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I. Introduction

Volatilities implicit in observed option prices are often
used to gain information on expected market volatility
(see, e.g., Poterba and Summers 1986; Jorion 1995;
Christensen and Prabhala 1998; Fleming 1998).
Therefore, accurate forecasts of implied volatilities
may be valuable in many situations. For instance, in
derivative pricing applications, volatility characterizes
the beliefs of market participants and hence is inti-
mately related to the fundamental pricing measure.
Implied volatilities are commonly used by practition-
ers for option pricing purposes and risk management.

Implied volatilities are typically found by first
equating observed option prices to Black-Scholes
(1973) theoretical prices and then solving for the un-
known volatility parameter, given data on the option
contracts and the underlying asset prices. Contrary to
the Black-Scholes assumption of constant volatility,

* We would like to thank Peter Christoffersen, Steven Clark,
Patrick Dennis, Kris Jacobs, and seminar participants at the 2003
Midwest Finance Association meetings for helpful comments. We
are especially grateful to an anonymous referee, René Garcia, Rob
Engle, and Hal White for their comments and suggestions at various
stages of this project, which greatly improved the paper. Gonçalves
acknowledges financial support from the Institut de Finance Mathé-
matique de Montréal. Contact the corresponding author, Massimo
Guidolin, at Massimo.Guidolin@stls.frb.org.

Recent evidence suggests
that the parameters char-
acterizing the implied
volatility surface (IVS) in
option prices are unsta-
ble. We study whether
the resulting predictabil-
ity patterns may be ex-
ploited. In a first stage
we model the surface
along cross-sectional mo-
neyness and maturity di-
mensions. In a second
stage we model the dy-
namics of the first-stage
coefficients. We find that
the movements of the
S&P 500 IVS are highly
predictable. Whereas prof-
itable delta-hedged posi-
tions can be set up under
selective trading rules,
profits disappear when
we increase transaction
costs and trade on wide
segments of the IVS.
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implied volatilities tend to systematically vary with the options strike price
and date of expiration, giving rise to an implied volatility surface (IVS). For
instance, Canina and Figlewski (1993) and Rubinstein (1994) show that when
plotted against moneyness (the ratio between the strike price and the under-
lying spot price), implied volatilities describe either an asymmetric smile or
a smirk. Campa and Chang (1995) show that implied volatilities are a function
of time to expiration. Furthermore, the IVS is known to dynamically change
over time, in response to news affecting investors’ beliefs and portfolios.

Practitioners have long tried to exploit the predictability in the IVS. The
usual approach consists of fitting linear models linking implied volatility to
time to maturity and moneyness, for each available cross section of option
contracts at a point in time. The empirical evidence suggests that the estimated
parameters of such models are highly unstable over time. For instance, Dumas,
Fleming, and Whaley (1998) propose a model in which implied volatilities
are a function of the strike price and time to maturity. They observe that the
coefficients estimated on weekly cross sections of S&P 500 option prices are
highly unstable. Christoffersen and Jacobs (2004) report identical results. Sim-
ilarly, Heston and Nandi (2000) estimate a moving window nonlinear
GARCH(1, 1) (generalized autoregressive conditional heteroskedasticity) and
show that some of the coefficients are unstable. To explain the superior per-
formance of their GARCH pricing model, Heston and Nandi stress the ability
of the GARCH framework to exploit the information on path dependency in
volatility contained in the spot S&P 500 index. Thus time variation of the
S&P 500 IVS matters for option pricing purposes.

In this paper we propose a modeling approach for the time-series properties
of the S&P 500 index options IVS. Our approach delivers easy-to-compute
forecasts of implied volatilities for any strike price or maturity level. This is
in contrast to the existing literature, which has focused on either modeling
the cross section of the implied volatilities, ignoring the time-series dimension,
or modeling the time-series properties of an arbitrarily chosen point on the
IVS, that is, the volatility implicit in contracts with a given moneyness and/
or time to expiration. To the best of our knowledge, we are the first to jointly
model the cross-sectional features and the dynamics of the IVS for stock index
options.

We ask the following questions: Given the evidence of time variation in
the IVS, is there any gain from explicitly modeling its time-series properties?
In particular, can such an effort improve our ability to forecast volatility and
hence option prices? To answer these questions, we combine a cross-sectional
approach to fitting the IVS similar to Dumas et al. (1998) with the application
of vector autoregression (VAR) models to the (multivariate) time series of
estimated cross-sectional coefficients. Therefore, our approach is a simple
extension of the Dumas et al. approach in which modeling occurs in two
distinct stages. In a first stage, we fit daily cross-sectional models that describe
implied volatilities as a function of moneyness and time to maturity. Consis-
tently with the previous literature, we report evidence of structure in the S&P
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500 IVS and find that a simple model linear in the coefficients and nonlinear
in moneyness and time to maturity achieves an excellent fit. The documented
instability of the estimated cross-sectional coefficients motivates our second
step: we fit time-series models of a VAR type to capture the presence of time
variation in the first-stage estimated coefficients. We find that the fit provided
by this class of models is remarkable and describes a law of motion for the
IVS that conforms to a number of stylized facts.

To assess the performance of the proposed IVS modeling approach, we use
both statistical and economic criteria. First, we study its ability to correctly
predict the level and the direction of change of one-day-ahead implied vol-
atility. We find that our models achieve good accuracy, both in absolute terms
and relatively to a few natural benchmarks, such as random walks for implied
volatilities and Heston and Nandi’s (2000) NGARCH(1, 1). Second, we eval-
uate the ability of our forecasts to support portfolio decisions. We find that
the performance of our two-stage dynamic IVS models at predicting one-step-
ahead option prices is satisfactory. We then simulate out-of-sample delta-
hedged trading strategies based on deviations of volatilities implicit in ob-
served option prices from model-based predicted volatilities with a constant,
fixed investment of $1,000 per day. The simulated strategies that rely on two-
stage IVS models generate positive and statistically significant out-of-sample
returns when low to moderate transaction costs are imputed on all traded
(option and stock) contracts. These profits are abnormal as signaled by Sharpe
ratios in excess of benchmarks such as buying and holding the S&P 500
index; that is, they are hardly rationalizable in the light of the risk absorbed.
Importantly, our finding of abnormal profitability appears to be fairly robust
to the adoption of performance measures that take into account nonnormalities
of the empirical distribution of profits and to imputing transaction costs that
account for the presence of bid-ask spreads. In particular, our approach is
most accurate (hence profitable) on specific segments of the IVS, mainly out-
of-the-money and short- to medium-term contracts.

These results turn mixed when higher transaction costs and/or trading strat-
egies that imply trades on large numbers of contracts along the entire IVS
are employed in calculating profits. We conclude that predictability in the
structure of the S&P 500 IVS is strong in statistical terms and ought to be
taken into account to improve both volatility forecasting and portfolio deci-
sions. However, such predictability patterns hardly represent outright rejections
of the tenet that deep and sophisticated capital markets such as the S&P 500
index options market are informationally efficient. In particular, even when
filters are applied to make our trading rules rather selective in terms of the
ex ante expected profits per trade, we find that as soon as transaction costs
are raised to the levels that are likely to be faced by small (retail) speculators,
all profits disappear.

The option pricing literature has devoted many efforts to propose pricing
models consistent with the stylized facts derived in the empirical literature,
of which the implied volatility surface is probably the best-known example.
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Models featuring stochastic volatility, jumps in returns and volatility, and the
existence of leverage effects (i.e., a nonzero covariance between returns and
volatility) are popular approaches (see Garcia, Ghysels, and Renault [2005]
for a review of the literature). More recently, several papers have proposed
models relying on a general equilibrium framework to investigate the eco-
nomics of these stylized facts.1 For instance, David and Veronesi (2002) pro-
pose a dynamic asset pricing model in which the drift of the dividend growth
rate follows a regime-switching process. Investors’ uncertainty about the cur-
rent state of the economy endogenously creates stochastic volatility and lev-
erage, thus giving rise to an IVS. Because investors’ uncertainty evolves over
time and is persistent, this model induces predictability in the IVS. Similarly,
Guidolin and Timmermann (2003) propose a general equilibrium model in
which dividends evolve on a binomial lattice. Investors’ learning is found to
generate asymmetric skews and systematic patterns in the IVS. The changing
beliefs of investors within a rational learning scheme imply dynamic restric-
tions on how the IVS evolves over time. Finally, in Garcia, Luger, and Re-
nault’s (2003) utility-based option pricing model, investors learn about the
drift and volatility regime of the joint process describing returns and the
stochastic discount factor, modeled as a bivariate regime-switching model.
Under their assumptions, the IVS depends on an unobservable latent variable
characterizing the regime of the economy. Persistence of the process describing
this latent variable implies predictability of the IVS. These models are ex-
amples of equilibrium-based models that generate time-varying implied vol-
atility patterns consistent with those observed in the data. We view our ap-
proach as a reduced-form approach to model the time variation in the IVS
that could have been generated by any of these models. As is often the case
in forecasting, a simple reduced-form approach such as ours is able to effi-
ciently exploit the predictability generated by more sophisticated models.

A few existing papers are closely related to ours. Harvey and Whaley (1992)
study the time variation in volatility implied by the S&P 100 index option
prices for short-term, nearest at-the-money contracts. They test the hypothesis
that volatility changes are unpredictable on the basis of regressions of the
changes in implied volatility on information variables that include day-of-the-
week dummy variables, lagged implied volatilities, interest rate measures, and
the lagged index return. They conclude that one-day-ahead volatility forecasts
are statistically quite precise but do not help devising profitable trading strat-
egies once transaction costs are taken into account. We depart from Harvey
and Whaley’s analysis in several ways. First, we look at European-style S&P

1. Bakshi and Chen (1997) derive option pricing results in a general equilibrium model with
a representative agent. In equilibrium, both interest rates and stock returns are stochastic, with
the latter having a systematic and an idiosyncratic volatility component. They show that this
model is able to reproduce various shapes of the smile, although the dynamic properties of the
IVS are left unexplored.
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500 index options. Second, we do not reduce the IVS to a single point (at-
the-money, short-term) and instead model the dynamics of the entire surface.

