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In this paper we reconsider the problem of the Euler parametrization for the unitary
groups. After constructing the generic group element in terms of generalized
angles, we compute the invariant measure on SU�N� and then we determine the full
range of the parameters, using both topological and geometrical methods. In par-
ticular, we show that the given parametrization realizes the group SU�N+1� as a
fibration of U�N� over the complex projective space CPn. This justifies the inter-
pretation of the parameters as generalized Euler angles. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2190898�

I. INTRODUCTION

The importance of group theory in all branches of physics is a well-known fact. Explicit
realizations of group representations are often necessary technical tools. Often it is finite dimen-
sional and compact Lie groups and then the knowledge of the associated algebra, which describes
the group in a neighborhood of the identity, is enough for this purpose.

There are however cases where an explicit expression of the full global group structure is
needed, as, for example, when nonperturbative computations come into play. In most of these
cases, the main objectives are two: First, one would like to find a relative simple parametrization,
making all the computations manageable. Second, one needs to determine the full range of the
parameters, in order to be able to handle global questions.

If both such points can seem unnecessary at an abstract level, they become essential at a most
concrete level, e.g., in instantonic calculus or in nonperturbative lattice gauge theory computa-
tions. The necessary computer memory for simulations is in fact drastically diminished.

The case of SU�N� was first considered and solved by Tilma and Sudarshan, in Ref. 1. There,
they provide a parametrization, in terms of angular parameters, for the unitary groups. In particu-
lar, in the first paper they consider special groups, SU�N�, together with some applications to qubit
and qutrit configurations. In the second paper, they give an extension to U�N� groups, using the
fibration structure of SU�N+1� as U�N� fiber over the complex projective space CPn.

In this paper we reconsider the problem of finding a generalized Euler parametrization for
special unitary groups. The intent is to provide a fully explicit and elementary �which does not
mean short� proof of the beautiful results of Ref. 1. Our motivation is that the determination of the
range of the parameters is a quite difficult task, so that disagreements are present in the literature
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even for SU�3� �for example, in Ref. 2�. Therefore, we think that a careful deduction is necessary
in order to corroborate the results of Tilma and Sudarshan. Also, all our proofs based essentially on
inductive procedures, and they are explicit, in order to be easily accessible to anyone who needs
them.

Our construction is quite different from Ref. 1, and as a result our parametrization differs
slightly from theirs. However, this does not affect the final expression of the invariant measure.

To illustrate the spirit of our construction, let us start by taking a look at the Euler parametri-
zation for SU�2�.

Starting from the Pauli matrices

�1 = �0 1

1 0
�, �2 = �0 − i

i 0
�, �3 = �1 0

0 − 1
� , �1.1�

it is known that the generic element of SU�2� can be written as

g = ei��3ei��2ei��3. �1.2�

Here �� �0,��, �� �0,� /2�, �� �0,2�� are the so-called Euler angles for SU�2�. They are
related to the well-known Euler angles traditionally used in classical mechanics to describe the
motion of a spin. From the point of view of the structure of the representation, �1.2� is obtained
starting from a one parameter subgroup exp�i��2� and then acting on it both from the left and from
the right with a maximal subgroup of SU�2� which does not contain the first subgroup. We can
rewrite it in the schematic form g=U�1�exp�i��2�U�1�. On the other hand, the group SU�2� is
topologically equivalent to the three-sphere S3, and admits a Hopf fibration structure with fiber S1

over the base S2�CP1.
To recognize this fibration structure in �1.2�, we can apply the methods used in Refs. 3 and 4.

