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Abstract
A selective sampling algorithm is a learning algorithm for classification that, based on the past
observed data, decides whether to ask the label of each new instance to be classified. In this pa-
per, we introduce a general technique for turning linear-threshold classification algorithms from
the general additive family into randomized selective sampling algorithms. For the most popular
algorithms in this family we derive mistake bounds that holdfor individual sequences of examples.
These bounds show that our semi-supervised algorithms can achieve, on average, the same accu-
racy as that of their fully supervised counterparts, but using fewer labels. Our theoretical results
are corroborated by a number of experiments on real-world textual data. The outcome of these
experiments is essentially predicted by our theoretical results: Our selective sampling algorithms
tend to perform as well as the algorithms receiving the true label after each classification, while
observing in practice substantially fewer labels.

Keywords: selective sampling, semi-supervised learning, on-line learning, kernel algorithms,
linear-threshold classifiers

1. Introduction

A selective sampling algorithm (see, e.g., Cohn et al., 1990; Cesa-Bianchiet al., 2003; Freund et al.,
1997) is a learning algorithm for classification that receives a sequenceof unlabelled instances and
decides whether to query the label of the current instance based on the past observed data. The idea
is to let the algorithm determine which labels are most useful to its inference mechanism, and thus
achieve a good classification performance while using fewer labels.

Natural real-world scenarios for selective sampling are all those applications where labels are
scarce or expensive to obtain. For example, collecting web pages is a fairly automated process,
but assigning them a label (e.g., from a set of possibletopics) often requires time-consuming and
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costly human expertise. For this reason, it is clearly important to devise learning algorithms having
the ability to exploit the label information as much as possible. An additional motivation for using
selective sampling arises from the widespread use of kernel-based algorithms (Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2001; Schölkopf and Smola, 2002). In this case, saving labels implies
using fewer support vectors to represent the hypothesis, which in turnentails a more efficient use of
the memory and a shorter running time in both training and test phases.

Many algorithms have been proposed in the literature to cope with the broad task of learning
with partially labelled data, working under both probabilistic and worst-case assumptions for either
on-line or batch settings. These range from active learning algorithms (Campbell et al., 2000; Tong
and Koller, 2000), to the query-by-committee algorithm (Freund et al., 1997), to the adversarial
“apple tasting” and label efficient algorithms investigated by Helmbold et al. (2000) and Helmbold
and Panizza (1997), respectively. More recent work on this subjectincludes (Bordes et al., 2005;
Dasgupta et al., 2005; Dekel et al., 2006).

In this paper we present a mistake bound analysis for selective sampling versions of Perceptron-
like algorithms. In particular, we study the standard Perceptron algorithm (Rosenblatt, 1958; Block,
1962; Novikov, 1962) and the second-order Perceptron algorithm (Cesa-Bianchi et al., 2005). Then,
we argue how to extend the above analysis to the general additive family of linear-threshold algo-
rithms introduced by Grove et al. (2001) and Warmuth and Jagota (1997) (see also Cesa-Bianchi
and Lugosi, 2003; Gentile, 2003; Gentile and Warmuth, 1999; Kivinen andWarmuth, 2001), and
we provide details for a specific algorithm in this family, i.e., the (zero-threshold) Winnow algo-
rithm (Littlestone, 1988, 1989; Grove et al., 2001).

Our selective sampling algorithms use a simple randomized rule to decide whetherto query the
label of the current instance. This rule prescribes that the label shouldbe obtained with probability
b/(b+ |p̂|), wherep̂ is the (signed) margin achieved by the current linear hypothesis on the current
instance, andb > 0 is a parameter of the algorithm acting as a scaling factor onp̂. Note that
a label is queried with a small probability whenever the marginp̂ is large in magnitude. If the
label is obtained, and it turns out that a mistake has been made, then the algorithm proceeds with its
standard update rule. Otherwise, the algorithm’s current hypothesis is left unchanged. It is important
to remark that in our model we evaluate algorithms by counting their prediction mistakes also on
those time steps when the true labels remain unknown. For each of the algorithmswe consider a
bound is proven on the expected number of mistakes made in an arbitrary datasequence, where the
expectation is with respect to the randomized sampling rule.

Our analysis reveals an interesting phenomenon. In all algorithms we analyze, a proper choice
of the scaling factorb in the randomized rule yields the same mistake bound as the one achieved
by the original algorithm before the introduction of the selective sampling mechanism. Hence, in
some sense, our technique exploits the margin information to select those labelsthat can be ignored
without increasing (in expectation) the overall number of mistakes.

One may suspect that this gain is not real: it might very well be the case that the tuning ofb
preserving the original mistake bound forces the algorithm to query all butan insignificant number
of labels. In the last part of the paper we present some experiments contradicting this conjecture. In
particular, by running our algorithms on real-world textual data, we show that no significant decrease
in the predictive performance is suffered even whenb is set to values that leave a significant fraction
of the labels unobserved.

The paper is organized as follows. In the remainder of this introduction we give the notation
and the basic definitions used throughout the paper. In Section 2 we describe and analyze our
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Perceptron-like selective sampling algorithms. In Section 3 we extend our margin-based argument
to the zero-threshold Winnow algorithm. Empirical comparisons are reportedin Section 4. Finally,
Section 5 is devoted to conclusions and open problems.

Notation and basic definitions

An exampleis a pair(x,y), wherex∈ R
d is aninstancevector andy∈ {−1,+1} is the associated

binary label.

We consider the following selective sampling variant of the standard on-linelearning model (An-
gluin, 1988; Littlestone, 1988). Learning proceeds in a sequence oftrials. In the generic trialt the
algorithm observes instancext , outputs a prediction̂yt ∈ {−1,+1} for the labelyt associated with
xt , and decides whether or not to ask the labelyt . No matter what the algorithm decides, we say that
the algorithm has made aprediction mistakeif ŷt 6= yt . We measure the performance of a linear-
threshold algorithm by the total number of mistakes it makes on a sequence of examples (including
the trials where the true labelyt remains unknown). The goal of the algorithm is to bound, on an
arbitrary sequence of examples, the amount by which this total number of mistakes exceeds the
performance of the best linear predictor in hindsight.

In this paper we are concerned with selective sampling versions of linear-threshold algorithms.
When run on a sequence(x1,y1),(x2,y2), . . . of examples, these algorithms compute a sequence
w0,w1, . . . of weight vectorswt ∈ R

d, wherewt can only depend on the past examples(x1,y1), . . .,
(xt ,yt) but not on the future ones,(xs,ys) for s > t. In each trialt = 1,2, . . . the linear-threshold
algorithm predictsyt using1 ŷt = SGN(p̂t) wherep̂t = w⊤

t−1xt is the margin ofwt−1 on the instance
xt . If the labelyt is queried, then the algorithm (possibly) usesyt to compute a new weightwt ; on
the other hand, ifyt remains unknown thenwt = wt−1.