Noh, Engle, and Kane (1994) compare mean daily trading profits for two
alternative forecasting models of the S&P 500 volatility: a GARCH(1, 1)
model (with calendar adjustments) and a regression model applied to daily
changes in weighted implied volatilities. Trading strategies employ closest-
at-the-money, short-term straddles. They report the superior performance of
GARCH one-day-ahead volatility forecasts at delivering profitable trading
strategies, even after accounting for transaction costs of magnitude similar to
those assumed in our paper. Although Noh et al.’s implied volatility–based
model has a time-series dimension, a generalized least squares (GLS) pro-
cedure (Day and Lewis 1988) is applied to compress the entire daily IVS in
a single, volume-weighted volatility index, so that the rich cross-sectional
nature of the IVS is lost. Instead, we evaluate our dynamic models over the
entire IVS and thus consider trading in option contracts of several alternative
moneyness levels and expiration dates. We also adopt a GARCH-type model
as a benchmark but estimate it on options data (cf. Heston and Nandi 2000),
whereas Noh et al. (1994) obtain quasi–maximum likelihood estimates from
stock returns data.

Diebold and Li (2006) use a two-step approach similar to ours in an un-
related application to modeling and forecasting the yield curve. In a first step,
they apply a variation of the Nelson-Siegel exponential component framework
to model the yield curve derived from U.S. government bond prices at the
cross-sectional level. In a second step, they propose autoregressive integrated
moving average–type models for the coefficients estimated in the first step.
Finally, Rosenberg and Engle (2002) propose a flexible method to estimate
the pricing kernel. Their empirical results suggest that the shape of the pricing
kernel changes over time. To model this time variation, Rosenberg and Engle
postulate a VAR model for the parameters that enter the pricing kernel at
each point in time. Using hedging performance as an indicator of accuracy,
they show that their time-varying model of the pricing kernel outperforms a
time-invariant model, and they thus conclude that time variation in the pricing
kernel is economically important.

The plan of the paper is as follows. Section II describes the data and a few
stylized facts concerning the time variation of the S&P 500 IVS. We estimate
a cross-sectional model of the IVS and discuss the estimation results. In Section
III, we propose and estimate VAR-type models for the estimated parameters
obtained in the first stage. Section IV is devoted to out-of-sample statistical
measures of prediction accuracy, and Section V examines performance in
terms of simulated trading profits under a variety of assumptions concerning
the structure of transaction costs. Section VI discusses some robustness checks
that help us qualify the extent of the IVS predictability previously isolated.
Section VII presents conclusions.
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II. The Implied Volatility Surface

A. The Data

We use a sample of daily closing prices for S&P 500 index options (calls and
puts) from the Chicago Board Options Exchange covering the period January
3, 1992–June 28, 1996. S&P 500 index options are European-style and expire
the third Friday of each calendar month. Each day up to six contracts are
traded, with a maximum expiration of one year. We use trading days to
calculate days to expiration (DTE) throughout. Given maturity, prices for a
number of strikes are available. The data set is completed by observations on
the underlying index (S) and T-bill yields (r), interpolated to match the maturity
of each option contract, proxying for the risk-free rate.

For European options, the spot price of the underlying bond must be ad-
justed for the payment of discrete dividends by the stocks in the S&P 500
basket. As in Bakshi, Cao, and Chen (1997) and Dumas et al. (1998), we
assume these cash flows to be perfectly anticipated by market participants.
For each contract traded on day t with days to expiration DTE, we first
calculate the present value of all dividends paid on S&P 500 stocks betweenDt

t and . We then subtract from the time t synchronous observationt � DTE Dt

on the spot index to obtain the dividend-adjusted stock price. Data on S&P
500 cash dividends are collected from the S&P 500 Information Bulletin.

Five exclusionary criteria are applied. First, we exclude thinly traded op-
tions, with an arbitrary cutoff chosen at 100 contracts per day. Second, we
exclude all options that violate at least one of a number of basic no-arbitrage
conditions. Violations of these conditions presumably arise from misrecord-
ings and are unlikely to derive from thick trading. Third, we discard data for
contracts with fewer than six trading days to maturity since their prices are
noisy,2 possibly containing liquidity-related biases, and because they contain
very little information on the time dimension of the IVS. We also exclude all
contracts with more than one year to maturity. Fourth, we follow Dumas et
al. (1998) and Heston and Nandi (2000) by excluding options with absolute
moneyness in excess of 10%, with moneyness defined as m { (strike

.3 Fifth and finally, as in Bakshi et al. (1997), weprice/forward price) � 1
exclude contracts with price lower than $3/8 to mitigate the impact of price
discreteness on the IVS structure. The filtered data correspond to a total of
48,192 observations, of which 20,615 refer to call contracts and 27,577 to
puts. The average number of options per day is 41 with a minimum of five
and a maximum of 63.

Table 1 reports summary statistics for implied volatilities computed by the
Black-Scholes formula adjusted for dividend payments. We divide the data
into several categories according to moneyness and time to maturity. A put

2. See Sec. VI and Hentschel (2003) for measurement error issues related to the calculation
(estimation) of implied volatilities.

3. The forward price is defined as , where t is time to maturity measured as a fractionexp (rt)S
of the year.
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TABLE 1 Summary Statistics for Implied Volatilities by Maturity and Moneyness

Short-Term Medium-Term Long-Term

Total %Call Put Call Put Call Put

DOTM:
Observations 146 2,550 771 2,423 442 825 7,157 14.85
Average IV .124 .185 .109 .164 .117 .156 .163
Standard deviation IV .014 .027 .015 .018 .015 .015 .032

OTM:
Observations 4,608 7,366 3,105 4,515 606 1,233 21,433 44.47
Average IV .105 .145 .109 .139 .126 .143 .129
Standard deviation IV .018 .025 .018 .019 .017 .015 .027

ATM:
Observations 3,187 3,186 1,804 1,774 290 310 10,551 21.89
Average IV .113 .117 .122 .124 .135 .130 .118
Standard deviation IV .019 .022 .018 .018 .015 .018 .020

ITM:
Observations 3,162 1,896 1,474 815 388 379 8,114 16.84
Average IV .135 .121 .132 .117 .146 .122 .129
Standard deviation IV .036 .035 .022 .023 .019 .018 .031

DITM:
Observations 312 71 218 137 102 97 937 1.94
Average IV .220 .213 .162 .116 .160 .104 .171
Standard deviation IV .078 .086 .035 .028 .022 .018 .068

Total:
Observations 26,484

(55.0%)
17,036
(35.4%)

4,672
(9.6%)

48,192 100

Average IV .131 .133 .139 .132
Standard deviation IV .035 .023 .020 .032

Note.—The sample period is January 3, 1992–June 28, 1996, for a total of 48,192 observations (after
applying exclusionary criteria). Moneyness (m) is defined as the ratio of the contract strike to forward spot
price minus one. DOTM denotes deep-out-of-the-money ( for puts and for calls); OTM,m ! �0.06 m 1 0.06
out-of-the money ( for puts and for calls); ATM, at-the-money (�0.06 ! m ≤ �0.01 0.01 ! m ≤ 0.06 �0.01 ≤

); ITM, in-the-money ( for puts and for calls); and DITM, deep-m ≤ 0.01 0.01 ≤ m ! 0.06 �0.06 ! m ≤ �0.01
in-the-money ( for puts and for calls). Short-term contracts have less then 60 (trading) daysm 1 0.06 m ! �0.06
to maturity, medium-term contracts time to maturity in the interval [60, 180] days, and long-term contracts
have more than 180 days to expiration.

contract is said to be deep in the money (DITM) if , in the moneym 1 0.06
(ITM) if , at the money (ATM) if , out of0.06 ≥ m 1 0.01 0.01 ≥ m ≥ �0.01
the money (OTM) if , and deep out of the money (DOTM)�0.01 1 m ≥ �0.06
if . Equivalent definitions apply to calls, with identical bounds but�0.06 1 m
with m replaced with �m in the inequalities. The classification based on time
to expiration follows Bakshi et al. (1997): an option contract is short-term if

days, medium-term if , and long-term ifDTE ! 60 60 ≤ DTE ≤ 180 DTE 1

days. Roughly 61% of the data is represented by short- and medium-180
term OTM and ATM contracts. DITM and long-term contracts are grossly
underrepresented.

Table 1 provides evidence on the heterogeneity characterizing S&P 500
implied volatilities as a function of moneyness and time to expiration. For
call options, implied volatilities describe an asymmetric smile for short-term
contracts and perfect skews (i.e., volatilities increase moving from DOTM to
DITM) for medium- and long-term contracts. Similar patterns are observed
for puts, with the difference that volatilities decrease when moving from
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DOTM to DITM: protective (DOTM) puts yield higher prices and thus higher
volatilities. Table 1 also shows that the smile is influenced by time to maturity:
implicit volatilities are increasing in DTE for ATM contracts (calls and puts),
whereas they are decreasing in DTE for DOTM puts and DITM calls.

B. Fitting the Implied Volatility Surface

In this subsection, we fit an implied volatility model to each cross section of
options available each day in our sample. Given the evidence presented above,
two factors seem determinant in modeling the implied volatilities for each
daily cross section of option contracts: moneyness and time to expiration. In
a second stage, we will model and forecast the estimated volatility function
coefficients.

Let ji denote the Black-Scholes implied volatility for contract i, with time
to maturity ti (measured as a fraction of the year, i.e. ) andt { DTE /252i i

strike price . We consider the following time-adjusted measure of money-Ki

ness:4

ln [K / exp (rt )S]i i
M { .i �ti

The term is positive for OTM calls (ITM puts) and negative for ITM callsMi

(OTM puts).
Each day we estimate the following cross-sectional model for the IVS by

ordinary least squares (OLS):

2ln j p b � b M � b M � b t � b (M # t ) � � , (1)i 0 1 i 2 i 3 i 4 i i i

where is the random error term, , and N is the number of� i p 1, … , Ni

options available in each daily cross section. We use log implied volatility as
the dependent variable. This has the advantage of always producing nonneg-
ative implied volatilities. We estimated a variety of other specifications (see
Peña, Rubio, and Serna 1999). They included models in which the IVS was
a function only of moneyness (either a linear or a quadratic function, or a
stepwise linear function of moneyness) and models using both the moneyness
and time to expiration variables, included in the regression in the logarithmic
or quadratic form, without any interaction term. We omit the estimation outputs
to save space and because these alternative models showed a worse fit (as
measured by their adjusted ’s) than (1).2R

For each day in our sample, we estimate by OLS′b p (b , b , b , b , b )0 1 2 3 4

and obtain a vector of daily estimates.5 To assess the in-sample fit of ourb̂

4. Gross and Waltner (1995) and Tompkins (2001) also use a similar measure of moneyness.
According to this measure, the longer the time to maturity of an option, the larger the difference
should be between the strike price and the forward stock price in order for it to achieve the
same normalized moneyness as a short-term option.