After introducing the metric �A 	B
= 1
2Tr�AB� on the algebra, the metric on the group can be

computed as ds2= 1
2 Tr J � J, where J=−ig−1 dg are the left-invariant currents. Following Ref. 3, it

is possible to separate the fiber from the base by writing g=hU�1�, where h=ei��3ei��2 and
U�1�=ei��3. To find the metric on the fiber, let us fix the point on the base and compute the
currents along the fiber, JF=−iU�1�−1dU�1�=d��3. The metric on the fiber is then simply given
by dsF

2 =d�2. To determine the metric on the base, we first must project out from the current
JB=−ih−1 dh the component along the fiber, in order to be left with the reduced current on the

basis J̃B=d��2+sin�2��d� �1, which then in turn provides the metric

dsB
2 = 1

4 �d�2��2 + sin2�2��d�2��2� . �1.3�

This corresponds in fact with the metric of a sphere of radius 1
2 . It is easy to see that, introducing

the complex coordinates z=tan �ei� and their complex conjugates, the metric dsB
2 reduces to the

standard Fubini-Study metric for CP1.
This shows that the Euler parametrization captures the Hopf fibration structure of SU�2�,

which is the starting point for our construction. Mimicking what we said about SU�2�, let us write
the generic element of SU�N+1� as g=U�N�e���U�N�, where e��� is a one parameter subgroup
not contained in U�N�. The first difficulty we must face here is that this expression for a generic
SU�N+1� group has redundancies, which must be eliminated. After this problem is solved, we
then must show that the parametrization respects the Hopf fibration structure of SU�N+1�.

II. THE SU„N… ALGEBRA

The generators of su�N� are all the N�N traceless Hermitian matrices. A convenient choice
for a base are the generalized Gell-Mann matrices as explained in Ref. 1. Let us remind how they

can be constructed using an inductive procedure. Let ��i�i=1
N2−1 be the Gell-Mann base for su�N�:

They are N�N matrices which can be embedded in su�N+1� adding a null column and a null row
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�̃i = ��i 0�

0� 0
� . �2.1�

We will omit the tilde from now on. The dimension of SU�N� being �N+1�2−1, we must add
2N+1 matrices to obtain a Gell-Mann base for su�N+1�. This can be done as follows: Set

��N2+2a−2��	 = 
�,a
	,N+1 + 
�,N+1
	,a,

�2.2�
��N2+2a−1��	 = i�− 
�,a
	,N+1 + 
�,N+1
	,a� ,

for a=1, . . . ,N. The last matrix we need is diagonal and traceless so that we can take ��N + 1�2−1

=�N+1 diag�1, . . . ,1 ,−N�.
One can easily verify that the base of matrices ��I�I=1

�N + 1�2−1 so obtained satisfies the normal-

ization condition Trace��I�J�=2
IJ if we choose �N+1=
2/ ��N+1�2− �N+1��.
These are exactly the matrices we need to generate the group elements.

III. THE EULER PARAMETRIZATION FOR SU„N+1…: INDUCTIVE CONSTRUCTION

It is a well-known fact that special unitary groups SU�N+1� can be geometrically understood
as U�N� fibration over the complex projective space CPN. Now U�N� is generated by the first
N2−1 generalized Gell-Mann matrices plus the last one ��N + 1�2−1. Using the fact that all the
remaining generators of SU�N+1� can be obtained from the commutators of these matrices with
�N2+1, one is tempted to write the general element of SU�N+1� in the form

SU�N + 1� = U�N�eix�N2+1U�N� . �3.1�

However to describe SU�N+1� we need �N+1�2−1 parameters, while in the rhs they are
2N2+1: There are �N−1�2 redundancies. Inspired at first by dimensional arguments, we propose
that an U�N−1� subgroup can be subtracted from the left U�N� in the following way. Let us write
U�N� in the form U�N�=SU�N�ei���N + 1�2−1. Inductively, we can think that also SU�N� can be
recovered from U�N−1�ei���N − 1�2+1 U�N−1� eliminating the redundant parameters, so that it will
have the form SU�N�=hei���N − 1�2+1 SU�N−1�ei��N2−1. We then choose to eliminate the appearing
SU�N−1� together with the phase ei���N + 1�2−1. In this way the SU�N+1� group element can be
written in the form SU�N+1�=hei���N − 1�2+1ei��N2−1eix�N2+1 U�N�. By induction, assuming N�2 we
arrive to the final form of our Ansatz about the parametrization of the general element g
�SU�N+1�,

g = ei�1�3ei�1�2�
a=2

N

�ei��a/�a��a2−1ei�a�a2+1�U�N���1, . . . ,�N2� , �3.2�

where U�N���1 , . . . ,�N2� is a parametrization of U�N� which in turn can be obtained inductively
using the fact

