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Abstract. We study cold atoms and Bose-Einstein condensates exposed to time-dependent
standing waves of light. We first discuss a quantum chaotic dissipative ratchet using the method
of quantum trajectories. This system is characterized by directed transport emerging from a
quantum strange attractor. We then present a very simple model of directed transport with
cold atoms in a pair of periodically flashed optical lattices.

Finally we study the dynamics of a dilute Bose-Einstein condensate confined in a toroidal trap
and exposed to a pair of periodically flashed optical lattices. We show that the many-body
atom-atom interactions, treated within the mean-field approximation, can generate directed
transport.

1. Introduction

Cold atoms exposed to time-dependent standing waves of light provide an ideal testing ground to
explore the features of the quantum dynamics of nonlinear systems. They allowed physicists to
investigate experimentally several important physical phenomena, such as dynamical localization
[1], decoherence [2], quantum resonances [3], and chaos assisted tunneling [4]. Very interestingly,
they made it possible to realize experimentally the quantum kicked rotor [1, 2, 3], a paradigmatic
model in the field of quantum chaos [5]. Lately, the use of cold atoms in optical lattices allowed
to demonstrate the ratchet phenomenon [6], that is the presence of directed transport [7] in the
absence of any net force. This phenomenon can be found in periodic systems due to a broken
space-time symmetry [8], for example in presence of lattice asymmetry, unbiased periodic driving,
and dissipation. Not only is the ratchet effect of potential relevance in technological applications
such as rectifiers, pumps, particle separation devices, molecular switches and transistors, but it
is also of great interest for the understanding of molecular motors in biology [9]. In this work we
are going to present three different models of quantum ratchets. In Section 2 we present a model
of a quantum ratchet in a dissipative chaotic system where the directed transport emerges from
a quantum strange attractor. In Section 3 we study a different dissipative chaotic system which
also presents a strange set. This model is very simple and therefore much easier to reproduce
experimentally. In Section 4 we present an Hamiltonian ratchet where the directed transport
emerges from the many-body interaction in a Bose-Einstein condensate (BEC). In Section 5 we
present our conclusions.

© 2007 IOP Publishing Ltd 1
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2. Quantum ratchet in dissipative chaotic system

A characteristic feature of classical dissipative chaotic systems is the presence of strange
attractors [10]. In quantum mechanics, it was found that the fractal structure of the classical
strange attractor is smoothed on the scale of the Planck’s cell [11]. It is therefore interesting to
investigate how this phenomenon affects quantum ratchets [12].

In the following we consider a particle moving in one dimension [z € (—oc,+00)] in a periodic
kicked asymmetric potential:

V(z,t) = k[cos(z) +2 cos(2 z + ¢)] Z d(t — mT) (1)

2 m=—0oQ
where T is the kicking period, k is the kicking strength, a is the relative strength of the
second harmonic and ¢ (¢ € [0,27[) is a parameter with breaks the space symmetry. It is very
easy to see that the classical evolution of the system after one period is described by the map:

n = yn + k(sin(z) + asin(2z + ¢))
{ z=x+Tn .

where n is the momentum variable conjugated to = and + is the dissipation parameter,
describing a velocity proportional damping (0 < v < 1). Introducing the rescaled momentum
variable p = T'n, it is seen that classical dynamics depends on the parameter K = kT only. At
a = 0 the classical model reduces to the Zaslavsky map [13].

By means of the usual quantization rules [5],  — Z, n — 7 = —i(d/dZ) we obtain the
quantum model. We set & = 1 and since [z, p] = T, the effective Planck constant is herf = T
The classical limit corresponds to fi. s — 0, while keeping K = hi.ssk constant.