5. As recently remarked by Hentschel (2003), measurement errors may introduce heteroske-
dasticity and autocorrelation in �i, making the OLS estimator inefficient. In Sec. VI, we apply
Hentschel’s feasible GLS estimator as a robustness check.
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cross-sectional model, we present in table 2 summary statistics for the adjusted
as well as for the roor mean squared error (RMSE) of implied volatilities.2R

On average, the value of is equal to 81%, with a minimum value of 1.1%2R̄
and a maximum value of 99%. The time series of the daily values of the
adjusted and RMSE of implied volatilities (not reported) show that there2R
is considerable time variation in the explanatory power of equation (1). The
functional form implied by this model is nevertheless capable of replicating
various IVS shapes, including skews and smiles as well as nonmonotone
shapes with respect to time to expiration. In the upper panel of figure 1 we
plot the implied “average” fitted IVS model (i.e., the fitted model evaluated
at the mean values of the estimated coefficients obtained from table 2) as a
function of moneyness and time to maturity. For comparison, in the lower
panel of the same figure we present the average actual implied volatilities for
each of the 15 categories in table 1; that is, we plot the average volatility in
correspondence to the midpoint moneyness and time to maturity characterizing
each of the table’s cells. The two plots show close agreement between raw
and fitted implied volatilities.

Figure 2 plots the time series of the daily estimates . Figure 2 shows thatb̂

the shape of the S&P 500 IVS is highly unstable over time, both in the
moneyness and in the time to maturity dimensions. Table 2 and figure 3 contain
some descriptive statistics for the estimated coefficients. In particular, the
Ljung-Box (LB) statistics at lags 1 and 10 indicate that there is significant
autocorrelation for all coefficients (one exception is ), in both levels andb̂4

squares, suggesting that some structure exists in the dynamics of the estimated
coefficients. Figure 3 plots the auto- and cross-correlations for the time series
of OLS estimates. The cross-correlograms between pairs of estimated coef-
ficients show strong association between them, at both leads and lags as well
as contemporaneously. This suggests the appropriateness of multivariate mod-
els for the set of estimated cross-sectional coefficients, whose specification
and estimation we will consider next.6

III. Modeling the Dynamics of the Implied Volatility Surface

A. The Model

In this subsection we model the time variation of the IVS as captured by the
dynamics of the OLS coefficients entering the cross-sectional model analyzed
previously. More specifically, we fit VAR models to the time series of OLS

6. Although the mapping between the persistence of the cross-sectional coefficients and the
persistence of (log) implied volatilities is a complicated one, for ATM contracts the mean reversion
speed is well approximated by the autocorrelation function of b0 and appears to be consistent
with an AR(1) model with an autoregressive coefficient of 0.9. This estimate is lower than the
volatility mean reversion parameter reported, e.g., by Heston and Nandi (2000). However, we
note that Heston and Nandi study the volatility of the underlying (in levels), not implied, vol-
atilities. Christensen and Prabhala (1998) study log-implied volatilities and find an autoregressive
coefficient of 0.7.
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Predictable Dynamics 1601

Fig. 1.—Fitted (top) and actual (bottom) S&P 500 IVS: average over January 3,
1992–June 28, 1996.

This content downloaded from 130.186.11.41 on Tue, 15 Nov 2016 17:47:09 UTC
All use subject to http://about.jstor.org/terms



1602 Journal of Business

Fig. 2.—Time variation in the OLS estimates for the cross-sectional model, eq. (1):
January 3, 1992–June 28, 1996.

estimates implied by equation (1), where denotes day t’s coefficientˆ ˆ{b } bt t

estimates. Our approach is a reduced-form approach to modeling the time
variation in the IVS that results from more structural models such as the
investors’ learning models of option prices. In particular, if the state variables
that control the dynamics underlying the fundamentals in these models are
persistent and follow a regime-switching model (such as in David and Veronesi
[2002] or Garcia, Luger, and Renault [2003]), a VAR model appears to be a
reasonable reduced-form approach to model the predictability in the IVS.
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We consider the following multivariate model for the vector of estimated
coefficients :b̂t

p

ˆ ˆb p m � Fb � u , (2)�t j t�j t
jp1

where i.i.d. .u ∼ N(0, Q)t

For later reference, let p denote the vector containing all parameters (in-
cluding the elements of Q) entering (2). Equations (1) and (2) describe our
two-stage, dynamic IVS model. We select p using the Bayesian information
criterion (BIC), starting with a maximum value of . This is our mainp p 12
model (which we label model 1).7 For comparison purposes, we consider
Dumas et al.’s (1998) ad hoc straw man, which has proved to be hard to beat
in out-of-sample horse races. Christoffersen and Jacobs (2004) have recently
employed this benchmark to show that once the in-sample and out-of-sample
loss functions used in estimation and prediction are correctly “aligned,” this
practitioners’ Black-Scholes model is hard to outperform even using state-of-
the-art structural models. This model (henceforth model 2) is a special case
of equation (2) with , , , a identity matrix,m p 0 p p 1 F p I 5 # 5 F p1 5 j

for , and Q a diagonal matrix. It is a random walk model in0 j p 2, … , p
which plus an independently and identically distributed (i.i.d.) ran-ˆ ˆb p bt t�1

dom noise vector; that is, the best forecast of tomorrow’s IVS parameters is
today’s set of (estimated) coefficients.

We estimate model 1 by applying OLS equation by equation. For com-
parison purposes, we also estimate on our options data a third structural model,
Heston and Nandi’s (2000) NGARCH(1, 1). Heston and Nandi report the
superior performance (in- and out-of-sample) of this model over Dumas et
al. ad hoc straw man when estimated on weekly S&P 500 options data for
the period 1992–94. In contrast to the dynamic IVS models considered here,
the NGARCH(1, 1) model does not allow for time-varying coefficients (al-
though it implies time-varying risk-neutral densities). Thus it seems sensible
to require that model 1 be able to perform at least as well as Heston and
Nandi’s NGARCH. We estimate Heston and Nandi’s model by minimizing
the sum of the squared deviations of the Black-Scholes implied volatilities
from the Black-Scholes implied volatilities derived by “inverting” the

7. Equation (2) allows for a variety of dynamic specifications of the IVS (as described by the
cross-sectional coefficient estimates ), depending on the choice of p and on the restrictionsb̂t

imposed on its coefficients. In an earlier version of this paper, we considered two further model
specifications: one in which the lag order was selected by a sequential likelihood ratio testing
algorithm and one in which exogenous information in the form of lagged returns on the S&P
500 index entered the VAR model. Since the out-of-sample performance of these models turned
out to be inferior to model 1, we omit related results (see Gonçalves and Guidolin [2003] for
details).
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1606 Journal of Business

TABLE 3 Estimation Results for VAR Models of Cross-Sectional OLS Estimates

Model
Log

Likelihood BIC

RMSE

b̂0 b̂1 b̂2 b̂3 b̂4

Model 1 �583.714 .710 .064 .600 1.98 .183 2.40
Model 2 �2,203.256 2.002 .161 .692 2.12 .245 2.48

Note.—Model 1 corresponds to eq. (2) in the text, with p selected by the BIC criterion (starting with a
maximum value of ). Model 2 is the Dumas et al. (1998) ad hoc straw man. All results pertain to thep p 12
period January 3, 1992–June 28, 1996, for a total of 1,136 daily observations.

NGARCH(1, 1) option prices.8 This is in contrast to Heston and Nandi, who
apply a nonlinear least squares (NLS) method to option prices directly. By
estimating Heston and Nandi’s model in the implied volatility space, we
preserve the consistency with the dynamic IVS models.9

B. Estimation Results

Table 3 reports estimation results for models 1 and 2, fitted to the parameter
estimates from the cross-sectional model described by equation (1). Model 1
outperforms the more parsimonious model 2 in-sample, as signaled by its
high value for the log likelihood function and the smallest RMSE values for
the first-step parameter estimates . We will evaluate the two models out ofb̂t

sample to account for the possibility that the superior performance of model
1 is due to overfitting the data.

In order to obtain an idea of the predictions implied by our two-stage IVS
model, figure 4 plots the sequence of IVS snapshots over the period January
3, 1992–June 28, 1996, implied by model 1’s estimates. In particular, in the
top row we plot fitted implied volatilities against time and moneyness, given
two distinct maturities ( and ), whereas in the bottomDTE p 30 DTE p 120
row we plot fitted implied volatilities against time and maturity, given two
distinct moneyness levels ( and , i.e., ATM and ITM putsm p 0 m p 0.05
[and ATM and OTM calls]). Figure 4 shows that model 1 is capable of
generating considerable heterogeneity in the IVS, consistent with well-known
stylized facts: skews for short-term contracts; relatively higher implied vol-

8. We obtained the following estimates:

1f ∗� �r p r � h � h z ,t t t t2

with

1�6 �6 ∗ 2�h p (0.83 # 10 ) � (0.67 # 10 )[z � ( � 316.5 � 2.45) h ] � 0.91h ,t t�1 t�1 t�12

where we use notation similar to that used by Heston and Nandi (2000). The implied nonlinear
GARCH process has high persistence ( ), as typically found in the literature2b � ay p 0.98
(Heston and Nandi found persistence levels of roughly 0.9–0.95 on their S&P 500 index options
weekly data). Also, the estimate of the risk premium is standard (Heston and Nandi’s estimates
are between 0.5 and 2). The NGARCH(1, 1) model reaches an average implied volatility RMSE
of 2.01%, which is quite impressive considering that the model specifies only five parameters.

9. For an example of NLS estimation based on a distance metric based on Black-Scholes
implied volatilities, see Jackwerth (2000).
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Fig. 4.—Model 1: fitted S&P 500 IVS

atilities in 1992, early 1994, and in the spring of 1996; less accentuated skews,
which become asymmetric smiles when higher implied volatilities are ob-
served; and so forth. For medium-term contracts, model 1 implies instead a
flatter and practically linear IVS; skews dominate.

The bottom row of plots in figure 4 shows that some heterogeneity affects
also the fitted IVS in the term structure dimension. Although positively sloping
shapes dominate, flat and even downward-sloping schedules occasionally ap-
pear. For instance, between the end of 1992 and early 1993, the fitted term
structure is steeply upward sloping, implying volatilities on the order of almost
30% for ATM, long-term contracts (vs. 10% for short-term ones); on the
opposite, early 1995 is characterized by flat term structures. For ITM puts
(OTM calls), we find flatter schedules on average, although substantial het-
erogeneity remains. Interestingly, in this case many schedules are actually
nonmonotone; that is, they are at first decreasing (for very short maturities,
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less than one month) and then slowly increasing in time to expiration. We
interpret figure 4 as evidence of the possibility of accurately modeling not
only the cross-sectional structure of the S&P 500 IVS but also its dynamics.
The conceptually simple VAR model 1 provides a very good fit and produces
IVSs that are plausible both in their static structure and in their evolution.