U�N� = �SU�N� � U�1��/ZN. �3.3�

The Ansatz �3.2� contains the correct number of parameters. However, we need to show that it is
a good Ansatz, meaning that at least locally it must generate the whole tangent space to the
identity. Using the Backer-Campbell-Hausdorff formula and some properties of the Gell-Mann
matrices, �essentially the fact that the commutators of ��k − 1�2+1 with the first �k−1�2−1 matrices
generate all the remaining matrices of the su�k� algebra but the last one� it is easy to show that
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ei�1�1ei�1�3�
a=2

N

�ei��a/�a��a2−1ei�a�a2+1� = ei�j=1
�N + 1�2−2aj�j , �3.4�

where aj are all nonvanishing functions of the 2N parameters �a ,�a. Thus in a change of coordi-
nates �from the �a ,�a to the aj� only 2N of the aj can be chosen as independent parameters. We

could choose the last ones, corresponding to the coefficients of the matrices ��k�k=N2
N2+2N−1. In this

way, the N2 free parameters for the remaining matrices come out exactly from the U�N� factors in
�3.2�.

We have not entered into details here because a second simple proof of the validity of this
parametrization will be given by constructing a nonsingular invariant measure from our Ansatz.

IV. INVARIANT MEASURE AND THE RANGE OF THE PARAMETERS

A. The invariant measure

To construct the invariant measure for the group starting from �3.2�, we will adopt the same
method used in Ref. 3, with UªU�N� as the fiber group. Let us then write �3.2� as

g = h · U . �4.1�

Starting from the computation of the left invariant currents jh=−ih−1 dh, we can define the one
forms

el
ª

1
2Tr�jh · �N2+l−1�, l = 1, . . . ,2N , �4.2�

which turns out to give the Vielbein one forms of the base space of the fibration. If e� denotes the
corresponding Vielbein matrix, the invariant measure for SU�N+1� will then take the form

d
SU�N+1� = det e� · d
U�N�, �4.3�

d
U�N� being the invariant measure for U�N�. Using �3.3� with U�1�=ei��/�N+1���N + 1�2−1 we obtain
the recursion relation �note that here � is allowed to vary in the range �0,2� /N��

d
SU�N+1� = det e� · d
SU�N�
d�

�N+1
. �4.4�

Then we will concentrate on the det e� term. To this end let us write �3.2� in the form

g = hN+1��a,�a� · U��i� . �4.5�

Here we will consider N�3 so that the relation

hN+1 = hNei��N/�N��N2−1ei�N�N2+1, �4.6�

is true. If we introduce the right currents JhN+1
=−ihN+1

−1 dhN+1 then the Vielbein �4.2� takes the form

el
�N� =

1

2
Tr�JhN+1

�l� = d�N
l,N2+1 +
1

2�N
d�N Tr�e−i�N�N2+1�N2−1ei�N�N2+1�N2+l�

+
1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1ei�N�N2+1�N2+le
−i�N�N2+1� , �4.7�

and using the relations in Appendix A we find
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e� �N� =�
d�N 0 0

0 sin �N cos �N d�N sin �N cos �N
1

2�
a=2

N

Tr� 1

�a
JhN

�a2−1�
0 0

1

2
sin �N Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1M� �
� , �4.8�

where we introduced the �N� index to remember that this is a 2N�2N matrix associated to the
group SU�N+1�. Here M� is a column of matrices, M2j−1=� j2+1, M2j =� j2, j=1,2 , . . . ,N−1. For-
mula �4.8� then reads as follows: JhN

is a 1-form with components JhN,c, c=1,2 , . . . ,2n−2, with
respects to the coordinates Xc, defined as X2j−1=� j, X2j =� j. To find the component �r ,c� of �4.8�
one must then take the cth component of JhN,c and the rth component of M� before to compute the
trace.