We identify an arbitrary linear-threshold classifier with its coefficient vector u ∈ R
d. For a

fixed sequence(x1,y1), . . . ,(xn,yn) of examples and a given margin thresholdγ > 0, we measure the
performance ofu by its cumulativehinge loss(Freund and Schapire, 1999; Gentile and Warmuth,
1999)

Lγ,n(u) =
n

∑
t=1

ℓγ,t(u) =
n

∑
t=1

(γ−ytu
⊤xt)+

where we used the notation(x)+ = max{0,x}. In words, the hinge loss, also calledsoft marginin
the statistical learning literature (Vapnik, 1998; Cristianini and Shawe-Taylor, 2001; Scḧolkopf and
Smola, 2002), measures the extent to which the hyperplaneu separates the sequence of examples
with margin at leastγ.

We represent the algorithm’s decision of querying the label at timet through the value of a
Bernoulli random variableZt , whose parameter is determined by the specific selection rule used by
the algorithm under consideration. Though we make no assumptions on the source generating the
sequence(x1,y1),(x2,y2), . . ., we require that each example(xt ,yt) be generated before the value
of Zt is drawn. In other words, the source cannot use the knowledge ofZt to determinext andyt .
We useEt−1[·] to denote the conditional expectationE[· |Z1, . . . ,Zt−1] andMt to denote the indicator
function of the event̂yt 6= yt , wherêyt is the prediction at timet of the algorithm under consideration.

1. Here and throughoutSGN denotes the signum functionSGN(x) = 1 if x > 0 andSGN(x) = −1, otherwise.
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Selective sampling Perceptron.
Parameters:b > 0.
Initialization: w0 = (0, . . . ,0)⊤.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = w⊤

t−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) draw a Bernoulli random variableZt ∈ {0,1} of parameter
b

b+ |p̂t |
;

(4) if Zt = 1 then query labelyt ∈ {−1,+1} and perform the standard Perceptron
update:wt = wt−1 +Mt yt xt ;

(5) else(Zt = 0) setwt = wt−1.

Figure 1: A selective sampling version of the classical Perceptron algorithm.

Finally, whenever the distribution laws ofZ1,Z2, . . . andM1,M2, . . . are clear from the context,
we use the abbreviation

Lγ,n(u) = E

[
n

∑
t=1

Mt Zt ℓγ,t(u)

]
.

Note thatLγ,n(u) ≤ Lγ,n(u) trivially holds for all choices ofγ, n, andu.

2. Selective Sampling Algorithms and Their Analysis

In this section we describe and analyze three algorithms: a selective samplingversion of the clas-
sical Perceptron algorithm (Rosenblatt, 1958; Block, 1962; Novikov, 1962), a variant of the same
algorithm with a dynamically tuned parameter, and a selective sampling version of the second-order
Perceptron algorithm (Cesa-Bianchi et al., 2005). It is worth pointing out that, like any Perceptron-
like update rule, each of the algorithms presented in this section can be efficiently run in any given
reproducing kernel Hilbert space once the update rule is expressed inan equivalent dual-variable
form (see, e.g., Vapnik, 1998; Cristianini and Shawe-Taylor, 2001; Schölkopf and Smola, 2002).
Note that, in the case of kernel-based algorithms, label efficiency provides the additional benefit
of a more compact representation of the trained classifiers. The experiments reported in Section 4
were indeed obtained using a dual-variable implementation of our algorithms.

2.1 Selective Sampling Perceptron

Our selective sampling variant of the classical Perceptron algorithm is described in Figure 1. The
algorithm maintains a vectorw ∈ R

d (whose initial value is zero). In each trialt the algorithm
observes an instance vectorxt ∈ R

d and predicts the binary labelyt through the sign of the margin
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valuep̂t = w⊤
t−1xt . Then the algorithm decides whether to query the labelyt through the randomized

rule described in the introduction: a coin with biasb/(b+ |p̂t |) is flipped; if the coin turns up heads
(Zt = 1 in Figure 1), then the labelyt is queried. If a prediction mistake is observed (ŷt 6= yt), then
the algorithm updates vectorwt according to the usual Perceptron additive rule. On the other hand,
if either the coin turns up tails or̂yt = yt (Mt = 0 in Figure 1), then no update takes place.

The following theorem shows that our selective sampling Perceptron can achieve, in expectation,
the same mistake bound as the standard Perceptron’s, but using fewer labels.

Theorem 1 If the algorithm of Figure 1 is run with input parameter b> 0 on a sequence(x1,y1),
(x2,y2), . . . ∈ R

d ×{−1,+1} of examples, then for all n≥ 1, all u∈ R
d, and allγ > 0,

E

[
n

∑
t=1

Mt

]
≤
(

1+
X2

2b

)
Lγ,n(u)

γ
+

‖u‖2(2b+X2
)2

8bγ2

where X= maxt=1,...,n‖xt‖. Furthermore, the expected number of labels queried by the algorithm

equals∑n
t=1E

[
b

b+|p̂t |

]
.

The above bound depends on the choice of parameterb. In general,b might be viewed as a noise
parameter ruling the extent to which a linear threshold model fits the data at hand. In principle, the
optimal tuning ofb is easily computed. Choosing

b =
X2

2

√

1+
4γ2

||u||2X2

Lγ,n(u)

γ

in Theorem 1 gives the following bound on the expected number of mistakes

Lγ,n(u)

γ
+

‖u‖2 X2

2γ2 +
‖u‖ X

γ

√
Lγ,n(u)

γ
+

‖u‖2 X2

4γ2 . (1)

This is an expectation version of the mistake bound for the standard Perceptron algorithm (Freund
and Schapire, 1999; Gentile, 2003; Gentile and Warmuth, 1999). Note thatin the special case
when the data are linearly separable with marginγ∗ the optimal tuning simplifies tob = X2/2 and

yields the familiar Perceptron bound
(
‖u‖X

)2
/(γ∗)2. Hence, in the separable case, we obtain the

somewhat counterintuitive result that the standard Perceptron bound is achieved by an algorithm
whose label rate does not (directly) depend on how big the separation margin is.

As it turns out, (1) might be even sharper than its deterministic counterpart since, as already
noted,Lγ,n(u) can be much smaller thanLγ,n(u). However, sinceb is an input parameter of the
selective sampling algorithm, the above setting implies that, at the beginning of the prediction pro-
cess, the algorithm needs some extra information on the sequence of examples. In addition, unlike
the bound of Theorem 1, which holds simultaneously for allγ andu, this refined bound can only be
obtained for fixed choices of these quantities. Finally, observe that lettingb→ ∞ in Figure 1 yields
the standard Perceptron algorithm but, as a shortcoming, the corresponding bound in Theorem 1
gets vacuous. This is due to the fact that our simple proof produces a mistake bound where the
constant ruling the (natural) trade-off between hinge loss term and marginterm is directly related to
the label sampling rate.
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All of the above shortcomings will be fixed in Section 2.2, where we presentan adaptive pa-
rameter version of the algorithm in Figure 1. Via a more involved analysis, we show that it is still
possible to achieve a bound having the same form as (1) with no prior information.

That said, we are ready to prove Theorem 1.

Proof of Theorem 1. The proof extends the standard proof of the Perceptron mistake bound (see,
e.g., Duda et al., 2000, Chap. 5) which is based on estimating the influence ofan update on the
distance‖u−wt−1‖2 between the current weight vectorwt−1 and an arbitrary “target” hyperplane
u. Our analysis uses a tighter estimate on this influence, and then uses a probabilistic analysis to
turn this increased tightness into an expected saving on the number of observed labels. Since this
probabilistic analysis only involves the terms that are brought about by the improved estimate, we
are still able to recover (in expectation) the original Perceptron bound.