IV. Statistical Measures of Predictability

Our approach to modeling the IVS dynamics proves successful in-sample, as
previous results show. Nevertheless, a good model of the IVS should not only
fit well in-sample but also provide good out-of-sample predictions. The main
goal of this section is thus to analyze the out-of-sample forecasting perfor-
mance of models 1 and 2 at forecasting one-step-ahead, daily implied vola-
tilities (and option prices). For comparison purposes, we include Heston and
Nandi’s (2000) NGARCH(1, 1) model, as well as a random walk model for
daily implied volatilities (henceforth called the “random walk model”). Ac-
cording to this random walk model, today’s implied volatility for a given
option contract is the best forecast of tomorrow’s implied volatility for that
same contract. Harvey and Whaley (1992, 53) comment that “while the ran-
dom walk model might appear naive, discussions with practictioners reveal
that this model is widely used in trading index options.”

We estimate each of the models using data for the periods January 1,
1992–December 31, 1992; January 1, 1992–December 31, 1993; and so on,
up to January 1, 1992–December 31, 1995. This yields four distinct (and
expanding) estimation windows. For each day in a given estimation window,
we estimate the cross-sectional IVS parameters by OLS. We obtain a timebt

series , which we then use as raw data to obtain estimates of p, theˆ{b }t
parameters of the multivariate models described by (2). We allow the model’s
specification (e.g., the number of lags p) to change in each estimation window.
For the NGARCH(1, 1) benchmark, we follow Heston and Nandi’s (2000)
approach and estimate its parameters (which we also denote by p to simplify
notation) by NLS, except that our objective function is defined in the IVS.
Let denote the parameter estimates for each of these models and for a givenp̂

estimation window. We then hold constant for the following six months—p̂

that is, January 1, 1993–June 30, 1993; January 1, 1994–June 30, 1994; and
so forth up to January 1, 1996–June 28, 1996—and produce daily one-step-
ahead forecasts of the estimated coefficients . Because the IVS on dayb̂ t �

depends on , forecasting allows us to forecast implied volatilitiesˆ ˆ1 b bt�1 t�1

(and option prices) for each of these four six-month prediction windows, given
moneyness levels and time to maturity. Importantly, nonoverlapping esti-
mation and prediction windows guarantee that only past information on the
dynamic properties of the S&P 500 IVS are used for prediction purposes.

To assess the out-of-sample performance of the fitted models for the second
half of each of the four years under consideration, for each day in a given
prediction window we compute the following six measures for each model:
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i. The root mean squared prediction error in implied volatilities (RMSE-
V) is the square root of the average squared deviations of Black-
Scholes implied volatilities (obtained using actual option prices) from
the model’s forecast implied volatilities, averaged over the number of
options traded.

ii. The mean absolute prediction error in implied volatilities (MAE-V)
is the average of the absolute differences between the Black-Scholes
implied volatility and the model’s forecast implied volatility across
traded options.

iii. The mean correct prediction of the direction of change in implied
volatility (MCP-V) is the average frequency (percentage of observa-
tions) for which the change in implied volatility predicted by the model
has the same sign as the realized change in implied volatility.10

iv. The root mean squared prediction error in option prices (RMSE-P)
is computed as in measure i but with reference to option prices.

v. The mean absolute prediction error in option prices (MAE-P) is com-
puted as in measure ii but with reference to option prices.

vi. The mean correct prediction of the direction of change of option prices
(MCP-P) is computed as in measure iii but with reference to option
prices.

In computing measures iv–vi above, we compare actual option prices with
the model’s forecast of option prices. We use the Black-Scholes formula to
compute the model’s forecast of option price, using the corresponding implied
volatility forecast as an input (conditional on the current values of the re-
maining inputs such as index value, interest rate, and the contract’s features).
Our use of the Black-Scholes model is obviously inconsistent with the vol-
atility being a function of moneyness and/or time to maturity. Nevertheless,
such a pricing scheme is often used by market makers (cf. Heston and Nandi
2000). It is our goal here to see whether a theoretically inconsistent but
otherwise flexible approach can deliver statistically and economically signif-
icant forecasts. We follow Harvey and Whaley (1992) and view our IVS
models as a “black box,” which is first used to obtain implied volatilities from
option prices for forecasting purposes and then transforms implied volatilities
back into prices.11

Panel A of table 4 contains the average values of the out-of-sample daily

10. When computing this measure, we consider only contracts that are traded for two con-
secutive days.

11. The forecasting exercises underlying our computation of the performance measures iv–vi
are subject to Christoffersen and Jacobs’ (2004) critique that the loss function used in estimation
(based on implied volatility matching) differs from the out-of-sample loss function (based on
Black-Scholes option prices). Since the Black-Scholes formula is nonlinear in implied volatility,
severe biases may be introduced. On the basis of the results of Christoffersen and Jacobs, we
expect that the use of the “correct loss” function in estimation will reduce the values of the out-
of-sample statistics in table 4 for our approach.
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Predictable Dynamics 1611

performance measures i–vi aggregated across all four out-of-sample periods.12

The aggregated out-of-sample RMSE in annualized implied volatilities is
1.43%, 2.30%, 2.07%, and 1.49% for models 1 and 2, the NGARCH(1, 1)
model, and the random walk model, respectively. The values for the out-of-
sample measures related to forecasting option prices are $1.00, $1.75, $1.71,
and $1.64, respectively. The best-performing model according to these mea-
sures is model 1, the VAR model for . Similar results are obtained in termsb̂t

of average percentage of correct predictions for the sign of the change of
volatilities between two consecutive trading days: the best performance is
provided by model 1 (62.2%), followed by model 2 (55.8%). Modeling the
dynamics of the IVS offers real advantages over a simpler, static Dumas et
al. type specification (model 2) in which the structure of the IVS is predicted
not to change from one day to the next. Model 1 also compares favorably
with the two benchmarks considered, outperforming both the NGARCH(1,
1) model and the practitioners’ random walk model for implied volatilities.
Similarly to Heston and Nandi (2000), we find that the NGARCH(1, 1) model
outperforms model 2.13

To formally assess the statistical significance of the difference in out-of-
sample performance of model 1 compared to each of the remaining models,
we employ the equal predictive ability test proposed by Diebold and Mariano
(1995). We consider three types of performance indicators: the difference in
squared forecast errors (corresponding to measures i and iv), the difference
in absolute forecast errors (corresponding to measures ii and v), and the
difference between two indicator functions, where each indicator function
takes the value one if the realized change in the variable being predicted (e.g.,
the implied volatility) has the same sign as the predicted change (i.e., the
forecast error), and zero otherwise. This last performance indicator is con-
sistent with the out-of-sample measures given in cases iii and vi. To compute
the Diebold and Mariano test, we use the Newey-West (1987) heteroskedas-
ticity and autocorrelation consistent variance estimator. Panel B of table 4
reports the values of the statistic and associated significance levels. With very
few exceptions, we reject the null hypothesis of equal forecast accuracy of
model 1 compared to the benchmark models. We conclude that the out-of-
sample superior performance of model 1 is statistically significant. Moreover,
in the rare occasions in which model 1 underperforms the benchmarks, not

12. Note that it is not possible to calculate the mean percentage of correct prediction of the
direction of change of implied volatility for the random walk model since this model implies
zero predicted changes in implied volatility by construction.

13. In unreported results, we also studied out-of-sample performance for each of the four
prediction windows. The overall picture remains favorable to our approach, although years of
higher volatility and turbulent markets (such as 1994) deteriorate the performance of our approach.
We also investigated the forecasting accuracy in multistep-ahead forecasting. We considered
horizons of two, three, and five trading days. The ranking across models remains identical to
the one from table 4: model 1 outperforms model 2 and the NGARCH(1, 1) benchmarks at all
horizons. However, although model 1 is superior, its accuracy declines faster than that of model
2 and the NGARCH as the prediction horizon is increased.
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TABLE 5 Out-of-Sample Average Prediction Errors by Moneyness and Maturity

Short-Term Medium-Term Long-Term

%RMSE-V %RMSE-P %RMSE-V %RMSE-P %RMSE-V %RMSE-P

DITM:
Model 1 26.66 15.31 10.73 9.98 11.41 15.55
Model 2 28.37 30.85 14.70 20.78 12.76 24.46
AR(1) 26.74 49.35 19.61 32.63 22.08 18.03

ITM:
Model 1 12.64 12.24 6.63 6.61 7.19 9.19
Model 2 16.85 27.40 10.76 14.53 12.79 14.96
AR(1) 15.62 37.09 11.52 14.23 10.70 7.62

ATM:
Model 1 6.08 6.47 4.84 4.93 5.83 5.71
Model 2 13.19 14.30 10.28 10.42 9.37 9.23
AR(1) 6.63 7.08 6.05 6.09 6.32 6.27

OTM:
Model 1 5.39 4.26 4.26 4.05 6.46 5.17
Model 2 11.71 5.98 9.39 6.62 10.75 9.20
AR(1) 16.53 5.47 9.55 7.09 5.44 7.62

DOTM:
Model 1 4.23 2.97 3.98 2.95 7.24 4.40
Model 2 8.16 3.12 8.54 3.91 11.70 4.86
AR(1) 12.5 3.43 13.89 5.22 9.15 8.94

Note.—Model 1 corresponds to eq. (2) in the text, with p selected by the BIC criterion (starting with a
maximum value of ) and without any exogenous regressors. Model 2 is the Dumas et al. (1998) adp p 12
hoc straw man. The third model is an AR(1) model applied to each (log) implied volatility time series. Each
model is estimated on four expanding windows of observations and then used to forecast implied volatilities
on four successive windows of six months each. %RMSE-V and %RMSE-P are RMSEs for volatility and
option prices, expressed as a percentage of the mean implied volatility and option price within the class,
respectively. Each time series is formed by sampling contracts that in each available day come closer to class
definitions based on moneyness and maturity.

only is the difference rather small in absolute terms, but we cannot reject the
hypothesis of equal predictive accuracy.