To simulate a dissipative environment we consider a master equation in the Lindblad form [14]
for the density operator p of the system:

. s 1 X 2. .
pP= _Z[Hsa - 5 Z ,Uap} + Z LILPLZ (3)
: p,:l
where H, = 72/2 + V(&,t) is the system Hamiltonian, IA/“ are the Lindblad operators and
{,} denotes the anticommutator. We assume that the dissipation is described by the lowering o
perators:

Li=TY%, vn+1n)(n+1]
Ly=TY, vn+1|—n)(—n—1]|

with n = 0,1, .... These Lindblad operators can be obtained by considering the interaction
between the system and a bosonic bath. The master equation Eq. (3) is then derived, at
zero temperature, in the weak coupling and Markov approximations. According to Ehrenfest
theorem, we require that at short times, (p) evolves like in the classical case, which gives
I' = v/=Iny. The first two terms of the Eq. (3) can be reinterpreted as the evolution of an
effective non-Hermitian Hamiltonian, Heff = H, +iW, with W = -1/2%, L"’L The last
term is responsible for the so-called quantum jumps. Given an initial pure state |¢(t0)) the jump
probabilities dp, in an infinitesimal time d¢ are defined by dp, = <¢(t0)|ﬁzﬁﬂ|¢(t0))dt, and the
new state after the jumps, by |9,) = L.[%(t0))/||Lul(t0))||. With probability dp, a jump
occurs and the system is left in the state [4,). With probability 1 — 3", dp,, there are no jumps

(4)

and the system evolves according to the effective Hamiltonian H, tf- The quantum trajectories
approach has been used to simulate the master equation Eq. (3) [15]. The numerical evaluation
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is made according to the following steps: starting from a pure state |¢(o)), at intervals dt we
choose a random number € from a uniform distribution in the unit interval [0, 1]. If e < dp, where
dp = Zi:l dpy,, the system jumps to one of the states |1,) (to |¢1) if 0 < e < dp; or to |tpo) if
dp; < € < dp; +dps ). If € > dp the evolution with the non-Hermitian Hamiltonian H, takes
place ending up in a state that we call |1g). In both circumstances the state is renormalized.
Note that we must take df much smaller than the time scales relevant for the evolution of the
open quantum system we are studying. In our simulation, dt is inversely porportional to Ay ;.
We can write the mean value (A); = Tr[Aj(t)] as the average over N trajectories:

(A)e = Jim_ 3 3O 0) @

It turns out that A = 100 — 500 is sufficient to obtain a satisfactory statistical convergence.
The simulation of the quantum evolution with quantum trajectories has enormous advantages in
memory requirements as it allows us to store only a stochastically evolving state vector instead
of a full density matrix.

Figure 1. Phase space pictures for K = 7,
v =07, ¢ = 7/2 and a = 0.7 after 100
kicks: classical Poincaré sections (left) and
quantum Husimi funtions at hery = 0.012
(right). In the upper row we display the
region p € [—20,20] and z € [0, 27 (note that
to draw the attractor, z is taken modulus 27).
Magnifications of these plots are shown in the
second and third rows (the area is reduced
by a factor 1/9 and 1/81 respectively). The
- color is proportional to the density: blue for
49T 591 zero and red for maximal density.

In Fig.1 which is drawn for parameter values K =7, v = 0.7, ¢ = 7/2 and a = 0.7, we see
the appearance of a strange attractor. In the left panel we show the classical Poincaré section
constructed from 107 initial conditions uniformly distributed in the area z € [0, 27[, p € [—, 7],
after 100 iterations of the map Eq. (2). From top to bottom we zoom in, showing the fractal
structure of the attractor. On the right panel we show the corresponding Husimi functions
of the quantum evolution for %i.;; = 0.012. The Husimi functions are averaged over N; = 5



Third International Workshop DICE2006
Journal of Physics: Conference Series 67 (2007) 012001

IOP Publishing
doi:10.1088/1742-6596/67/1/012001

initial conditions (randomly selected in p € [—, 7]), considering N/ = 160 trajectories for each
initial condition. Though the quantum version is less detailed, the main classical pattern is
well reproduced. In general we can observe a good agreement between the classical and the
quantum phase space portraits even though the resolution of the quantum picture is limited by
the uncertainty principle. It is also seen that the attractor is strongly asymmetric, suggesting
that (p) # 0. This is confirmed in Fig. 2, where (p) is shown as a function of time, both in the
classical and in the quantum case for different %7y = 0.037,0.11,0.33,0.99. A gradual approach
to the classical limit can be clearly seen as f.;; — 0 in agreement with the correspondence
principle.