The invariant measure is then

det e� �N� = d�N d�N cos �N sin2N−1 �N det�1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1M� �� . �4.9�

We now use the recurrence relation

JhN
= ��N − 1�2+1 d�N−1 +

1

�N−1
e−i�N−1��N − 1�2+1��N − 1�2−1ei�N−1��N − 1�2+1 d�N−1

+ e−i�N−1��N − 1�2+1e−i��N−1/�N−1���N − 1�2−1JhN−1
ei��N−1/�N−1���N − 1�2−1ei�N−1��N − 1�2+1. �4.10�

Computing the traces different cases arise depending on whether j=N−1 or j�N−1; using again
the relations in Appendix A it is not too difficult to show that the last determinant is equal to

det�d�N−1 cos�N�N� −
1

2
sin�N�N�sin�2�N−1�d�N−1

d�N−1 sin�N�N�
1

2
cos�N�N�sin�2�N−1�d�N−1

�
� det�1

2
cos �N−1 Tr�e−i��N−1/�N−1���N − 1�2−1JhN−1

ei��N−1/�N−1���N − 1�2−1M� �� ,

which set into �4.9� in turn yields the recurrence relation

det e� �N� = d�N d�N
sin2N−1 �N

tan2N−4 �N−1
det e� �N−1�, �4.11�

which can be solved to give

det e� �N� = 2 d�N d�N cos �N sin2N−1 �N�
a=1

N−1

�sin �a cos2a−1 �a d�a d�a� . �4.12�

This is the same result as found in Ref. 1.

B. The range of the parameters

At this point we are able to determine the range of the parameters in such a way as to cover
the whole group. We will do this only for the base space: The remaining ranges for the fiber can
be determined recursively, as discussed above, remembering in particular that the U�1� phase in
U�k� can be taken in �0,2� /k�.

We then proceed as in Ref. 3. We first choose the ranges so as to generate a closed
��N+1�2−1�-dimensional closed manifold which then must wrap around the group manifold of
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SU�N+1� an integer number of times. This can be done by looking at the measure �4.12� on the
base manifold and noticing that it is nonsingular when 0��a�� /2, whereas �a can take all the
period values �a� �0,2��, for all a=1, . . . ,N. However, note that the angles �1 ,�1 ,�2 generate the
whole SU�2� group when 0��1��, 0��a�� /2 and 0��2�2�. We can then restrict �1

� �0,��. The rest of the variety is generated by the remaining U�N� part.
If we call VN+1 the manifold obtained this way we then find

Vol�VN+1/U�N�� = �
0

�

d��
a=2

N �
0

2�

d�a�
b=1

N �
0

�/2

d�b�cos �N sin2N−1 �N�
c=1

N−1

�sin �c cos2c−1 �c��
=

�N

N!
, �4.13�

or equivalently

Vol�VN+1� = Vol�U�N��
�N

N!
. �4.14�

This is exactly the recursion relation found in Appendix B. Therefore, it is the correct range of the
parameters for every N�2, if we have V3=SU�3�, as can be easily checked directly or by com-
parison with the results given in Appendix A of Ref. 2 �see also Appendix B of Ref. 4�. The next
step is to determine the parametrization of SU�N+1� for every value of N. It is given by �3.2� with

0 � �1 � �, 0 � �a � 2�,a = 2, . . . ,N ,

0 � � �
2�

N
, 0 � �a �

�

2
,a = 1, . . . ,N , �4.15�

and the remaining parameters which cover SU�N� �determined inductively�.
To prove that our parametrization is well defined we can do more: We are in fact able to show

that the induced metric on the base manifold is exactly the Fubini-Study metric over CPN.