Fix an arbitrary sequence(x1,y1), . . . ,(xn,yn) ∈ R
d×{−1,+1} of examples. Lett be an update

trial, i.e., a trial such thatMt Zt = 1. We can write

γ− ℓγ,t(u) = γ− (γ−yt u⊤xt)+

≤ yt u⊤xt

= yt(u−wt−1 +wt−1)
⊤xt

= yt w⊤
t−1xt +

1
2
‖u−wt−1‖2− 1

2
‖u−wt‖2 +

1
2
‖wt−1−wt‖2

= yt p̂t +
1
2
‖u−wt−1‖2− 1

2
‖u−wt‖2 +

1
2
‖wt−1−wt‖2 .

Since the above inequality holds for anyγ > 0 and anyu∈ R
d, we can replaceγ by αγ andu by αu,

whereα is a constant to be optimized.
Rearranging, and usingyt p̂t ≤ 0 implied byMt = 1, yields

αγ+ |p̂t | ≤ αℓγ,t(u)+
1
2
‖αu−wt−1‖2− 1

2
‖αu−wt‖2 +

1
2
‖wt−1−wt‖2 .

Note that, instead of discarding the term|p̂t |, as in the original Perceptron proof, we keep it around.
This yields a stronger inequality which, as we will see, is the key to achieving our final result.

If t is such thatMt Zt = 0 then no update occurs andwt = wt−1. Hence we conclude that, for any
trial t,

Mt Zt(αγ+ |p̂t |) ≤ Mt Zt αℓγ,t(u)

+
1
2
‖αu−wt−1‖2− 1

2
‖αu−wt‖2 +

Mt Zt

2
‖wt−1−wt‖2 . (2)

We now sum the above overt, use‖wt−1−wt‖2 ≤ X2 and recall thatw0 = 0. We get

n

∑
t=1

Mt Zt

(
αγ+ |p̂t |−

X2

2

)
≤ α

n

∑
t=1

Mt Zt ℓγ,t(u)+
α2

2
‖u‖2 .

Now chooseα = (2b+X2)/(2γ), whereb> 0 is the algorithm’s parameter. The above then becomes

n

∑
t=1

Mt Zt
(
b+ |p̂t |

)
≤ 2b+X2

2γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
‖u‖2(2b+X2

)2

8γ2 . (3)
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A similar inequality is also obtained in the analysis of the standard Perceptron algorithm. Here,
however, we have added the random variableZt , associated with the selective sampling, and kept
the term|p̂t |. Note that this term also appears in the conditional expectation ofZt , since we have
definedEt−1Zt asb/(b+ |p̂t |). This fact is exploited now, when we take expectations on both sides
of (3). On the left-hand side we obtain

E

[
n

∑
t=1

Mt Zt
(
b+ |p̂t |

)
]

= E

[
n

∑
t=1

Mt
(
b+ |p̂t |

)
Et−1Zt

]
= E

[
n

∑
t=1

bMt

]
,

where the first equality is proven by observing thatMt and p̂t are determined byZ1, . . . ,Zt−1 (that
is, they are both measurable with respect to theσ-algebra generated byZ1, . . . ,Zt−1). Dividing by b
we obtain the claimed inequality on the expected number of mistakes.

The value ofE [∑n
t=1Zt ] (the expected number of queried labels) trivially follows from

E

[
n

∑
t=1

Zt

]
= E

[
n

∑
t=1

Et−1Zt

]
.

This concludes the proof.

2.2 Selective Sampling Perceptron: Adaptive Version

In this section we show how to learn the best trade-off parameterb in an on-line fashion. Our goal
is to devise a time-changing expression for this parameter that achieves a bound on the expected
number of mistakes having the same form as (1)—i.e., with constant 1 in front of the cumulative
hinge loss term—but relying on no prior knowledge whatsoever on the sequence of examples.

We follow the “self-confident” approach introduced by Auer et al. (2002) and Gentile (2001)
though, as pointed out later, our self-confidence tuning here is technically different, since it does
not rely on projections to control the norm of the weight (as in, e.g., Herbster and Warmuth, 2001;
Auer et al., 2002; Gentile, 2001, 2003).

Our adaptive version of the selective sampling Perceptron algorithm is described in Figure 2.
The algorithm still has a parameterβ > 0 but, as we will see, any constant value forβ leads to
bounds of the form (1). Thusβ has far less influence on the final bound than theb parameter in
Figure 1.

The adaptive algorithm is essentially the same as the one in Figure 1, but for maintaining two
further variables,Xt andKt . At theendof trial t, variableXt stores the maximal norm of the instance
vectors involved in updates up to and including timet, while Kt just counts the number of such
updates. Observe thatbt increases with (the square root of) this number, thereby implementing the
easy intuition that the more updates are made by the algorithm the harder the problem looks, and the
more labels are needed on average. However the reader should not conclude from this observation
that the label ratebt−1/(bt−1 + |p̂t |) converges to 1 ast → ∞, sincebt does not scale with timet but
with the number ofupdatesmade up to timet, which can be far smaller thant. At the same time,
the margin|p̂t | might have an erratic behavior whose oscillations can also grow with the number of
updates.

We have the following result.
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Selective sampling Perceptron with adaptive parameter.
Parameters: β > 0.
Initialization: w0 = (0, . . . ,0)⊤, X0 = 0, K0 = 0.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = w⊤

t−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) setX′ = max{Xt−1,‖xt‖};

(4) draw a Bernoulli random variableZt ∈ {0,1} of parameter

bt−1

bt−1 + |p̂t |
where bt−1 = β(X′)2

√
1+Kt−1 ;

(5) if Zt = 1 then

(a) query labelyt ∈ {−1,+1},

(b) if ŷt 6= yt (i.e.,Mt = 1) then update

wt = wt−1 +yt xt

Kt = Kt−1 +1

Xt = X′;

(6) else(Zt = 0) setwt = wt−1, Kt = Kt−1, Xt = Xt−1.

Figure 2: Adaptive parameter version of the selective sampling Perceptron algorithm.

Theorem 2 If the algorithm of Figure 2 is run with input parameterβ > 0 on a sequence(x1,y1),
(x2,y2) . . . ∈ R

d ×{−1,+1} of examples, then for all n≥ 1, all u∈ R
d, and allγ > 0,

E

[
n

∑
t=1

Mt

]
≤ Lγ,n(u)

γ
+

R
2β

+
B2

2
+B

√
Lγ,n(u)

γ
+

R
2β

+
B2

4

where

B = R+
1+3R/2

β
and R=

‖u‖
(
maxt=1,...,n‖xt‖

)

γ
.

Moreover, the expected number of labels queried by the algorithm equals∑n
t=1E

[
bt−1

bt−1+|p̂t |

]
.