1.2 ¢
0.8 | S Figure 2. Average momentum (p) as a
A function of time t (measured in number of
04 | kicks), with same parameter values as in Fig.
S e RSN 1. The solid curve corresponds to the classical
limit while the other curves are quantum
0 results at (from bottom to top) fher =
0.99,0.33,0.11,0.037. Each quantum curve
4 ‘ ‘ ‘ ‘ is obtained from N; = 60 initial conditions
0. 0 20 40 60 80 100 and N' = 480 trajectories for each initial

t conditions.

It is also possible to control the direction of the transport by varying the phase ¢. In
particular, due to the fact that the potential has the symmetry Vy(z,t) = V_4(—=,1), it is
possible to reverse the current with the transformation ¢ — —¢ . We emphasize that our
ratchet phenomenon is stable with respect to noise effects and we stress that this robustness is
in contrast with the behavior of the quantum Hamiltonian ratchets (see for example [16]). Indeed
in our case the ratchet effect is produced by dissipation and therefore it remains stable with the
introduction of noise. We also note that the Husimi function can in principle be measured from
a state reconstruction technique [17].

3. Chaotic ratchet dynamics with cold atoms in a pair of pulsed optical lattices

In this section we discuss a quantum ratchet which can be realized experimentally by using
two consecutive symmetric but dephased kicking potentials instead of only one asymmetric kick
(more difficult to realize experimentally). A dissipative process is added [18]. The application
of a second kick has some analogy with the model studied in [16]. Dissipation, in this case,
is implemented by absorbing boundary conditions. Namely if 1/(p) is the wave-function in the
momentum space, we set ¥(p) = 0 if p < —p, or p > p.. Such boundary condition could be
realized experimentally using, for example, velocity selective Raman transitions, which change
the internal states of the atoms, and hence let them escape from the state of interest [19].
Moreover, this particle escape mechanism, models the evaporative cooling process typical in
cold atom experiments. It is important that the time scale of the absorption mechanism should
be of the order of the kicking period to allow for a steady dissipation during the system’s
evolution. The simplicity of this model is essential for an efficient experimental implementation
with cold atoms.

Let us consider a particle moving in one dimension [z € (—o00,+00)] in a periodically kicked
potential. The Hamiltonian is:
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H="2 +Vye(w,1), Voel,t) = kx o
b0 [6(t — nT) cos(z) + 6(t — nT — €) cos(z — )]

n=—

where T is the kicking period, k is the kicking strength and £ (0 < ¢ < T') and ¢ (0 < ¢ < 27)
are parameters which change the symmetry characteristics of the system. In this system
hepr =T. The one-cycle evolution operator is given by:

U= e—i(T—é)ﬁ2/2e—ik cos(Z—¢) e—i§ﬁ2/2e—z’k cos(Z) (7)

The dissipation is realized by projection over a subspace corresponding to the quantum levels
that are below p. (in absolute value). In practice, this dissipation is implemented at each kick.
Denoting by P the projection operator on the interval | — p., p¢[, the wave-function after n kicks
is given by:

¥(p,n) = (PU)" 4(p,0) (8)

Figure 3. Phase space pictures for ¢ = 7/2, at n = 20: classical Poincaré sections (left panel),
quantum Husimi functions with h.ss ~ 0.16 (center panel) and h.rs ~ 1 (right panel). The
displayed region is given by I = pT € [—20,20] (vertical axis) and = € [0.27| (horizontal axis).
Note that, to draw the repeller, x is taken modulus 2. The color is proportional to the density:
blue for zero and red for maximal density.