V. THE GEOMETRIC ANALYSIS OF THE FIBRATION

We will now show that the metric induced on the base space takes exactly the form of the
Fubini-Study metric in trigonometric coordinates as given in Appendix C. To do so we will again
use inductive arguments.

The metric on the base is dsB
2 = �e� �N��T � e� �N�, where T indicates transposition and e� �N� is given

in �4.8�. Using the relations in Appendix A and defining

XN =
1

2�
a=2

N

Tr�JhN
�a�a2−1� �5.1�

the metric takes the form

dsB
2 = d2�N + sin2 �N��d�N + XN�2 + �

j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2�2

+ �
j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2+1�2� − sin4 �N�d�N + XN�2. �5.2�

This is an encouraging form, which upon comparison with �C3� suggests the identification �
=�N. With this identification in mind, let us first remark that the following recursion relation
holds:
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XN = cos2 �N−1�d�N−1 + XN−1� , �5.3�

which can be shown by inserting �4.10� in �5.1� and then applying �A6� and �A11�. A direct
computation yields

X3 = cos2 �2�d�2 + cos�2�1�d�1� , �5.4�

from which, through repeated application of the recurrence relation �5.3�, we obtain

XN = �
k=1

N−3 ��
i=1

k

cos2 �N−i�d�N−k + ��
i=1

N−2

cos2 �N−i��d�2 + cos�2�1�d�1� . �5.5�

At this point we must to compare d�N+XN with the coefficient of sin4 � in �C3�. In fact, to bring

d�N+XN to the desired form �i=1
N �R̃i�2 d�i, one is tempted to just set �i=�i and �
=�
. However,

this cannot be the case because the R̃i does not satisfy the condition ��R̃i�2=1.
These observations, together with explicit calculations for the case N=4 and N=5, suggest

that we should simply take some linear combination �i=�i�� j�. This can be done as follows: Let

us introduce new variables �̃K, k=1, . . . ,N, such that

�̃N = �N, �N−k = �̃N−k − �̃N−k+1, k = 1, . . . ,N − 3,

�5.6�
�1 + �2 = �̃1 − �̃3, �1 − �2 = �̃3 − �̃2.

In this way d�N+XN takes the desired form

d�N + XN = �
i=1

N

�Ri��
��2 d�i �5.7�

with �
=�
, 
=1, . . .N−1, �i= �̃N−i+1, i=1, . . . ,N and

R1 = sin �N−1, Rk = sin �N−k�
i=1

k−1

cos �N−i, k = 2, . . . ,N − 1,

�5.8�

RN = �
i=1

N−1

cos �N−i.

These formulas agree with the expressions in Appendix C. As the last step, in Appendix D we
finally show that, after performing the change of variables described above, the coefficients of
sin2 � and sin2 �N also agree. This proves that the metric induced on the base CPN of the U�N�
fibration by the invariant metric on SU�N+1� is nothing else but the natural Fubini-Study metric
in trigonometric coordinates.

We can now use this result as a different method to fix the range of the parameters. In fact,
�R1 , . . . ,RN� parametrize the positive orthant of a sphere, if 0��i�� /2, i=1, . . . ,N−1. More-
over, the identification of �N with � yields �� �0,� /2�. Finally, it is easy to show that the

conditions �̃i� �0,2�� are equivalent to �1� �0,�� and �i� �0,2��, i=2, . . . ,N. These are the
same results obtained in �4.15�.

VI. CONCLUSIONS

In this paper, we have reconsidered the problem of constructing a generalized Euler param-
etrization for SU�N�. The parametrization we find differs slightly from the one described by Tilma
and Sudarshan. In fact, comparing our results with the expression �18� in Ref. 1, it is possible to
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see that we have chosen ��k − 1�2−1 instead of �3. Furthermore, we have computed the corresponding
invariant measure, which turns out to coincide with the result in Ref. 1, despite the slight differ-
ences in the choice of the parametrization.