The superior out-of-sample performance of model 1 relative to model 2,
the static ad hoc model heavily used by practitioners, confirms that time
variation in the IVS is statistically important. Economic models of the IVS
such as those that allow for investors’ learning to affect equilibrium option
prices can explain these findings. If on a learning path beliefs are persistent
because the updating occurs in a gradual fashion, the stochastic discount factor
should inherit these properties and imply predictability of the IVS. This implies
that model 2, which ignores such predictability—that is, a random walk for
the first-stage coefficients—has a hard time capturing the dynamics of the
IVS. Instead, model 1 represents a reduced-form framework able to capture
the dynamic properties of the IVS. As often documented in forecasting ap-
plications, such a reduced-form approach works very well, outperforming the
more complex structural model of Heston and Nandi (2000).

In order to further analyze the nature of the forecasting ability of model 1,
table 5 reports out-of-sample average prediction errors by different option
moneyness and maturity categories. Specifically, for each category we report
the average out-of-sample RMSE for implied volatilities (and option prices),
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Predictable Dynamics 1613

expressed as a percentage of the mean implied volatility (and mean option
price) in that category. Scaling by mean volatility and price is important to
gain comparative insight into the sources of model 1’s outperformance. For
comparison purposes, we also include model 2, the restricted (static) version
of the more flexible dynamic model 1. In addition, we consider a simple
AR(1) model for (log) implied volatilities, as in Christensen and Prabhala
(1998). Contrary to model 1, this model does not exploit the panel structure
of options data since it applies to a single time series of (log) implied vola-
tilities. In particular, for a given options class, we create a time series of (log)
implied volatilities by selecting each day the contract that is closest to the
midpoint in this category.14 Since this simple AR(1) model does not utilize
any cross-sectional restrictions on implied volatilities, we expect it to perform
worse than model 1.

Our findings are as follows. We start with model 1. For any given moneyness
level, medium-term contracts are associated with the smallest prediction errors,
both in implied volatilities and in option prices. The ranking between short-
term and long-term contracts depends on moneyness. For ITM and ATM
options, long-term contracts have smaller prediction errors than short-term
contracts (in both the volatility and price metrics). For OTM options the
opposite is true. For a given maturity level, RMSEs (in volatilities and option
prices) are generally decreasing when moving from DITM to DOTM; that is,
it is easier to predict OTM than ITM implied volatilities and option prices.
The only exception to this pattern occurs when forecasting implied volatilities
for long-term contracts, for which a U-shaped pattern of RMSE-V emerges.

In sum, the forecasting strength of model 1 seems to originate mainly from
the short- and medium-term OTM and ATM segments of the market.

For the AR(1) model, RMSEs tend to decrease with maturity, given mon-
eyness. One exception is the DOTM class, for which short-term options have
the lowest RMSE-P. For any maturity level, the AR(1) model achieves, in
general, lower RMSE-V for ATM implied volatilities than ITM or OTM
contracts. For short-term and medium-term options, the RMSE-P decreases
monotonically when moving from DITM to DOTM.

Table 5 shows that model 1 generally beats the AR(1) model across all
moneyness and time to expiration classes.15 Thus the gain in forecasting from

14. For a given options class, on each day for which there are options available in that class,
we select the contract that solves the following problem:

2 2(m � m ) (t � t )i c i c
min � ,

2 2[ ]j jm ,ti i m t

where and tc are the midpoints of the moneyness and maturity intervals defining the class,mc

and and are the variances of moneyness and time to expiration for all contracts in the2 2j jm t

class traded that day.
15. The AR(1) model outperforms model 1 only in two cases: for ITM, long-term options

(when it achieves a smaller %RMSE-P) and for OTM, long-term options (with a smaller %RMSE-
V).
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our two-stage approach seems to come from the cross-sectional restrictions.
The greatest improvements in RMSE-V occur for OTM short- and medium-
term contracts; instead, the greatest gains in RMSE-P occur for ITM short-
and medium-term contracts. The smallest gains are obtained for ATM con-
tracts. This confirms that the additional information contained in the segments
of the IVS far from at-the-money may be crucial in improving the forecasting
performance of IVS models.

Model 1 also outperforms model 2 for all categories. The largest reductions
in average prediction errors are obtained for ATM and OTM short- and
medium-term options, when forecasting implied volatilities, whereas ATM
and ITM short- and medium-term options show the largest reductions in
RMSE-P. DITM options are in general associated with smaller reductions in
implied volatilities prediction errors, suggesting that for this class of options
the dynamics in the coefficients capturing the IVS shape is stable enough to
allow accurate forecasting from model 2.

For OTM short- and medium-term options, model 2 yields lower average
prediction errors than the AR(1) model, which suggests that for these classes
it is more important to model the cross-section dimension of the options data
than the time-series dimension. Instead, for ATM options, the simple AR(1)
model outperforms model 2, suggesting that it is important to model the
dynamics of implied volatilities for this class of options.

V. Economic Analysis

The results of Section IV suggest that implied volatilities (and corresponding
option prices) are highly predictable in a statistical sense. The good out-of-
sample statistical performance of our model and the fact that our approach
can be viewed as a reduced-form approach that captures the dynamics in the
IVS that could be generated by equilibrium-based economic models suggest
some robustness of our results to data mining. However, we cannot exclude
entirely the possibility that our results are subject to mining biases. Therefore,
as an additional test, we now examine the economic consequences and sig-
nificance of this predictability. In particular, we ask the following question:
Would a hypothetical market trader be able to devise any profitable trading
strategies based on the implied volatility forecasts produced by our two-stage
dynamic IVS models? We follow Day and Lewis (1992), Harvey and Whaley
(1992), and Noh et al. (1994) and evaluate the out-of-sample forecasting
performance of a number of competing models by testing whether certain
trading rules may generate abnormal profits, that is, profits that are not ac-
counted for by the risk of the positions required by the strategies.16

16. These experiments might be also constructed as tests of the informational efficiency of the
S&P 500 index options market. An efficient market ought to be able to produce option prices
consistent with the implied volatility forecasts from our two-step estimation procedure. If ab-
normal profits can be made, the efficient market hypothesis is rejected. Alternatively, the most
likely explanation is to be found in microstructural features that make the underlying index and
option prices adjust to the flow of news at different speeds.
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Predictable Dynamics 1615

A. Trading Strategies and Rate of Return Calculations

The trading strategies we consider are based on out-of-sample forecasts of
volatility. More specifically, if on a given day implied volatility is predicted
to increase (decrease) the following day, the option is purchased (sold). Each
day we invest $1,000 net in a delta-hedged portfolio of S&P 500 index options,
which is held for one trading day.17 The trading exercise is repeated every
day in the out-of-sample period, and a rate of return is calculated.

Implied volatility forecasts are obtained as in Section IV: on day t we use
the time series of estimated coefficients describing the IVS, up to andb̂

including day t, to predict day ’s coefficients by means of the VAR-ˆt � 1 bt�1

type models estimated from the appropriate estimation window. The forecast
of is then used to predict day ’s implied volatility associated withb̂ t � 1t�1

a given option. Since the index price and interest rate at are not knownt � 1
as of time t, we assume that today’s prices of the primitive assets are to-
morrow’s best forecasts. To delta-hedge our options position, per each unit
of call (put) options bought, we sell (buy) an amount of the underlying index
equal to the Black-Scholes delta ratio (D), calculated using the implied vol-
atility forecast. Similarly, if we sell one call (put) option, we buy (sell) an
amount of the underlying index equal to the corresponding Black-Scholes
hedge ratio.18

To compute the rate of return, we assume that funds may be freely invested
at the riskless interest rate. Suppose that one particular trading rule has in-
dicated that a certain subset of contracts Q should be traded at time t. Let

denote the price of a call contract i at time t and the price of a putC Pit it

contract i at time t. The delta ratios corresponding to call and put options are
denoted and , respectively. If no options are traded (i.e. Q is empty),C PD Dit it

we force the trader to invest her $1,000 in the riskless asset for one trading
period. We distinguish between two cases: a first case in which the overall
time t net cost of the delta-hedged portfolio is positive and a second case in
which the cost is negative.

Consider first the case in which the portfolio requires an injection of funds.
Let denote the price of a unit portfolio in which all contracts are sold orVt

purchased in one unit:

C P CV p (C � S D ) � (P � S D ) � (C � S D )� � �t it t it it t it it t it
call put calli�Q i�Q i�Q� ��

P� (P � S D ), (3)� it t it
puti�Q�

where ( ) is the subset of Q for which a buying (selling) signal oncall callQ Q� �

17. Delta-hedging is intended to render the portfolio’s value insensitive to market movements
so that our computed profits truly reflect profits in “trading in volatility.”

18. In practice, hedging is accomplished by trading in S&P 500 futures with appropriate
maturities. The resulting hedging is imperfect since the underlying consists of the spot index,
and index and futures fail to be perfectly correlated (basis risk). For the sake of simplicity we
ignore the complications arising from hedging with futures.
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calls was obtained; similar definitions apply to puts. Then $1,000 is invested
in a portfolio in which all options in Q (and their associated delta-hedging
positions in the S&P 500 index) are traded in the quantity , withX p 1,000/Vt t

a total cost of $1,000. Hence the resulting portfolio is value-weighted. The
net gain between t and can be determined ast � 1

outG p X (C � C ) � (P � P )� �t�1 t i,t�1 it i,t�1 it[ ]call puti�Q i�Q� �

� X (C � C ) � (P � P )� �t it i,t�1 it i,t�1[ ]call puti�Q i�Q� �

C P� X (S � S ) D � D� �t t�1 t it it( )call puti�Q i�Q� �

C P� X (S � S ) D � D . (4)� �t t�1 t it it( )call puti�Q i�Q� �

Next, consider the case in which the portfolio generates cash inflows; for
example, most or all of the trading signals are selling signals. Define as inVt

(3), except for the fact that now . In this case a portfolio worth $1,000V ! 0t

is created by trading each contract for which there exists an active signal in
the quantity . We assume that the $1,000 option portfolioX p 1,000/FVFt t

generated inflows plus the additional $1,000 originally available is invested
at the riskless interest rate . The resulting net gain between t and canr t � 1t

be calculated in a manner similar to (4):

rtin outG p G � 2,000 exp .t�1 t�1 ( )252

We consider several trading rules. In order to avoid noisy signals, all our
trading strategies use a price deviation filter of 5 cents.19 This implies that
trading occurs only when the price difference between the predicted option
price (i.e. the Black-Scholes predicted price based on our volatility forecast)
and today’s observed price is larger than the filter.20 First, following Harvey
and Whaley (1992), we consider a trading rule (henceforth trading rule A) in
which trades occur only on the closest ATM, shortest-term contracts (thus