In the phase space portraits of Fig. 3 we see the appearance of a strange repeller. These
portraits are obtained for ¢ = 7/2 and n = 20 (after n = 20 kicks we are left with approximately
10% of the initial number of particles). The three panels correspond, from left to right, to the
classical Poincaré section and the quantum Husimi function at A.py ~ 0.16 and %.;p =~ 1. We
have fixed K = 7, corresponding to the classical chaotic regime, £ = T'/3 and pchesr = 15.2. The
initial state is given by a uniform mixture of momentum states inside the interval ph.sr € [—1,1].
Once the quasi-momentum is fixed (the quasi-momentum is conserved in this system), the
number of momentum states in the interval is o< 1/h.sr. We also average numerical data
over 10° randomly chosen quasi-momenta. Classical averages are constructed from 107 initial
conditions randomly and uniformly distributed in the region = € [0,2x[, I = pT € [-1,1]. We
can see a good agreement between the classical and the quantum phase space portraits. Quantum
fluctuations smooth the fractal structure of the classical repeller on the scale of Planck’s cell
[11]. The repeller is strongly asymmetric suggesting directed transport.
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Figure 4. Average rescaled momentum
(I = (p)T as a function of discrete time n, for
0 S N B the same parameter values as in Fig.3. The
0 10 20 0 40 %0 solid curve corresponds to quantum results for
hepp ~ 0.16 and the dotted one to hi.pp ~ 1.

This is confirmed by Fig. 4, where (I) = (p)T is shown as a function of time n. As discussed
in [18] it is possible to explain the origin of the directed current present in our system by following
the approach developed in [8].

4. Many-body quantum ratchet in a Bose-Einstein condensate

The realization of Bose-Einstein condensates (BECs) of dilute gases has opened new
opportunities for the study of dynamical systems in the presence of many-body interactions.
Indeed it is possible to prepare initial states with high precision and to tune over a wide range
the many-body, atom-atom interaction. From the viewpoint of directed transport, the study of
many-body quantum system is, to our knowledge, at the very beginning.

In this section we consider N condensed atoms confined in a toroidal trap of radius R and
cross section 72, with the condition » < R, so that the motion is essentially one-dimensional.
The dynamics of a dilute condensate in a pair of periodically kicked optical lattices at zero
temperature is described by the Gross-Pitaevskii nonlinear equation,

0 1 02
zaw(ﬂ,t)— 3502

+ g0, 1) + Vo6, ) | $(6,1), 9)
where 0 is the azimuthal angle, g = 8NaR/r? is the scaled strength of the nonlinear interaction
(we consider the repulsive case, i.e., g > 0), a is the s-wave scattering length for elastic atom-
atom collisions. The kicked potential Vj ¢(60,1) is defined as

V¢,§(05 t) = En[Vl (9)5(t - TLT) + ‘/2(07 ¢)5(t —nl — 5)]’ (10)
V1(0) = kcosO, Vo(0,4) = kcos(f — ¢),

where k is the kicking strength and T the period of the kicks. The parameters ¢ € [0, 2n[ and
& € [0,T] are used to break the space and time symmetries, respectively. Note that we set
h = 1 and that the length and the energy are measured in units of R and %2 /mR?, with m
the atomic mass. The wave function normalization reads 02” dfl(0,t)|> = 1 and we assume
periodic boundary conditions, (0 + 27,t) = (0, t).

As shown in the previous section, for the noninteracting case g = 0, space-time symmetries
are broken when ¢ # 0,7 and £ # 0,7/2 and therefore there is directed transport in both the
classical and quantum case. However, if we take T' = 67 and ¢ = 4w, then the quantum motion,
independently of the kicking strength k, is periodic of period 27'. In fact,
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(0, 47) = exp[—iV1(6)]4(6,0),

P(0,67F) = exp[—iVa(0, §)|¥(0 + 7, 47") = exp{—i[Va(0,¢) — V1(0)]}4(0 + 7,0), ”
11
w(ea 107T+) = exp[_lﬂfl (9)]¢(01 67T+) = exp(_’”/?(ea ¢))¢(0 +m, O)a

$(0,121) = exp[—iV3(0, §)]9(0 + m,1077) = (0, 0),

where 1(0,t7) denotes the value of the wave function at time ¢ just after the kick. The
momentum (p(t)) = —i 02” d9¢*(0,t)%¢(9,t) also changes periodically with period 127 (4
kicks). Therefore, the average momentum p,, = lim;_,oo B(t) (B(t) = 1 [5 dt'(p(t'))) is given by

_ An(p(0))+2m (p(4m+))+4n(p(6nT))+2m (p(107T))
pav 127

= (p(0)) + & [27 (sin(8) — sin(0 — ¢)) |1(0,0)|2d6.