Before delving into the proof, it is worth observing the role of parameterβ. As we have already
said, if we setβ to any constant value (no matter how small), we obtain a bound of the form (1).
On the other hand, forβ → ∞ the algorithm reduces to the classical Perceptron algorithm, and the
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bound (unlike the one in Theorem 1) becomes the Perceptron bound, as given by Gentile (2003).
Clearly, the larger isβ the more labels are queried on average over the trials. Thusβ has also an
indirect influence on the hinge loss termLγ,n(u). In particular, we might expect that a small value
of β makes the number of updates shrink (note that in the limit whenβ → 0 this number goes to 0).

Proof of Theorem 2. Fix an arbitrary sequence(x1,y1), . . . ,(xn,yn) ∈ R
d ×{−1,+1} of examples

and letX = maxt=1,...,n‖xt‖. The proof is a more involved version of the proof of Theorem 1. We
start from the one-trial equation (2) established there, where we replace the (constant) stretching
factor α by the time-varying factorct−1/γ, wherect−1 ≥ 0 will be set later andγ > 0 is the free
margin parameter of the hinge loss. This yields

Mt Zt(ct−1 + |p̂t |) ≤ Mt Zt
ct−1

γ
ℓγ,t(u)

+
1
2

∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

− 1
2

∥∥∥∥
ct−1

γ
u−wt

∥∥∥∥
2

+
Mt Zt

2
‖wt−1−wt‖2 .

From the update rule in Figure 2 we have(Mt Zt/2)‖wt−1−wt‖2 ≤ (Mt Zt/2)‖xt‖2. We rearrange
and divide bybt−1. This yields

Mt Zt

(
ct−1 + |p̂t |−‖xt‖2/2

bt−1

)
≤ Mt Zt

ct−1

bt−1

ℓγ,t(u)

γ

+
1

2bt−1

(∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

−
∥∥∥∥

ct−1

γ
u−wt

∥∥∥∥
2
)

. (4)

We now transform the difference of squared norms in (4) into a pair of telescoping differences,

1
2bt−1

(∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

−
∥∥∥∥

ct−1

γ
u−wt

∥∥∥∥
2
)

=
1

2bt−1

∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

− 1
2bt

∥∥∥∥
ct

γ
u−wt

∥∥∥∥
2

+
1

2bt

∥∥∥∥
ct

γ
u−wt

∥∥∥∥
2

− 1
2bt−1

∥∥∥∥
ct−1

γ
u−wt

∥∥∥∥
2

. (5)

If we set

ct−1 =
1
2

(
max{Xt−1,‖xt‖}

)2
+bt−1

we can expand the difference of norms (5) as follows

(5) =
‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

u⊤wt

γ

(
ct−1

bt−1
− ct

bt

)
+

‖wt‖2

2

(
1
bt

− 1
bt−1

)

≤ ‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

‖u‖‖wt‖
γ

(
ct−1

bt−1
− ct

bt

)
(6)

where in the last step we usedbt ≥ bt−1 and the inequality

ct−1

bt−1
≥ ct

bt
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which follows fromct−1/bt−1 = 1
/(

2β
√

1+Kt−1
)
+1.

Recall now the standard way of bounding the norm of a Perceptron weight vector in terms of
the number of updates,

‖wt‖2 = ‖wt−1‖2 +MtZtytw
⊤
t−1xt +MtZt ‖xt‖2

≤ ‖wt−1‖2 +MtZt ‖xt‖2

≤ ‖wt−1‖2 +MtZtX
2

which, combined withw0 = 0, implies

‖wt‖ ≤ X
√

Kt for anyt. (7)

Applying inequality (7) to (6) yields

(5) ≤ ‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

‖u‖ X
√

Kt

γ

(
ct−1

bt−1
− ct

bt

)
. (8)

We continue by bounding from above the last term in (8). Ift is such thatMtZt = 1 we have
Kt = Kt−1 +1. Thus we can write

√
Kt

(
ct−1

bt−1
− ct

bt

)
=

√
Kt

2β

(
1√

1+Kt−1
− 1√

1+Kt

)

=

√
Kt

2β

(
1√
Kt

− 1√
1+Kt

)

=
1
2β

√
1+Kt −

√
Kt√

1+Kt

≤ 1
4β

1√
Kt
√

1+Kt

(using
√

1+x−√
x≤ 1

2
√

x)

≤ 1
4β

1
Kt

.

On the other hand, ifMtZt = 0 we havebt = bt−1 andct = ct−1. Hence, for any trialt we obtain

√
Kt

(
ct−1

bt−1
− ct

bt

)
≤ MtZt

4β
1
Kt

.

Putting together as in (4) and usingct−1−‖xt‖2/2≥ bt−1 on the left-hand side yields

Mt Zt

(
bt−1 + |p̂t |

bt−1

)
≤ Mt Zt

ct−1

bt−1

ℓγ,t(u)

γ

+
1

2bt−1

∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

− 1
2bt

∥∥∥∥
ct

γ
u−wt

∥∥∥∥
2

+
‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

‖u‖ X
γ

MtZt

4β
1
Kt
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holding for any trialt, anyu∈ R
d, and anyγ > 0.

Now, as in the proof of Theorem 1, we sum overt = 1, . . . ,n, usew0 = 0, and simplify

n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)
≤ 1

γ

n

∑
t=1

Mt Zt
ct−1

bt−1
ℓγ,t(u) (9)

+
c2

n

bn

‖u‖2

2γ2 − 1
2bn

∥∥∥∥
cn

γ
u−wn

∥∥∥∥
2

(10)

+
1
4β

‖u‖ X
γ

n

∑
t=1

MtZt

Kt
.

We now proceed by bounding separately the terms in the right-hand side of the above inequality.
For (9) we get

1
γ

ct−1

bt−1
ℓγ,t(u) =

1
γ

(
1

2β
√

1+Kt−1
+1

)
ℓγ,t(u)

≤ 1
γ

1
2β

√
1+Kt−1

(
γ+‖u‖X

)
+

ℓγ,t(u)

γ
(sinceℓγ,t(u) ≤ γ+‖u‖X)

=
1
2β

(
1+

‖u‖X
γ

)
1√

1+Kt−1
+

ℓγ,t(u)

γ
.

For (10) we obtain

c2
n

bn

‖u‖2

2γ2 − 1
2bn

∥∥∥∥
cn

γ
u−wn

∥∥∥∥
2

=
cn

bn

u⊤wn

γ
− ‖wn‖2

2bn

≤ cn

bn

u⊤wn

γ

≤ cn

bn

‖u‖ ‖wn‖
γ

≤
(

1+
1

2β
√

1+Kn

) ‖u‖ X
√

Kn

γ

where in the last step we used (7). Using these expressions to bound the left-hand side of (9) yields

n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)

≤ 1
γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
1
2β

(
1+

‖u‖X
γ

) n

∑
t=1

Mt Zt√
1+Kt−1

(11)

+

(
1+

1

2β
√

1+Kn

) ‖u‖X
√

Kn

γ
+

1
4β

‖u‖X
γ

n

∑
t=1

MtZt

Kt
. (12)

Next, we focus on the second sum in (11) and the sum in (12). SinceMt Zt = 1 impliesKt = Kt−1+1
we can write

n

∑
t=1

Mt Zt√
1+Kt−1

= ∑
t :Mt Zt=1

1√
Kt

=
Kn

∑
t=1

1√
t
≤ 2

√
Kn .