). Second, we consider a strategy (trading rule B) for which tradingQ ≤ 1
occurs only in two contracts, those for which the expected selling and the
expected buying profits, respectively, are maximum. In this case obtainsQ ≤ 2

19. Later we will increase the value of this filter.
20. Since the theta of a European option (the rate of change of its value as time to maturity

decreases) is normally negative, comparing predicted and current implied volatilities contains a
small bias, in the sense that, ceteris paribus, the option price implied by predicted volatility will
be normally slightly smaller than the current price because of the mere passage of time. Applying
some minimal filter to the differences in implied prices adjusts for this bias.
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Predictable Dynamics 1617

at all times. In a third set of simulations (trading rule C), we consider trading
only in one contract, the one giving the highest expected trading profit, so
that again.Q ≤ 1

B. Trading Profits before Transaction Costs

Table 6 presents summary statistics for profits deriving from trading rules
A–C. We consider two measures of abnormal returns (profitability): the Sharpe
ratio and a risk measure due to Leland (1999). The Sharpe ratio is an appro-
priate measure of profitability when investors have mean-variance preferences.
This is hard to rationalize under nonnormal returns. Instead, Leland’s risk
measure allows for deviations from normality by taking into account skewness,
kurtosis, and other higher-order moments of the returns distribution. It derives
from a marginal utility–based version of the single-period capital asset pricing
model (CAPM) as follows:

Gt�1
A p E � r � B(E[r ] � r ),t mkt t[ ]1,000

where denotes the return on the market portfolio and B is conceptuallyrmkt

similar to a preference-based CAPM beta (under power utility). Crucially, a
positive A indicates performance that is abnormal even when the features of
higher-order moments (like negative skewness or excess kurtosis) of the em-
pirical distribution of trading profits are taken into account. Appendix A
provides further details on the calculations underlying A and its inputs.

Three benchmarks are considered. One is the random walk model for im-
plied volatilities. Since this model predicts tomorrow’s implied volatility to
be equal to today’s value, it does not provide buy or sell signals, and therefore
the resulting strategies trivially correspond to buying and holding T-bills every
day in the prediction window. In this case, mean profits are negligible and
the Sharpe ratio is zero by construction. One might wonder whether it is
simply possible to make abnormal profits by randomly trading option con-
tracts. We therefore include a random (delta-hedged) buy and sell option
strategy as a benchmark: according to this rule, each option has a 0.5 prob-
ability of being traded; if selected, the option is sold with probability 0.5,
otherwise it is purchased. The third benchmark we consider is the “S&P 500
buy and hold” rule, by which each day the $1,000 is simply invested in the
underlying S&P 500 index, thus obtaining Sharpe ratios and A coefficients
that are typical of the CAPM.

Table 6 shows that our two-step approach to modeling and forecasting the
S&P 500 IVS is successful at generating profitable strategies. Indeed, model
1 yields statistically significant positive mean profits under all three trading
rules. Trading rule A, based on trading the closest ATM, shortest-maturity
contract, implies a daily mean profit of 0.083%, with a t-ratio of 4.2, followed
by trading rule C (mean profit equal to 1.322%, with a t-ratio equal to 11.03)
and by trading rule B (mean profit of 2.18%, with a t-ratio equal to 3.9). As
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expected, trading rule A is less successful than the remaining trading rules
since it is constrained in terms of moneyness. All trading rules yield Sharpe
ratios that easily outperform the 4.7 ensured by the S&P 500 buy and hold
strategies; that is, they do reward risk in excess of the market portfolio. This
conclusion is robust to the CAPM-based performance evaluation delivered by
the coefficient A for trading rules A and C, for which A is positive. For trading
rule B, a negative value of A is obtained, despite the large value of the Sharpe
ratio (17.4). The empirical distribution of trading profits for this trading rule
reveals that it is associated with very high values of excess kurtosis, which
is negatively weighted under the A coefficient. Since the Sharpe ratio takes
into account only the mean and variance of profits, it fails to include this
feature, explaining the large value obtained. The negative value of A suggests
that daily rewards in excess of 2% per day are insufficient to compensate for
the risk absorbed under trading rule B.

A comparison between model 1 and the remaining models reveals that
model 1 yields, in general, higher mean daily profits than model 2 and
NGARCH(1, 1). One exception is trading rule C, for which the NGARCH(1,
1) model performs best, yielding a mean profit of 2.21% per day, against
mean profits of 1.35% for model 2 and 1.32% for model 1. Nevertheless, the
high profits obtained by the NGARCH(1, 1) under trading rule C are abnor-
mally low as signaled by a negative value of A. Instead, models 1 and 2 are
associated with large values of Sharpe ratios and positive values of A, sug-
gesting that their performance is truly abnormal.

C. Trading Results after Transaction Costs

The results from subsection B suffer from two limitations. First, they ignore
the effect of transaction costs. Second, trading rules A–C may be so narrowly
defined as to imply that a very limited (typically, ) number of contractsQ p 1
are traded. Therefore, it is possible that a model that poorly predicts volatilities
and prices out-of-sample does manage to provide correct buy and sell signals,
either for ATM short-term contracts or for the most aberrant misspricings
(maximizing expected profits).

Table 7 presents results that take transaction costs into account. We recom-
pute rate of returns for trading rules A–C when the payment of a fixed trans-
action cost per contract traded (both options and the S&P 500 index) is
imposed. We apply two different levels of unit cost, $0.05 (panel A) and
$0.125 (panel B). Panel A shows that low transaction costs barely change the
conclusions reached in table 6. As expected, after–transaction costs profits
are lower on average, but the ranking of models is the same as in table 6.
Model 1 outperforms model 2 and the NGARCH(1, 1) for trading rules A
and B, achieving the highest daily mean percentage profits and Sharpe ratios.
For trading rule C, model 1’s performance is similar to that of model 2.
Although both models yield lower daily mean profits than the NGARCH(1,
1) model, they both guarantee positive A coefficients, with model 1 achieving
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the largest percentage abnormal return. In contrast, the NGARCH(1, 1) implies
a negative value of A.

To test the robustness of our results, panel B increases transaction costs to
$0.125 per traded contract (round-trip). In this case, positive and significant
mean daily profits result for all models under trading rule C, with the best-
performing model being the NGARCH(1, 1) model, followed by model 2 and
model 1. As before, the performance of the NGARCH(1, 1) model cannot be
considered abnormal as signaled by the (negative) value of the A coefficient,
whereas the performance of models 1 and 2 can. Nevertheless, none of the
models is able to produce significantly positive profits under the other two
trading strategies (trading rules A and B).

One of the strengths of our two-step approach is that it allows us to model
and forecast the entire S&P 500 IVS. The trading rules analyzed thus far are
designed to pick a small number of option contracts (typically or 2)Q p 1
and therefore do not exploit entirely the flexibility provided by our approach.
In order to allow for trade in a larger set of option contracts, we introduce a
fourth type of trading strategy (trading rule D), which applies filter rules to
the price deviation for selecting options to be traded. In particular, we consider
filters equal to $0.125, $0.25, and $0.50 and allow trades in all contracts for
which the absolute value of the price deviation exceeds the filter. Under these
filter arrangements, Q can contain a large number of contracts, not being
constrained to be at most one or two contracts, as in trading rules A–C. In
addition to the price filters, we apply transaction costs of the same magnitude
on each contract traded on a round-trip basis, as in table 7.21 High transaction
costs such as $0.50 are designed to represent the situation faced by retail
customers, who often pay substantial commission fees in addition to the bid-
ask spread.

Table 8 reports the results for trading rule D. It shows that the profitability
of filtered-based trading rules depends heavily on the magnitude of the filter/
transaction cost employed. For a filter/transaction cost of $0.125, model 1 is
the only model that is able to guarantee significant (statistically and econom-
ically) positive profits. This is in contrast with the static IVS model (model
2) and the NGARCH(1, 1) model, which predict negative (statistically sig-
nificant) profits. Results not reported here show that most of model 1’s profits
come from trading short-term ATM and OTM contracts. Instead, DITM con-
tracts yield losses on average, with profits being statistically significantly
negative for medium-term contracts. This is consistent with our previous
findings of smaller RMSE-P for OTM as compared to ITM options for model

21. Transaction cost–based filter strategies (i.e., strategies that discount the presence of a cost
that is actually to be paid on each traded contract) have two opposing effects. On one hand, they
may raise trading profits since they constrain Q to contain only signals that, at least in expectation,
imply positive after–transaction cost profits. On the other hand, and because we apply transactions
costs of the same magnitude as the filter, they obviously depress after–transaction cost realized
profits. Which effect turns out to be stronger is an empirical issue. For instance, Harvey and
Whaley (1992, table 5) find that high enough transaction costs used as filters induce positive
and significant profits (however, their simulation does not apply transaction costs equal to filters).
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1 (cf. table 5). When we increase the filter/transaction cost to $0.25, model
1 predicts positive profits, but they are not statistically significant; the implied
Sharpe ratio is single-digit, below what would be guaranteed by a simple buy
and hold daily strategy applied to the S&P 500 index; and the value of A
becomes negative. All models predict negative profits when the filter/trans-
action cost of $0.50 is applied. Therefore, it seems that as the level of trans-
action costs is progressively raised above $0.25 (on a round-trip basis), mean
daily profits for all models disappear; that is, for the levels of frictions that
are most likely to be faced by small (retail) speculators, the strong statistical
evidence of predictability in the IVS dynamics fails to be matched by equally
strong evidence of a positive economic value.

To shed further light on the relationship between the profitability of trading
rules that rely on our predictability findings and transaction costs, we perform
a further experiment: we calculate the exact level/structure of transaction costs
such that mean daily profits either are zero or stop being statistically significant
at conventional levels. In particular, we apply a fixed $10 commission to all
transactions (i.e., an ex ante �1% return on a $1,000 investment) and proceed
to vary the per contract (round-trip) cost between $0.02 and $0.75. For com-
parison purposes with table 8, we apply this range of friction levels to trading
rule D. We also apply the same structure of transaction costs to the underlying
stock index. Results are reported in figure 5, where the upper panel reports
mean daily percentage returns as a function of the per contract cost, and the
lower panel shows related t-statistics. Clearly, the plots illustrate that both
mean profits and their statistical significance disappear (and turn negative) as
transaction costs are raised. In particular, it seems that for model 1, profits
disappear when the cost per contract is around $0.12–$0.14, consistent with
the findings in table 8. In practice, trading profits stop being significant already
for $0.10, whereas they eventually become significantly negative for per con-
tract costs of approximately $0.40. Interestingly, model 1 systematically out-
performs both model 2 and the NGARCH model. In fact, model 2 never
produces significantly positive profits, once the fixed commission is
deducted.22

VI. Robustness

In this section, we present some additional results intended to check the
robustness of our previous findings to two issues. One is the existence of
measurement errors in the inputs entering the Black-Scholes formula (such
as in the S&P 500 index level and/or in option prices). The second check we
consider refers to the effects of bid-ask spreads on the rate of return
calculations.