(12)

It is now important to remark that, for the constant initial condition %(t,0) = 1/v/2m, which
has the important physical meaning of being the ground state of a particle in the trap (hence
the initial condition for a Bose-Einstein condensate), the momentum is zero at any time.

It is therefore interesting to study the case of a BEC, because atom-atom interactions may
break the above periodicity, and this may cause generation of momentum. Numerical integration
of Eq. (9) shows that this is indeed the case. In Fig. 5 it is seen that at g # 0 the momentum
oscillates around a mean value clearly different from zero. Notice that without interactions
(9 = 0) the momentum is exactly zero, so that we have directed transport as a clear signature
of the many-body atom-atom interactions.

0.5+
0.4
0.3
A 0.2
o
v
0.1
0.0
Figure 5. Momentum versus time for
o] different values of interaction strength g, at
0 25 5 75 100 125 150 k~0.74 and ¢ = —m/4: g = 0 (dashed line),
Time (in units of 2r ) g = 0.5 (continuous curve), g = 1 (dotted
curve).

In actual experiments involving BEC, it is not possible to maintain the coherence of the BEC
itself for very long times, especially if the BEC is under a kicking potential. It is therefore
reasonable to investigate the value of the momentum after a small number of kicks, let us say
30 kicks and compare it with the asymptotic value. In Fig. 6, we compare the asymptotic
value p,y, obtained from long numerical integrations of the Gross-Pitaevskii equation (dotted
line with triangles), with the average of (p(t)) over the first 30 kicks (p(90w)(continuous line
with boxes). It can be seen that this short-time average is sufficient to obtain a good estimate
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of the asymptotic average momentum pg,, provided that g > 0.5. It is important to remark
that the average momentum after the first kicks grows monotonously with g. Therefore, the
ratchet current provides a method to measure the interaction strength in an experiment. The
inset of Fig. 6 shows how fast the cumulative average p(t) converges to the asymptotic limit. As
we can already see from the main part of Fig. 6, for strong enough interactions (g > 0.5), the
convergence to the limiting value p,, is rather fast.

0.25-

0.20

0 50 100 150
| o TIME (in units of 2r)

Figure 6. Momentum averaged over the
first 30 kicks (solid line with boxes) and

0.05-

OR asymptotic momentum (dotted line with

0.00- g./ff"‘ triangles). Inset: Cumulative average p(t) as
: : : : a function of time for different values of g.

00 0 g 0 18 From bottom to top g = 0.1,0.2,0.4,1.0,1.5.

Parameter values: k =~ 0.74, ¢ = —n/4.

It is possible to gain an intuitive understanding on how the interaction induces the generation
of a nonzero current. To this end we approximate, for small values of g, the free evolution of
the BEC by a split-operator method as in [22]:

2

) . . 182 .
b(0,7) ~ e B 5oV T b5 By (0, 0), (13)

Using this approximation, we can compute the evolution of the condensate, by taking ¥ (0,0) =
1/+/27 as initial condition. To first order in g we obtain [(8,6m)[?> ~ 5-{1 + gsin[4V;(6)]}.
This clarifies the mechanism of the ratchet effect; due to atom-atom interactions, the modulus
square of the wave function at time 67 (before the second kick) is no longer constant in € as it
is always the case for a non-interacting BEC. In particular, |#(6,67)|? has a different symmetry
compared to the second kick. Hence, the current after the kick at time ¢t = 67 is given by

(p(67)) = — [ dOV1(6, ) (6, 67) )
~ gk [I" dfsin(d — ¢) sin(4k cos 0) = —gk sin(¢)J; (4k),
where J; is the Bessel function of the first kind of index 1. This current is, in general, different
from zero, provided that V5(0, ¢) is not itself symmetric under # — —#@, that is, when ¢ # 0, 7.