To determine the range of the parameters, we have used two distinct methods, both yielding
the same result. To better motivate the name “Euler angles,” we have carefully shown that the
parametrization captures the Hopf fibration structure of the SU�N� groups. In particular the change
of coordinate we found to evidentiate the fibrations, gives an explicit map between the Euler
coordinates introduced starting from the generalized Gell-Mann matrices, and the ones introduced
in Ref. 5 using geometrical considerations.

We have given a quite explicit proof of every assertion. Apart from corroborating the results
of Tilma and Sudarshan, we think that our work is providing a complete toolbox of computation
techniques useful in applied theoretical physics as well as for experimental physicists.
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APPENDIX A: SOME COMMUTATORS

Using the explicit form of the generalized Gell-Mann matrices constructed with the conven-
tions of Sec. II, we find the useful commutators

��N2+1,�N2+2j� = − i� j2,

�A1�
��N2+1,�N2+2j+1� = i� j2+1,

when j=1, . . . ,N−1.
Others interesting relations easy to check are

��N2+1,�N2� = − i�N + 1��N+1��N + 1�2−1 − i�
a=2

N

�a�a2−1,

��N2+1,�a2−1� = i�a�N2, �A2�

��N2+1,��N + 1�2−1� = i�N + 1��N+1�N2,

where a=1, . . . ,N, from which remembering that �k=
2/k�k−1�, one also finds

��N2+1,��N2+1,�N2�� = 4�N2. �A3�

From the first two commutators we find the very useful relations

eix�N2+1� j2+1e−ix�N2+1 =
1

sin x
�N2+2j+1 −

1

tan x
eix�N2+1�N2+2j+1e−ix�N2+1,
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eix�N2+1� j2e
−ix�N2+1 = −

1

sin x
�N2+2j +

1

tan x
eix�N2+1�N2+2je

−ix�N2+1, �A4�

when j=1, . . . ,N−1.
Other useful relations easy to prove using the previous relations are

�
a=2

N

�a
2 + �N + 1�2�N+1

2 = 4, �A5�

�
a=2

N

�a
2 + �N + 1��N+1

2 = 2, �A6�

Tr�e−ix�N2+1�N2−1eix�N2+1�N2+I� = �N
I0 sin�2x� , �A7�

1

2
Tr��aeix�N2+1�N2+2ie

−ix�N2+1� = 
a,i2 sin x, a � N2 − 1, i = 1, . . . ,N − 1, �A8�

1

2
Tr��aeix�N2+1�N2+2i−1e−ix�N2+1� = − 
a,i2+1 sin x, a � N2 − 1, i = 1, . . . ,N − 1, �A9�

1

2
Tr�eix�N2+1�N2e−ix�N2+1 �

a=1

N2−1

Ca�a� = sin�2x�
1

2�
b=2

N

Tr�Cb2−1�b2−1� , �A10�

�
a=2

N

Tr�Aeix��N − 1�2+1�a2−1e−ix��N − 1�2+1� = cos2 x�
a=2

N

Tr�A�a�a2−1� , �A11�

eix�N2−1��N − 1�2e−ix�N2−1 = cos�N�Nx���N − 1�2 − sin�N�Nx���N − 1�2+1, �A12�

eix�N2−1��N − 1�2+1e−ix�N2−1 = cos�N�Nx���N − 1�2+1 + sin�N�Nx���N − 1�2, �A13�

where we used Aª�i=1
�N − 1�2−1 Ai�i.

APPENDIX B: THE TOTAL VOLUME OF SU„k…

The total volume for the groups SU�k� can be found following Macdonald in Ref. 6. First
remember that, in the sense of rational cohomology, SU�k� is equivalent to the product of odd
dimensional spheres

SU�k + 1� � �
j=1

k

S2i+1, �B1�

where we choosen k+1 to obtain recursive relations. The total volume of the group is then
uniquely determined when a metric is established on the Lie algebra. We chose the metric induced
by the scalar product �A 	B�= 1

2Tr�AB�, for A ,B�su�k+1�. In this way the Gell-Mann generators
are orthonormal. The formula for the total volume is �Ref. 6�

043510-9 On the Euler angles for SU�N� J. Math. Phys. 47, 043510 �2006�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.206.168.229 On: Tue, 15 Nov

2016 12:05:17



Vol�SU�k + 1�� = �
j=1

k

Vol�S2i+1� · Vol�Tk� �
��0

	�Ú	2, �B2�

where �Ú are the coroots associated to positive roots and Vol�Tk� is the volume of the torus
generated by the simple coroots.