1215



CESA-BIANCHI , GENTILE AND ZANIBONI

Similarly for the other sum, but using a more crude bound,

n

∑
t=1

MtZt

Kt
= ∑

t :Mt Zt=1

1
Kt

≤ ∑
t :Mt Zt=1

1√
Kt

≤ 2
√

Kn .

Recalling the short-handR= (‖u‖X)/γ, we apply these bounds to (11) and (12). After a simple
overapproximation this gives

n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)
≤ 1

γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
√

Kn

(
R+

1+3R/2
β

)
+

R
2β

.

We are now ready to take expectations on both sides. As in the proof of Theorem 1, sinceEt−1Zt =
bt−1

bt−1+|p̂t | and bothMt andbt−1 are measurable with respect to theσ-algebra generated byZ1, . . . ,Zt−1,
we obtain

E

[
n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)]
= E

[
n

∑
t=1

Mt

]
.

In taking the expectation on the right-hand side, we first boundKn = ∑n
t=1Mt Zt asKn ≤ ∑n

t=1Mt ,
then exploit the concavity of the square root. This results in

n

∑
t=1

EMt ≤
Lγ,n(u)

γ
+

(
R+

1+3R/2
β

)√ n

∑
t=1

EMt +
R
2β

.

Solving the above inequality for∑n
t=1EMt gives the stated bound on the expected number of mis-

takes.
Finally, as in the proof of Theorem 1, the expected number of labels queried by the algorithm

trivially follows from

E

[
n

∑
t=1

Zt

]
= E

[
n

∑
t=1

Et−1Zt

]

concluding the proof.

The proof of Theorem 2 is reminiscent of the analysis of the “self-confident” dynamical tuning
used in Auer et al. (2002) and Gentile (2001). In those papers, however, the variable learning rate
was combined with a re-normalization step of the weight. Here we use a different technique based
on a time-changing stretching factorαt−1 = ct−1/γ for the comparison vectoru. This alternative
approach is made possible by the boundedness of the hinge loss terms, as shown by the inequality
ℓγ,t(u) ≤ γ+‖u‖X.

2.3 Selective Sampling Second-Order Perceptron

We now consider a selective sampling version of the second-order Perceptron algorithm introduced
by Cesa-Bianchi et al. (2005). The second-order Perceptron algorithm might be seen as running
the standard (first-order) Perceptron algorithm as a subroutine. Letvt−1 denote the weight vector
computed by the standard Perceptron algorithm. In trialt, instead of using the sign ofv⊤t−1xt to
predict the current instancext , the second-order algorithm predicts through the sign of the margin

p̂t =
(
M−1/2vt−1

)⊤(
M−1/2xt

)
= v⊤t−1M−1xt .

1216



WORST-CASE SELECTIVE SAMPLING

HereM = I + ∑sxsx⊤s + xtx⊤t is a (full-rank) positive definite matrix, whereI is thed×d identity
matrix, and the sum∑sxsx⊤s runs over the mistaken trialss up to timet − 1. If, when using the
above prediction rule, the algorithm makes a mistake in trialt, thenvt−1 is updated according to
the standard Perceptron rule andt is included in the set of mistaken trials. Hence the second-order
algorithm differs from the standard Perceptron algorithm in that, before each prediction, a linear
transformationM−1/2 is applied to both the current Perceptron weightvt−1 and the current instance
xt . This linear transformation depends on the correlation matrix defined over mistaken instances,
including the current one. As explained in Cesa-Bianchi et al. (2005),this linear transformation has
the effect of reducing the number of mistakes whenever the instance correlation matrix∑sxsx⊤s +
xtx⊤t has a spectral structure that causes an eigenvector with small eigenvalueto correlate well with
a good linear approximatoru of the entire data sequence. In such situations, the mistake bound of
the second-order Perceptron algorithm can be shown to be significantly better than the one for the
first-order algorithm.

In what follows, we useAt−1 to denoteI + ∑sxsx⊤s where the sum ranges over the mistaken
trials between trial 1 and trialt − 1. We derive a selective sampling version of the second-order
algorithm in much the same way as we did for the standard Perceptron algorithm:The selective
sampling second-order Perceptron algorithm predicts and then decides whether to ask for the label
yt using the same randomized rule as the one in Figure 1. In Figure 3 we providea pseudo-code
description and introduce the notation used in the analysis.

The analysis follows the same pattern as the proof of Theorem 1. A key stepis a one-trial
progress equation developed by Forster (1999) for a regression framework. See also Azoury and
Warmuth (2001). As before, the comparison between the second-orderPerceptron’s bound and the
one contained in Theorem 3 reveals that the selective sampling algorithm canachieve, in expecta-
tion, the same mistake bound using fewer labels.

Theorem 3 If the algorithm of Figure 3 is run with parameter b> 0 on a sequence(x1,y1), (x2,y2),
. . . ∈ R

d ×{−1,+1} of examples, then for all n≥ 1, all u∈ R
d, and allγ > 0,

E

[
n

∑
t=1

Mt

]
≤ Lγ,n(u)

γ
+

b
2γ2u⊤E[An]u+

1
2b

d

∑
i=1

E ln(1+λi)

whereλ1, . . . ,λd are the eigenvalues of the (random) correlation matrix∑n
t=1Mt Zt xtx⊤t and An =

I +∑n
t=1Mt Zt xtx⊤t (thus1+λi is the i-th eigenvalue of An). Moreover, the expected number of labels

queried by the algorithm equals∑n
t=1E

[
b

b+|p̂t |

]
.

Again, the above bound depends on the algorithm’s parameterb. Setting

b = γ

√
∑d

i=1E ln(1+λi)

u⊤E [An]u

in Theorem 3 we are led to the bound

E

[
n

∑
t=1

Mt

]
≤ Lγ,n(u)

γ
+

1
γ

√

(u⊤E [An]u)
d

∑
i=1

E ln(1+λi) . (13)

This is an expectation version of the mistake bound for the (deterministic) second-order Percep-
tron algorithm, as proven by Cesa-Bianchi et al. (2005). As for the first-order algorithms, this
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Selective sampling second-order Perceptron.
Parameter: b > 0.
Initialization: A0 = I , v0 = (0, . . . ,0)⊤.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = v⊤t−1(At−1 +xtx⊤t )−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) draw a Bernoulli random variableZt ∈ {0,1} of parameter
b

b+ |p̂t |
;

(4) if Zt = 1 then query labelyt ∈ {−1,+1} and perform the standard second-order
Perceptron update:

vt = vt−1 +Mt ytxt ,

At = At−1 +Mt xtx
⊤
t ;

(5) else(Zt = 0) setvt = vt−1 andAt = At−1.

Figure 3: A selective sampling version of the second-order Perceptronalgorithm.

bound might be sharper than its deterministic counterpart, since the magnitude of the three quan-
tities Lγ,n(u), u⊤E[An]u, and∑d

i=1E ln(1+ λi) is ruled by the size of the random set of updates
{t : MtZt = 1}, which is typically smaller than the set of mistaken trials of the deterministic algo-
rithm.