It is also possible to control the direction of the transport by varying the phase ¢: the current
can be reversed simply by changing ¢ — —¢ as clearly shown in Fig. 7. This current inversion
is due to the symmetry of the kicking potential V(—0, ¢,t) = V (6, —¢,1).

When studying the dynamics of a kicked BEC, it is important to take into account the
proliferation of noncondensed atoms. Strong kicks may lead to thermal excitations out of
equilibrium and destroy the condensate. Actually, even before complete destruction of the
BEC, a too large number of noncondensed atoms would already render the description by the
Gross-Pitaevskii equation meaningless [23, 24].

In [22] we have computed the mean number of noncondensed particles at zero temperature
dN(t) using the approach developed in [25] (see also [24]). dN(t) grows either polynomially
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0.3 -

0.2

0.1

<p>

0.0+

-0.14

-0.2 4

_ L Figure 7. Momentum versus time for
034 ‘: different values of the parameter ¢, at k ~
0 25 s 75 100 125 150 0.74 and g = 0.5: ¢ = —n/4 (continuous
Time (in units of 2r) curve), ¢ = 0 (dashed line), ¢ = /4 (dotted

curve).

or exponentially. In the first case the condensate is considered stable since the number of
noncondensed particles is negligible up to long times. On the contrary, when the number of
noncondensed particles grows exponentially (which is for g > g. = 1.7), dN ~ exp(rt), leading
to a significant depletion of the condensate after a time ¢4 ~ In(NN)/r. This is clearly shown
in Fig. 8. For instance, dN =~ 0.2 (10) after ¢t = 907 (30 kicks) at ¢ = 0.5 (1.5), which is
much smaller than the total number of particles N ~ 10° — 10° [24, 28]. This shows that,
for the parameter values considered in this paper, the number of noncondensed particles is
negligible compared to the number of condensed ones, thus demonstrating that our theoretical
and numerical results based on the Gross-Pitaevskii equation are reliable.

0.0 0.5 1.0 1.5 2.0 2.5

N

Ah
\\\\\\\

Figure 8. Mean number d N of noncondensed
particles versus time for different values of the
interaction strength g: from bottom to top,
g = 0.5, 1.5, and 2.0. Inset: §N vs. g after 30
kicks. Parameter values: k =~ 0.74, ¢ = —7 /4.

1 10 100
TIME (in units of 2r)

Finally we would like to discuss the experimental feasibility of our proposal. The torus-like
potential confining the BEC may be realized by means of optical billiards [26]. The kicks may
be applied using a periodically pulsed, strongly detuned laser beam with a suitably engineered
intensity, as proposed in [27]. The feasibility is also supported by the latest progresses in the
realization of BECs in optical traps such as the 8Rb BEC in a quasi-one-dimensional optical
box trap, with condensate length ~ 80 pm, transverse confinement ~ 5 pm, and number of
particles N ~ 10 [28]. In ref.[29], sequences of up to 25 kicks have been applied to a BEC of
87Rb atoms confined in a static harmonic magnetic trap, with kicking strength k& ~ 1 and in the
quantum antiresonance case (T' = 27) for the kicked oscillator model. Finally, it is possible to
tune the interaction strength g over a very large range using a Feshbach resonance [30].
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5. Conclusions

The work described in this paper has been inspired by the recent advances in the experimental
realization of optical lattices. Cold atoms and Bose-Einstein condensates exposed to time-
dependent standing waves of light provide an ideal test bed to explore complex quantum
dynamics. We have discussed here two different models of dissipative quantum ratchets: in
the first one the quantum noise is modeled via the quantum trajectories method, while in
the second one the dissipation is described by evaporative cooling. Due to the presence of
quantum strange attractors the stationary current is independent of initial conditions. State
reconstruction techniques could in principle allow experimental observation of a quantum strange
ratchet set. We have also discussed a model of a conservative quantum ratchet where transport
is generated by the atom-atom interaction in the BEC.
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