For su�k+1� the simple coroots are si=Li−Li+1, i=1, . . . ,k where Li is the diagonal matrix
with the only nonvanishing entry �Li�ii=1. After writing si in terms of � j, as

si = �
a=1

k
1

2
Tr�si��a + 1�2−1���a + 1�2−1, �B3�

it is easy to prove the recursive relation

Vol�Tk� =
k + 1

2k
Vol�Tk−1� . �B4�

From this we find

Vol�SU�k + 1�� = Vol�SU�k��2
�k+1

k!

k + 1

2k
, �B5�

where we used the fact that all the positive coroots have unitary length. If we note that the phase
ei��k/�k���k + 1�2−1 generates a U�1� group of volume 2�
k�k+1� /2 and that U�k�= �SU�k�
�U�1�� /Zk, we can finally write

Vol�SU�k + 1�� = Vol�U�k��
�k

k!
, �B6�

APPENDIX C: THE FUBINI-STUDY METRIC FOR CPN

CPN is a Kähler manifold of complex dimension N. In a local chart, which uses holomorphic
inhomogeneous coordinates �zi�i=1

N �C, the Kähler potential is K�zi , z̄ j�=k /2 log�1+�i=1
N 	zi	2� with

k a constant. The associated Kähler metric gij̄ =�2K /�zi�z̄ j is then

dsCPN
2 = k� �i=1

N
dzi dz̄i

1 + �i=1

N
	zi	2

−
�i,j=1

N
zi dz̄i z̄ j dzj

�1 + �i=1

N
	zi	2�2 � . �C1�

Notice that obviously it is not possible to cover the whole space with a single chart, but the set of
points which cannot be covered has vanishing measure. For our purpose it is therefore enough to
consider a single chart.

Let us now search for a trigonometric coordinatization. To this aim let us introduce the new
real coordinates � ,�
 ,�i, 
=1, . . . ,N−1, i=1, . . . ,N, such that

zi = tan �Ri��
�ei�i. �C2�

Here Ri��
� is a parametrization of the unit sphere Sn−1, construced as an immersion in RN, where
�i=1

N �Ri�2=1 and �
 are the angles of the sphere. However, notice that we are restricted to the
positive orthant only: Ri�0. If �
 are the standard angles �starting, for example, with the azi-
muthal one �1�, then �
� �0,� /2�, �� �0,� /2�, and �i� �0,2��. This choice of coordinates
finally gives
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dsCPN
2 = d�2 + sin2 ���

i=1

N

dRi dRi + �
i=1

N

�Ri�2d2�i� − sin4 ���
i=1

N

�Ri�2 d�i�2

. �C3�

In particular notice that the coefficient of sin2 � yields a metric for �the positive orthant of� the
sphere SN−1.

APPENDIX D: FINAL CHECKS

Here we verify that the change of variables introduced in Sec. V transforms the terms

�d�N + XN�2 + �
j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2�2

+ �
j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2+1�2

, �D1�

into the coefficient of sin2 � in �C3�.
First, using �4.10� and the relations in Appendix A, it is possible to show that

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2�

= cos �N−1 Tr�e−i��N−1/�N−1���N − 1�2−1JhN−1
ei��N−1/�N−1���N2−1�−1� j2�, j � N − 1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2+1�

= cos�N−1Tr�e−i��N−1/�N−1���N − 1�2−1JhN−1
ei��N−1/�N−1���N − 1�2−1� j2+1�, j � N − 1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1��N − 1�2� = sin�2�N−1�cos�N�N��d�N−1 + XN−1� − 2 sin�N�N�d�N−1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1��N − 1�2+1� = sin�2�N−1�sin�N�N��d�N−1 + XN−1� + 2 cos�N�N�d�N−1.