22. The plots display some nonlinear patterns that ought not be entirely surprising, since when
transaction costs are raised, the implied filters are also increased in a way that makes trading
(under rule D) more selective and possibly more profitable. This explains the flat (or even upward-
sloping) segments generally obtained for intermediate costs, $0.30–$0.40.
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1624 Journal of Business

Fig. 5.—Mean percentage daily profits (with filters, rule D) as a function of the
transaction cost per contract (plus a $10 fixed cost): top: mean; bottom: t-statistics.

A. Effects of Measurement Errors

Hentschel (2003) has recently stressed that even small measurement errors in
option prices or in the S&P 500 index level can produce large errors in implied
volatilities for options away from the money. Thus it is important to investigate
whether the presence of such measurement errors is driving our predictability
results. As Hentschel shows, the existence of measurement errors in the un-
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Predictable Dynamics 1625

derlying prices induces heteroskedasticity and autocorrelation in the errors of
the cross-sectional IVS model (eq. [1] above). This implies that OLS estimates
of b are inefficient. To obtain more efficient estimates of b, and thus of implied
volatilities, we follow Hentschel and reestimate equation (1), day by day,
using a feasible GLS method. The details of the implementation of this method
are in Appendix B.

Panel B of table 2 presents summary statistics for the feasible GLS estimates
as well as for the adjusted and RMSE of implied volatilities. The estimates2R
are, on average, similar to those obtained by OLS, with the exception of b̂2

and . The in-sample goodness of fit (as measured by and RMSE) de-2ˆ ¯b R4

teriorates only slightly under GLS estimation as compared with OLS. As
before, the significant values of the LB statistics indicate that there is strong
serial correlation (in levels and squares) in the estimates, suggesting a second-
stage multivariate modeling approach.

Panel A of table 4 presents the out-of-sample forecasting measures i–vi
defined in Section IV when the GLS estimates are used as the raw data in
the second stage. On average, the RMSE and MAE of implied volatilities are
slightly higher for all models, although interestingly the pricing RMSE and
MAE are often lower than those obtained by OLS. Model 1 remains the best
model out-of-sample, yielding a RMSE-V of 1.516 (vs. 1.429 under OLS)
and a RMSE-P of 93 cents (vs. $1 under OLS). It still clearly outperforms
the benchmarks in terms of Black-Scholes pricing (MAE-P and RMSE-P) and
percentage accuracy at predicting the direction of change.

In table 9 we present summary statistics for trading profits before transaction
costs for trading rules A–C under GLS estimation. As obtained before under
OLS (cf. table 6), model 1 performs best for trading rules A and B, yielding
the highest average profit rates, with statistically significant t-ratios, large
Sharpe ratios, and positive values of A. However, the use of GLS estimates
implies a reduction of the mean profits for these trading rules, which is es-
pecially large in the case of trading rule B (the mean profit is now equal to
0.84% per day whereas before it was equal to 2.18%). Interestingly, for trading
rule C, models 1 and 2 yield higher mean profits under GLS than under OLS.

Table 10 shows that these results are largely robust to the introduction of
transaction costs, similarly to table 7. Even a commission fee of 12.5 cents
per contract fails to completely remove the profitability of some of the trading
rules, especially the selective rule C. Surprisingly enough, GLS estimation
does even increase mean daily returns for trading rule C. This finding suggests
that efficient estimation of the IVS may be important to improve the prediction
accuracy in the segments of the IVS over which selective trading rules are
most likely to produce buy and/or sell signals.

B. Effects of Bid-Ask Spreads

Although we have attempted to take into account the effects of transaction
costs in computing trading profits, we have so far ignored the effects of bid-
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ask spreads since our simulated trading strategies have used observed closing
prices (calculated as midpoints of the spread). Since actual transactions would
have to take place inside the bid-ask spread but not necessarily at its midpoint,
it is reasonable to assume that on average half of the bid-ask spread must be
incurred as an additional transaction cost in the options market when a trade
takes place, in addition to fixed commission costs. In this subsection, we try
to take into account the effects of bid-ask spreads in our rate of return
calculations.

Given that our data set does not include bid-ask spreads, we resort to Dumas
et al.’s (1998) data set, which contains (transaction-based) information on bid-
ask spreads at a weekly frequency (every Wednesday).23 In order to complete
our data set, we impute to all days within the same week of each Wednesday
in Dumas et al.’s data set the bid-ask spreads sampled for that Wednesday.24

Daily returns are computed as before, with the difference that we now simulate
purchases at the ask (minus one-quarter of the spread) and sales at the bid
(plus one-quarter of the spread), in addition to a fixed unit transaction cost.
Obviously, these additional frictions represent an upper bound to the costs
that would be actually incurred by a specialized trader, both because wholesale
traders and market makers may essentially avoid the spread and because at
times trades do take place well inside the spread.

Table 11 presents a summary of trading profits for trading rules A–C, under
OLS and GLS estimation, when bid-ask spreads are taken into account. In
addition to half of the bid-ask spread, we also apply a fixed commission of
5 cents per contract traded. Panel A of table 11 (OLS) is directly comparable
to panel A of table 7. Clearly, incorporating bid-ask spreads lowers mean
daily returns. Nevertheless, the strength of this reduction varies across strat-
egies and models, as a function of the moneyness and time to maturity of the
contracts traded. Out-of-sample results for trading rule C are particularly robust
to the effects of bid-ask spreads. For this rule, large positive and abnormal
returns remain after we introduce bid-ask spreads, with the more efficient
GLS estimation yielding better out-of-sample results than OLS.

VII. Conclusion

Observed S&P 500 index option prices describe nonconstant surfaces of im-
plied volatility versus both moneyness and time to maturity. The state-of-the-
art practitioners’ framework relies on simple linear regression models in which
implied volatility is regressed on time to maturity and moneyness. The em-
pirical evidence suggests that the coefficients of this model are strongly time-
varying. In fact, structural models that have proposed economic justifications
for the existence of an IVS also imply time variation in the IVS. When

23. The data were kindly provided by Bernard Dumas.
24. On average, the vector of spreads is (0.83 0.62 0.43 0.32 0.27)′ for DITM, ITM, ATM,

OTM, and DOTM contracts, respectively.

This content downloaded from 130.186.11.41 on Tue, 15 Nov 2016 17:47:09 UTC
All use subject to http://about.jstor.org/terms



Predictable Dynamics 1629

TABLE 11 Simulated Trading Profits: Effects of Bid-Ask Spreads

Mean
Moneyness

Mean Time
to Maturity

Mean
Profit (%)

Daily %
Standard
Deviation t-Ratio

Sharpe
Ratio (%)

A. Filter: Transaction Costp 5 Cents

OLS:
Model 1 �.0026 78.43 .0005 .0747 .007 �1.012
Model 2 �.0028 64.42 �3.4873 .7377 �4.728 �21.206
NGARCH(1, 1) �.0045 49.48 �2.8843 .5609 �5.143 �23.092

GLS:
Model 1 .0022 72.99 �.0093 .1504 �.614 �3.258
Model 2 �.0022 59.12 �3.6985 .5278 �7.007 �31.423
NGARCH(1, 1) �.0045 49.48 �2.8843 .5609 �5.143 �23.092

B. Filter: Transaction Costp 25 Cents

OLS:
Model 1 �.0005 78.84 �.2765 .0915 �3.022 �14.339
Model 2 �.0028 64.46 �4.1461 .8433 �4.916 �22.035
NGARCH(1, 1) �.0045 49.48 �4.3600 .9486 �4.596 �20.596

GLS:
Model 1 .0022 72.99 �.5833 .1803 �3.236 �14.867
Model 2 �.0022 59.16 �4.0547 .6412 �6.323 �28.344
NGARCH(1, 1) �.0045 49.48 �4.3600 .9486 �4.596 �20.596

Note.—Transaction costs are set at 25 cents per contract, and bid-ask spreads are a function of the contract
moneyness. Bid-ask spreads and transaction costs are applied on a round-trip bases as filters to obtain buy
and sell signals. The first-stage cross-sectional IVS coefficients are estimated either by OLS or by GLS (adjusting
for the likely effects of measurement errors involving option prices and the underlying index).

persistent latent variables drive the fundamental pricing equation, not only
smiles, skews, and term structure effects in implied volatility are derived in
equilibrium, but the resulting IVS is time-varying and therefore forecastable
on the basis of information related to the latent factors. In this paper, we try
to exploit this predictability by proposing a simple extension of the ad hoc
practitioners model. We propose a two-step procedure for jointly modeling
the cross-sectional and time-series dimensions of the S&P 500 index options
IVS. In the first step, we model the cross-sectional variation of implied vol-
atilities as a function of polynomials in moneyness and time to expiration (or
functions thereof). Although the cross-sectional fit achieved by this step is
largely satisfactory, we document the presence of considerable time variation
and instability in the estimated coefficients. In the second step, we model the
dynamics of the IVS by estimating parametric VAR-type models. We find
that the two-step estimators produce a high-quality fit of the surface and of
its changes over time.

We evaluate the forecasting accuracy of our modeling approach using both
standard statistical measures and profitability-based criteria. In particular, the
economic criteria assess the ability of generating abnormal profits by per-
forming volatility-based trading that reflects the one-step-ahead predictions
produced by the models.

Under a statistical perspective, we find that two-stage models provide ac-
curate forecasts of future implied volatility and also satisfactory option price

This content downloaded from 130.186.11.41 on Tue, 15 Nov 2016 17:47:09 UTC
All use subject to http://about.jstor.org/terms



1630 Journal of Business

predictions (using the Black-Scholes formula, similarly to Noh et al. [1994]).
These performances are competitive (often superior) to hard-to-beat bench-
marks, such as a contract-by-contract random walk model.