However, as for the algorithm in Figure 1, this parameter tuning turns out to be unrealistic,
since it requires preliminary information on the structure of the sequence ofexamples. Unlike the
first-order algorithm, we have been unable to devise a meaningful adaptive parameter version for
the algorithm in Figure 3.

Proof of Theorem 3. The proof proceeds along the same lines as the proof of Theorem 1, thuswe
only emphasize the main differences. In addition to the notation given there, we defineΦt to be the
(random) function

Φt(u) =
1
2
‖u‖2 +

t

∑
s=1

MsZs

2
(ys−u⊤xs)

2 .

The quantityΦt(u), which is the regularized cumulative square loss ofu on the past mistaken trials,
plays a key role in the proof. Indeed, we now show that the algorithm incurs on each mistaken
trial a square loss

(
yt − p̂t

)2
bounded by the difference infv Φt+1(v)− infv Φt(v) plus a quadratic

term involvingA−1
t . When we sum over mistaken trials, the difference telescopes and the sum of

quadratic terms can be bounded using known results. Finally, the margin we use in the probabilistic
analysis is obtained as cross-term when the square loss is expanded.
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When trial t is such thatMt Zt = 1 we can exploit a result proven by Forster (1999) for lin-
ear regression (proof of Theorem 3 therein), where it is essentially shown that choosinĝpt =
v⊤t−1(At−1 +xtx⊤t )−1xt (as in Figure 3) yields

1
2

(
p̂t −yt

)2
= inf

v
Φt+1(v)− inf

v
Φt(v)+

1
2

x⊤t A−1
t xt −

1
2

(
x⊤t A−1

t−1xt

)
p̂2

t .

On the other hand, if trialt is such thatMt Zt = 0 we have infv∈Rd Φt+1(v) = infv∈Rd Φt(v). Hence
the equality

MtZt

2

(
p̂t −yt

)2
= inf

v
Φt+1(v)− inf

v
Φt(v)+

Mt Zt

2
x⊤t A−1

t xt −
Mt Zt

2

(
x⊤t A−1

t−1xt

)
p̂2

t

holds for all trialst. We drop the term−MtZt
(
x⊤t A−1

t−1xt
)

p̂2
t /2, which is nonpositive (sinceAt−1 is

positive definite), and sum overt = 1, . . . ,n. Observing that infv Φ1(v) = 0, we obtain

1
2

n

∑
t=1

MtZt
(
p̂t −yt

)2 ≤ inf
v

Φn+1(v)− inf
v

Φ1(v)+
1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt

≤ Φn+1(u)+
1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt

≤ 1
2
‖u‖2 +

1
2

n

∑
t=1

Mt Zt
(
u⊤xt −yt

)2
+

1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt

holding for anyu∈ R
d.

Expanding the squares and performing trivial simplifications we arrive atthe following inequal-
ity

1
2

n

∑
t=1

MtZt
(
p̂2

t −2yt p̂t
)

≤ 1
2

[
‖u‖2 +

n

∑
t=1

MtZt
(
u⊤xt

)2

]
−

n

∑
t=1

MtZt ytu
⊤xt +

1
2

n

∑
t=1

MtZt x⊤t A−1
t xt . (14)

We focus on the right-hand side of (14). We rewrite the first term and bound from above the last
term. For the first term we have

1
2

[
‖u‖2 +

n

∑
t=1

Mt Zt
(
u⊤xt

)2

]
=

1
2

u⊤
(

I +
n

∑
t=1

xt x⊤t Mt Zt

)
u =

1
2

u⊤Anu . (15)
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For the third term, we use a property of the inverse matricesA−1
t (see, e.g., Lai and Wei, 1982;

Azoury and Warmuth, 2001; Forster, 1999; Cesa-Bianchi et al., 2005),

1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt =

1
2

n

∑
t=1

(
1− |At−1|

|At |

)

≤ 1
2

n

∑
t=1

ln
|At |
|At−1|

=
1
2

ln
|An|
|A0|

=
1
2

ln |An|

=
1
2

d

∑
i=1

ln(1+λi)

where we recall that 1+λi is thei-th eigenvalue ofAn.
Replacing back, observing that−yt p̂t ≤ 0 wheneverMt = 1, dropping the term involvinĝp2

t ,
and rearranging yields

n

∑
t=1

Mt Zt
(
|p̂t |+ytu

⊤xt
)
≤ 1

2
u⊤Anu+

1
2

d

∑
i=1

ln(1+λi) .

At this point, as in the proof of Theorem 1, we introduce hinge loss terms andstretch the comparison
vectoru to b

γ u, whereb is the algorithm’s parameter. We obtain

n

∑
t=1

Mt Zt
(
|p̂t |+b

)
≤ b

γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
b2

2γ2u⊤Anu+
1
2

d

∑
i=1

ln(1+λi) .

We take expectations on both sides. Recalling thatEt−1Zt = b/(b+ |p̂t |), and proceeding similarly
to the proof of Theorem 1 we get the claimed bounds on∑n

t=1EMt and∑n
t=1EZt .

3. Selective Sampling Winnow

The techniques used to prove Theorem 1 can be readily extended to analyze selective sampling
versions of algorithms in the general additive family of Grove et al. (2001), Warmuth and Jagota
(1997), and Kivinen and Warmuth (2001). The algorithms in this family—whichincludes Win-
now (Littlestone, 1988), thep-norm Perceptron (Grove et al., 2001; Gentile, 2001), and others—are
parametrized by a strictly convex and differentiablepotential functionΨ : R

d → R obeying some
additional regularity properties. We now show a concrete example by analyzing the selective sam-
pling version of the Winnow algorithm (Littlestone, 1988), a member of the general additive family
based on the exponential potentialΨ(u) = eu1 + · · ·+eud .

In its basic version, Winnow uses weights that belong to the probability simplex inR
d. The

update rule for the weights is multiplicative, and is followed by a normalization stepwhich projects
the updated weight vector back to the simplex. Introducing the intermediate weight w′

t , we define
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Selective sampling Winnow.
Parameters: η,b > 0.
Initialization: w0 = (1/d, . . . ,1/d)⊤.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = w⊤

t−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) draw a Bernoulli random variableZt ∈ {0,1} of parameter
b

b+ |p̂t |
;

(4) if Zt = 1 then query labelyt ∈ {−1,+1} and perform the standard Winnow
update:

w′
i,t = wi,t−1eMt ηyt xi,t ,

wi,t = w′
i,t/(w′

1,t + · · ·+w′
d,t) i = 1, . . . ,d;

(5) else(Zt = 0) setwt = wt−1.

Figure 4: A selective sampling version of the Winnow algorithm.

the update rule as follows:

w′
i,t = wi,t−1eηyt xi,t

wi,t =
w′

i,t

∑d
j=1w′

j,t

for i = 1, . . . ,d.

The theory behind the analysis of general additive family of algorithms shows that, notwithstand-
ing their apparent diversity, Winnow and Perceptron are actually instances of the same additive
algorithm.

To obtain a selective sampling version of Winnow we proceed exactly as we did in the previous
cases: we query the labelyt with probabilityb/(b+ |p̂t |), where|p̂t | is the margin computed by the
algorithm. The complete pseudo-code is described in Figure 4.

