DS ju /" is small
compared with p, since it is obtained by replacing the sum
o jm jstd by an integral over p0. Since UI8 is given by sDS j+1
−DS jd / sp0j+1−p0jdet, then uDS j+1−DS ju /".2psuUIj8 /n j8u,
which may exceed p for sufficiently large s. In this case, we
can replace DS j /" by c j;DS j /"−2pmj, where m is an in-
teger such that uc j+1−c juøp. Then using the fact that, for p0j
close to p̃0, sp0j− p̃0dñ8t.2pj, we find that the term sŨI8 in

Eq. s14d can be replaced by b;usŨI8−mñ8u. With increasing
s, the value of b, which gives the decay rate, oscillates be-

tween 0 and uñ8u /2, with a period uñ8 / ŨI8u. The results of Fig.
4 nicely confirm the above analysis.

Finally a word of comment on the comparison of fidelity

decay in classically regular and chaotic systems. As shown in
f5g, in a sufficiently weak perturbation regime s,sc~Î",

the Gaussian decay e−swpsŨI8td
2/2 in the regular case can be

faster than the Fermi-golden-rule decay in the chaotic case.
This is not surprising as it may look at first sight, since in
this regime, wpsc~" can be quite small and the fidelity may
remain close to 1 for a time comparable to the Heisenberg
time ,1/", which can be quite long. Moreover, the above
Gaussian decay in the regular case is followed by a power
law decay, which is slower than the exponential decay in the
chaotic case.
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