Under an economic perspective, our evidence is mixed and depends heavily
on the magnitude of transactions costs employed in the rate of return cal-
culations and on how selective trading rules are. For less selective trading
rules that imply a potentially large number of trades along the entire IVS
(such as trading rule D), our volatility forecasts can support profitable trading
strategies under low to moderate transaction costs only. However, when more
selective rules are employed (such as trading rule C), we find that even under
realistic assumptions on commission fees and bid-ask spreads, mean daily
returns remain positive, statistically significant, and often truly in excess of
what could be justified by their covariation with the returns on the market
portfolio. Thus our finding that abnormal profitability depends on fine details
of the trading rules and on assumptions on the strength of market frictions
confirms that the existence of predictability patterns is not necessarily in
contradiction with the notion of market efficiency.

There are a number of directions for future research that this paper leaves
open. First, in this paper we have followed a two-step approach by first
estimating the cross-sectional IVS coefficients each day and then modeling
and forecasting the time series of these coefficients. An alternative method
of estimation would consist of the simultaneous estimation of the cross-sec-
tional coefficients and their dynamics by writing the IVS model in a state-
space form and applying the Kalman filter to obtain maximum likelihood
estimates. The one-step Kalman filter approach is theoretically more efficient
than our two-step approach. Our main motivation for pursuing a two-step
approach instead of an optimal one-step approach is simplicity: we view our
method as a simple extension of what practitioners do already in practice and
we show that it works well. We nevertheless realize that further gains in
forecasting the IVS could potentially be obtained with a Kalman filter ap-
proach. We leave this interesting extension for future research. Second, ad-
ditional experiments could be useful in terms of specifying the most useful
prediction models. For instance, both Harvey and Whaley (1992) and Noh et
al. (1994) find that there are substantial days-of-the-week effects in ATM
implied volatility. It might be important to account for these kinds of effects
also when modeling the entire surface. Additionally, Noh et al. show that
there are considerable advantages in separately modeling the implied surface
for call and put options. In this paper we have used data from both calls and
puts, but we do not claim that this is an optimal choice. Finally, in our approach
we estimate an unrestricted VAR model that does not exploit any nonarbitrage
restrictions. Imposing such restrictions in our framework would entail writing
a structural model for the IVS, which is beyond the scope of the present paper.
We note, however, that imposing no-arbitrage conditions does not necessarily
entail better forecasts. Indeed, our results suggest that our model (which does
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not exploit nonarbitrage conditions) outperforms Heston and Nandi’s (2000)
model, which is arbitrage-free.

Appendix A

Details on the Calculation of Leland’s A Coefficient

This appendix provides additional details on the computation of Leland’s (1999) risk
measure. Following Rubinstein (1976) and Leland (1999), we make two fairly general
assumptions: (i) the agent has power utility characterized by constant relative risk
aversion coefficient g, and (ii) the returns on the market portfolio are i.i.d. over time.
Notice that assumption ii requires i.i.d.-ness of market portfolio returns only, not of
the returns on all the existing assets, so that arbitrary patterns of dependence may be
accommodated. Under these assumptions, it can be shown that for a generic portfolio
characterized by gain process G,

Gt�1
E p r � B(E[r ] � r),mkt[ ]1,000

where

�gCov [E[G /1,000], (1 � r ) ]t�1 mkt
B { .

�gCov [r , (1 � r ) ]mkt mkt

This is a marginal utility–based version of the single-period CAPM, whose closed-
form solution depends on the assumption of power utility and the identification of
final wealth with the market portfolio. Interestingly, no assumptions are required for
the preference parameter g, since it turns out that

ln (E[1 � r ]) � ln (1 � r)mkt
g p .

Var [ln (1 � r )]mkt

Once g and B are estimated from the data, it is straightforward to calculate a marginal
utility–adjusted abnormal return measure A as

Gt�1
A p E � r � B(E[r ] � r).mkt[ ]1,000

Measure implies a return that exceeds what is accounted for by the quantity ofA 1 0
risk absorbed by the agent, taking into account the shape of her utility function and
therefore all higher-order moments of her wealth process.

For the purposes of our application, we proceed first to estimate g from sample
moments implied by 1992–96 S&P 500 index returns, obtaining a plausible ĝ p

. Next, we calculate B using data on daily trading strategy returns and the S&P6.81
500. At that point calculation of (percentage) A is straightforward.
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Appendix B

Details on the GLS Method Used to Filter Measurement Errors

This appendix gives some details on how to apply the GLS method proposed by
Hentschel (2003) to obtain more efficient estimates of the parameters describing the
cross-sectional IVS model used in the first stage of our approach. Consider the fol-
lowing equation:

′ln j p X b, (B1)i i

where and . Here, ji denotes the2 ′ ′X p (1, M , M , t , M # t ) b p (b , b , … , b )i i i i i i 0 1 4

true Black-Scholes implied volatility, and it is a function of the option pricing inputs
(S, r, ti, and Ki) and of the option price . The presence of measurement errors in thePi

observed prices (such as S and ) implies that in practice we do not observe ji. Instead,Pi

we observe ji with an error. In our context, one way to formalize this idea is to suppose
that the observed log-implied volatility, , is equal to the true log volatility, ,˜ln j ln ji i

plus an error :d ln ji

˜ln j p ln j � d ln j . (B2)i i i

Substituting (B2) into (B1), we obtain

′˜ln j p X b � d ln j . (B3)i i i

Equation (B3) is the cross-sectional IVS model that we will estimate in practice. It
corresponds to our previous equation (1), with ji replaced by and wherej̃ � pi i

; that is, we identify the error term with the measurement error in impliedd ln ji

volatility. Assumptions on the source and nature of this measurement error will enable
us to further characterize the structure of the regression error. In particular, suppose
that only measurement errors in S and are present.25 Then it follows thatPi

1 1 �j �P 1 �j � ln ji i i i
d ln j p dj p dP� dS p dx { dx ,i i i i i( ) ′ ′j j �P �S j �x �xi i i i i i

where collects the underlying prices and denotes the vector of cor-′x p (P, S) dxi i i

responding measurement errors. Notice that

�j �j �j �j �j �Pi i i i i i �1 �1p , p , p (V , V D ),i i i( ) ( )′�x �P �S �P �P �Si i i i

where is the option’s Black-Scholes vega, and is the option’sV { �P/�j �P/�S p Di i i i i

Black-Scholes delta. As in Hentschel (2003), we assume that measurement errors are
mean zero and independent of each other, implying that

1 �j �j 1 �j �j � ln j � ln ji i i i i i′Var (d ln j ) p E(dx dx ) p L { L ,i i i i i2 ′ 2 ′ ′j �x �x j �x �x �x �xi i i i i i i i

where Li is a diagonal matrix with and on the diagonal, that is,Var (dP) Var (dS)i

. Because ji and the elements entering (such′ ′diag(L ) p (Var (dP), Var (dS)) �j /�xi i i i

as Vi, Di, and ) are option-specific, the above formula shows that the existence ofPi

measurement errors in option prices and index prices introduces heteroskedasticity.

25. Hentschel (2003) argues that this is the case for plausible values of the parameters.
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Moreover, measurement errors in observed underlying prices (such as S) induce cor-
relation among errors in implied volatilities. Thus OLS is inefficient, and we should
instead use GLS to obtain more efficient estimates of b (and hence of fitted implied
volatilities).

For a cross section of N options, we can rewrite (B3) in a compact form as follows:

˜ln j p Xb � d ln j,

with obvious definitions (e.g., is the vector of the N observed implied volatilities).˜ln j

In particular, we can write

� ln j
d ln j p dx,′�x

where and is the Jacobian matrix of log-implied volatility′ ′x p (P , … , P , S) � ln j/�x1 N

derivatives, , with denoting the jth element of x. The variance-covariance� ln j /�x xi j j

matrix of the error vector is given byd ln j

� ln j � ln j′S p E(lnj ln j ) p L ,′�x �x

where is a diagonal matrix with′L p E(dxdx ) diag(L) p (Var (dP ), … , Var (dP ),1 N

. The GLS estimator of b is given by the well-known GLS formula′Var (S))

′ �1 �1 ′ �1˜ ˜b p (X S X) X S ln j.

In practice, this GLS estimator is not feasible since S is unknown. In particular, it
depends on the measurement error variances (i.e. on L) and on the unobserved values
of S and ji.

In our application, we implement a data-driven choice of the elements of L. For
the choice of , we follow Hentschel (2003, 8) in computing an implicit “bid-Var (dS)
ask spread” for the index level and then set equal to one-quarter of this bid-�Var (dS)
ask spread. More specifically, if returns are an i.i.d. random walk in calendar time
with annual volatility j2, then the standard deviation of half-hour returns is approxi-
mately . An implicit bid-ask spread can then be calculated as2 2j p j /(365 # 48)h

so that . In practice, we make explicitly time-12 2� �j # S Var (dS) p (j # S) Var (dS)h h4

varying by using each day the actual, closing S&P 500 index level and by calculating
a time-varying j2 as the one-step-ahead predicted, annualized GARCH(1, 1) forecast
obtained by using a rolling window of 10 years of daily S&P 500 returns data.26 This
feature accommodates the fact that time misalignments are bound to create larger
measurement errors in days in which stock prices are more volatile, whereas GARCH
models seem to offer, on average, good forecasting performance for volatility. As for
our choice of , our main difficulty lies in the fact that our data set does notVar (dP)i
have options bid-ask spreads. We proceed as in Section VI.B by resorting to Dumas
et al.’s (1998) data set to impute bid-ask spreads to our data. We follow Hentschel
(2003) and set to one-quarter of the bid-ask spread. The time variation�Var (dP)i
observed in the options spreads carries over to , which thus becomes time-Var (dP)i

varying.
We choose to replace the unobserved value of S by its observed level . This isS̃

26. Clearly, this contradicts the assumption of i.i.d.-ness of stock returns. However, this method
seems to match common practice in applied finance.
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consistent with the idea that measurement errors are zero mean so that the true,
unobservable index is likely to be distributed around itself. As for ji, we resort toS̃
Hentschel’s iterative approach. We calculate first-step GLS estimates that use(1)ˆ ˜b (j)
the “observed” implied volatilities ; on the basis of these first-step estimates, wej̃

obtain fitted implied volatilities , which are then used to calculate(1) (1)ˆˆ ˜j p exp [Xb (j)]
a second-step GLS estimate . The iterative process is applied until convergence(2) (1)ˆ ˆb (j )
of the resulting (feasible) GLS estimates is obtained, that is, when .(k�1) (k)ˆ ˆb � b
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