�D2�

Note that these are true for N�3, if we define X2ªcos�2�1�d�1. From these relations we find

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2� = � �

k=j+1

N−1

cos �k��sin�2� j�cos��j + 1�� j+1��d� j + Xj�

− 2 sin��j + 1�� j+1�d� j� ,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2+1� = � �

k=j+1

N−1

cos �k��sin�2� j�sin��j + 1�� j+1��d� j + Xj�

+ 2 cos��j + 1�� j+1�d� j� ,

with j=2, . . . ,N−1. For j=1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1�1� = ��

k=2

N−1

cos �k��sin�2�1�cos�2�2�d�1 − sin�2�2�d�1� ,
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Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1�2� = ��

k=2

N−1

cos �k��sin�2�1�sin�2�2�d�1 + cos�2�2�d�1� .

Thus we see that �D2� takes the form SN+UN, where

SN = d�N−1
2 + �

j=1

N−2 � �
k=j+1

N−1

cos2 �k�d� j
2, �D3�

UN = �d�N + XN�2 + �
j=2

N−1

sin2 � j��
k=j

N−1

cos2 �k��d� j + Xj�2 + �
k=2

N−1

cos2 �k sin2�2�1�d�1
2.

�D4�

First, we show that

SN = �
j=1

N

dRjdRj , �D5�

with Rj as in �5.8�. To this aim let us define the N-dimensional vector R� N= �R1 , . . . ,RN�. Such a

vector has unit length, and satisfies the recurrence relation R� N= �sin �N−1 ,cos �N−1R� N−1�, from
which we find

dR� N · dR� N = d�N−1
2 + cos2 �N−1 dR� N−1 · dR� N−1. �D6�

Here the dot indicates the scalar product in N dimensions. Now, from �D3�, we also have

SN = d�N−1
2 + cos2 �N−1SN−1. �D7�

As SN and dR� N ·dR� N both satisfy the same recurrence relation, the thesis follows because of S2

=dR� 2 ·dR� 2.
The second and last step of our proof consists in showing that after the change of coordinates

�5.6� the Eq. �D4� takes the form

UN = �
i=1

N

�Ri�2d�i
2. �D8�

The structure of �D4� suggests that it is convenient to make the change of variables starting from
�N and �N−1 step by step. Note that XN−1 is invariant under this transformation, so that we have

�d�N + XN�2 + sin2 �N−1 cos2 �N−1�d�N−1 + XN−1�2 = sin2 �N−1d�̃N
2 + cos2 �N−1�d�̃N−1 + XN−1�2.

�D9�

Here we have used �5.3� to express XN in terms of XN−1. Then UN takes the form

UN = sin2 �N−1d�̃N
2 + cos2 �N−1��d�̃N−1 + XN−1�2 + sin2 �N−2 cos2 �N−2�d�N−2 + XN−2�2� + ¯ .

�D10�

Now it is possible to use �D9� with N−1 in place of N in order to write �N−2 in terms of �̃N−2. In
fact, this relation can be applied recursively up to d�3, obtaining
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UN = sin2 �N−1 d�̃N
2 + �

j=2

N−4

sin2 �N−j� �
l=N−j+1

N−1

cos2 �l�d�̃N−j+1
2 + ��

l=3

N−1

cos2 �l��d�̃3 + X3�2

+ sin2 �2��
k=2

N−1

cos2 �k��d�2 + cos�2�1�d�1�2 + ��
k=2

N−1

cos2 �k�sin2�2�1��1
2. �D11�

At this point we can perform the last two changes of coordinates in �5.6�, to show that

d�̃3 + X3 = sin2 �2 d�̃3 + cos2 �2�sin2 �1�̃2 + cos2 �1 d�̃1� , �D12�

and this completes the proof.
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