The mistake bound we prove for selective sampling Winnow is somewhat atypical since, unlike
the Perceptron-like algorithms analyzed so far, the choice of the learning rateη given in this theorem
is the same as the one suggested by the original Winnow analysis (see, e.g., Littlestone, 1989; Grove
et al., 2001). Furthermore, since a meaningful bound in Winnow requiresη be chosen in terms of
γ, it turns out that in the selective sampling version there is no additional tuningto perform, and
we are able to obtain the same mistake bound as the original version. Thus, unlike the other cases,
the selective sampling mechanism does not weaken in any respect the original mistake bound, apart
from turning a deterministic bound into an expected one.
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Theorem 4 If the algorithm of Figure 4 is run with parameters

η =
2(1−α)γ

X2
∞

and b = αγ for someα ∈ (0,1)

on a sequence(x1,y1), . . . ,(xn,yn) ∈ R
d ×{−1,+1} of examples such that‖xt‖∞ ≤ X∞ for all t =

1, . . . ,n, then for all u∈ R
d in the probability simplex,

E

[
n

∑
t=1

Mt

]
≤ 1

α
Lγ,n(u)

γ
+

1
2α(1−α)

X2
∞ lnd
γ2 .

As before, the expected number of labels queried by the algorithm equals∑n
t=1E

[
b

b+|p̂t |

]
.

Proof Similarly to the proof of Theorem 1, we estimate the influence of an update on thedistance
between the current weightwt−1 and an arbitrary “target” hyperplaneu, where in this case both vec-
tors live in the probability simplex. Unlike the Perceptron analysis, based on the squared Euclidean
distance, the analysis of Winnow uses the Kullback-Leibler divergence,or relative entropy,KL(·, ·)
to measure the progress ofwt−1 towardsu. The relative entropy of any two vectorsu,v belonging
to the probability simplex onRd is defined by

KL(u,v) =
d

∑
i=1

ui ln
ui

vi
.

Fix an arbitrary sequence(x1,y1), . . . ,(xn,yn) ∈ R
d ×{−1,+1} of examples. As in the proof of

Theorem 1, we have thatMtZt = 1 implies

η
(
γ− ℓγ,t(u)

)
= η

(
γ− (γ−yt ,u

⊤xt)+

)

≤ ηyt u⊤xt

= ηyt(u−wt−1 +wt−1)
⊤xt

= ηyt(u−wt−1)
⊤xt +ηyt w⊤

t−1xt .

Besides, exploiting a simple identity (as in the proof of Theorem 11.3 in Cesa-Bianchi and Lugosi,
2006, Chap. 5), we can rewrite the termηyt(u−wt−1)

⊤xt as

ηyt(u−wt−1)
⊤xt = KL(u,wt−1)− KL(u,wt)+ ln

(
d

∑
j=1

w j,t−1eηyt v j

)

wherev j = x j −w⊤
t−1xt . This equation is similar to the one obtained in the analysis of the selective

sampling Perceptron algorithm, but for the relative entropy replacing the squared Euclidean dis-
tance. Note, however, that the last term in the right-hand side of the aboveequation is not a relative
entropy. To bound this last term, we consider the random variableX taking valuexi,t ∈ [−X∞,X∞]
with probabilitywi,t−1. Then, from the Hoeffding inequality (Hoeffding, 1963) applied toX,

ln

(
d

∑
j=1

w j,t−1eηyt v j

)
= lnE

[
eηyt(X−EX)

]
≤ η2

2
X2

∞ .
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We plug back, rearrange and note thatwt = wt−1 wheneverMtZt = 0. This gets

Mt Zt η
(

γ+ |p̂t |−
η
2

X2
∞

)
≤ Mt Zt ηℓγ,t(u)+ KL(u,wt−1)− KL(u,wt) ,

holding for anyt. Summing overt = 1, . . . ,n and dividing byη yields

n

∑
t=1

MtZt

(
γ+ |p̂t |−

η
2

X2
∞

)
≤

n

∑
t=1

Mt Zt ℓγ,t(u)+
KL(u,w0)

η
− KL(u,wn)

η
.

We drop the last term (which is nonpositive), and useKL(u,w0) ≤ lnd holding for anyu in the
probability simplex wheneverw0 = (1/d, . . . ,1/d). Then the above reduces to

n

∑
t=1

Mt Zt

(
γ+ |p̂t |−

η
2

X2
∞

)
≤

n

∑
t=1

Mt Zt ℓγ,t(u)+
lnd
η

.

Substituting our choice forη andb yields

n

∑
t=1

Mt Zt
(
b+ |p̂t |

)
≤

n

∑
t=1

Mt Zt ℓγ,t(u)+
X2

∞ lnd
2(1−α)γ

.

To conclude, it suffices to exploitEt−1Zt = b/(b+ |p̂t |) and proceed as in the proof of the previous
theorems.

4. Experiments

To investigate the empirical behavior of our algorithms we carried out a series of experiments on the
first (in chronological order) 40,000 newswire stories from the Reuters Corpus Volume 1 (Reuters,
2000). Each story in this dataset is labelled with one or more elements from a set of 101 categories.
In our experiments, we associated a binary classification task with each oneof the 50 most frequent
categories in the dataset, ignoring the remaining 51 (this was done mainly to reduce the effect of
unbalanced datasets). All results presented in this section refer to the average performance over
these 50 binary classification tasks. Though all of our algorithms are randomized, we did not com-
pute averages over multiple runs of the same experiment, since we empirically observed that the
variances of our statistics are quite small for the sample size taken into consideration.

To evaluate the algorithms we used theF-measure (harmonic average between precision and
recall) since this is the most widespread performance index in text categorization experiments. Re-
placingF-measure with classification accuracy yields results that are qualitatively similar to the
ones shown here.

We focused on the following three algorithms: the selective sampling Perceptron algorithm of
Figure 1 (here abbreviated asSEL-P), its adaptive version of Figure 2 (abbreviated asSEL-ADA ), and
the selective sampling second-order Perceptron algorithm of Figure 3 (abbreviated asSEL-2ND).

In Figure 5 we check whether our margin-based sampling technique achieves a better perfor-
mance than the baseline sampling strategy of querying each label with constant probability. In
particular, we fixed 7 different sampling rates (from 29.2% to 71.8%) and runSEL-P each time with
the parameterb chosen so as to obtain the desired sampling rate. Then we compared the achieved

1223



CESA-BIANCHI , GENTILE AND ZANIBONI

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

0.7180.6880.6490.6000.5330.4380.292

F
-m

ea
su

re

Sampling rate

SEL-P
SEL-P-FIXED

SEL-P 100% rate

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

0.7180.6880.6490.6000.5330.4380.292

F
-m

ea
su

re

Sampling rate

SEL-2ND
SEL-2ND-FIXED

SEL-2ND 100% rate

Figure 5: Comparison between margin-based sampling and random sampling with pre-specified
sampling rate for the Perceptron algorithm (left) and the second-order Perceptron algo-
rithm (right). The dotted lines show the performance obtained by querying all labels.

performance to the performance obtained by sampling each label with constant probability, i.e., the
case when the Bernoulli random variablesZt in step (3) of Figure 1 have constant parameter equal
to the desired sampling rate. We call this variantSEL-P-FIXED. The same experiment was repeated
usingSEL-2ND and its fixed probability variantSEL-2ND-FIXED.

The following table shows the values of parameterb leading to the fixed sampling rates for both
experiments.

SAMPLING RATE b (SEL-P) b (SEL-2ND)
0.292 0.250 0.040
0.438 0.500 0.085
0.533 0.750 0.125
0.600 1.000 0.168
0.649 1.250 0.210
0.688 1.500 0.236
0.718 1.750 0.240

Note that in both cases the margin-based sampling technique is clearly dominating. Also, as ex-
pected, the difference between the two techniques tends to shrink as the sampling rate gets larger. In
Figure 6 we illustrate the sensitivity of performance and sampling rate to different choices of the in-
put parameterb for the two algorithmsSEL-P andSEL-2ND. This experiment supports Theorems 1
and 3 in two ways: First, it shows that the choice ofb achieving a performance comparable to the
one obtained by sampling all labels can save a significant fraction of labels;second, this choice is
not unique. Indeed, in a sizeable interval of values for parameterb, the sampling rate decreases
significantly withb while the performance level is essentially constant. In Figure 7 we directly
compare the performance ofSEL-P, SEL-2ND, andSEL-ADA for different values of their average
sampling rate (obtained, as before, via suitable choices of their input parametersb andβ). This
experiment confirms thatSEL-2ND is the algorithm offering the best trade-off between performance
and sampling rate. On the other hand, the fact thatSEL-ADA performs slightly worse thanSEL-P,
together with the results of Figure 6, appears to indicate that our adaptive choice ofb can only be
motivated on theoretical grounds.

1224



WORST-CASE SELECTIVE SAMPLING

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

F
-m

ea
su

re
 a

nd
 S

am
pl

in
g 

ra
te

Parameter b

F-measure
Sampling rate

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

F
-m

ea
su

re
 a

nd
 S

am
pl

in
g 

ra
te

Parameter b

F-measure
Sampling rate

Figure 6: Dependence of performance and sampling rate on theb parameter for the Perceptron
algorithm (left) and the second-order Perceptron algorithm (right).
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Figure 7: Performance level ofSEL-P, SEL-2ND, andSEL-ADA at different sampling rates.

In the last experiment we fixed a target value (0.65) for theF-measure averaged over all 50 cate-
gories and we tuned all algorithms to achieve that performance after trainingon the entire sequence
of 40,000 examples. Then, we compared the sampling rates that each algorithm needed to attain the
target performance. To get a more accurate picture of the behavior of each algorithm, each time a
block of 4,000 training examples was completed, we plotted the averageF-measure and sampling
rate achieved over that block. The results are reported in Figure 8. NotethatSEL-P uses an average
sampling rate of about 60%, whileSEL-ADA needs a larger (and growing with time) sampling rate
of about 74%. On the other hand,SEL-2ND uses only about 9% of the labels. Note also that the
sampling rate ofSEL-P andSEL-2ND decreases with time, thus indicating that in both cases the mar-
gin tends to grow in magnitude. The small sampling rate exhibited bySEL-2ND compared toSEL-P
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Figure 8: The right plot shows the sampling rates required by different algorithms to achieve a
given target performance value (shown in the left plot).

(andSEL-ADA ) might be an indication that the second-order Perceptron tends to achievea larger
margin than the standard Perceptron, but we do not have a clear explanation for this phenomenon.

5. Conclusions and Open Problems

We have introduced a general technique for turning linear-threshold algorithms from the general
additive family into selective sampling algorithms. We have analyzed these algorithms in a worst-
case on-line learning setting, providing bounds on the expected number ofmistakes. Our theoretical
investigation naturally arises from the traditional way margin-based algorithmsare analyzed in the
mistake bound model of on-line learning (Littlestone, 1988; Grove et al., 2001; Gentile and War-
muth, 1999; Freund and Schapire, 1999; Gentile, 2003; Cesa-Bianchiet al., 2005). This investi-
gation suggests that our semi-supervised algorithms can achieve, on average, the same accuracy as
that of their fully supervised counterparts, but allowing a substantial saving of labels. When applied
to (kernel-based) Perceptron-like algorithms, label saving directly implies higher sparsity for the
computed classifier which, in turn, yields a running time saving in both training and test phases.

Our theoretical results are corroborated by an empirical comparison on textual data. In these
experiments we have shown that proper choices of the scaling parameterb yield a significant re-
duction in the rate of queried labels without causing an excessive degradation of the classification
performance. In addition, we have also shown that by fixing ahead of time the total number of
label observations, the margin-driven way of distributing these observations over the training set is
largely more effective than a random one.

The choice of the scaling parameterb might affect performance in a significant way. Thus
we have also provided a theoretical analysis for an adaptive parameter version of the (first-order)
selective sampling Perceptron algorithm. This analysis shows that it is still possible to obtain, with
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no prior information, a bound on the expected number of mistakes having the same form as the
one achieved by choosing the “best”b in hindsight. Now, it is intuitively clear that the number
of prediction mistakes and the number of queried labels can be somehow traded-off against each
other. Within this trade-off, the above “best” choice is only aimed at minimizing mistakes, rather
than queried labels. In fact, the practical utility of this adaptive algorithm seems, at present, fairly
limited.

There are many ways this work could be extended. Perhaps the most important is being able to
quantify the expected number of requested labels as a function of the problem parameters (margin
of the data and so on). It is worth observing that for the adaptive version of the selective sampling
Perceptron (Figure 2) we can easily derive alower bound on the label sampling rate. Assume for
simplicity that‖xt‖ = 1 for all t. Then we can write

bt−1

bt−1 + |p̂t |
=

β
√

1+Kt−1

β
√

1+Kt−1 + |w⊤
t−1xt |

≥ β
√

1+Kt−1

β
√

1+Kt−1 +‖wt−1‖

≥ β
√

1+Kt−1

β
√

1+Kt−1 +
√

Kt−1
(using Inequality (7))

≥ β
β+1

holding for any trialt. Is it possible to obtain a meaningfulupper bound? At first glance, this
requires a lower bound on the margin|p̂t |. But since there are no guarantees on the margin the
algorithm achieves (even in the separable case), this route does not lookprofitable. Would such
an argument work for on-line large margin algorithms, such as those by Li and Long (2002) and
Gentile (2001)?

As a related issue, our theorems do not make any explicit statement about thenumber of weight
updates (i.e., support vectors) computed by our selective sampling algorithms. We would like to
see a theoretical argument that enables us to combine the bound on the number of mistakes with a
bound on the number of labels, resulting in an informative upper bound on the number of updates.

Finally, the adaptive parameter version of Figure 2 centers on inequalities such as (7) to deter-
mine the current label request rate. It seems these inequalities are too coarse to make the algorithm
effective in practice. Our experiments basically show that this algorithm tends to query more labels
than needed. It turns out there are many ways one can modify this algorithmto make it less “cau-
tious”, though this gives rise to algorithms which seem to escape a crisp mathematical analysis. We
would like to devise an adaptive parameter version of the selective sampling Perceptron algorithm
that both lends itself to formal analysis and is competitive in practice.
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